analysis_predictor_tester.cc 24.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16
#include "paddle/fluid/inference/api/resource_manager.h"
17 18 19
#if defined(PADDLE_WITH_CUDA)
#include <cuda_runtime.h>
#endif
C
csy0225 已提交
20 21 22 23
#if defined(PADDLE_WITH_XPU)
#include "xpu/runtime.h"
#include "xpu/xdnn.h"
#endif
24 25
#include <glog/logging.h>
#include <gtest/gtest.h>
26

27
#include <thread>  // NOLINT
28

Y
Yan Chunwei 已提交
29
#include "paddle/fluid/framework/ir/pass.h"
30
#include "paddle/fluid/framework/tensor.h"
31
#include "paddle/fluid/inference/api/helper.h"
32
#include "paddle/fluid/inference/api/paddle_api.h"
33
#include "paddle/fluid/inference/api/paddle_inference_api.h"
34
#include "paddle/fluid/inference/utils/io_utils.h"
35
#include "paddle/phi/backends/cpu/cpu_info.h"
T
tianshuo78520a 已提交
36
#include "test/cpp/inference/api/tester_helper.h"
37 38 39 40 41

DEFINE_string(dirname, "", "dirname to tests.");

namespace paddle {

42
TEST(AnalysisPredictor, analysis_off) {
43 44 45
  AnalysisConfig config;
  config.SetModel(FLAGS_dirname);
  config.SwitchIrOptim(false);
46
  LOG(INFO) << config.Summary();
47 48
  LOG(INFO) << "Shape Info collected: " << config.shape_range_info_collected()
            << ", path: " << config.shape_range_info_path();
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

  auto _predictor = CreatePaddlePredictor<AnalysisConfig>(config);
  auto* predictor = static_cast<AnalysisPredictor*>(_predictor.get());

  // Without analysis, the scope_ and sub_scope_ are created by predictor
  // itself.
  ASSERT_TRUE(predictor->scope_);
  ASSERT_TRUE(predictor->sub_scope_);
  ASSERT_EQ(predictor->scope_->parent(), nullptr);
  ASSERT_EQ(predictor->sub_scope_->parent(), predictor->scope_.get());
  // ir is turned off, so program shouldn't be optimized.
  LOG(INFO) << "scope parameters " << predictor->scope_->LocalVarNames().size();

  // 2. Dummy Input Data
  int64_t data[4] = {1, 2, 3, 4};
  PaddleTensor tensor;
  tensor.shape = std::vector<int>({4, 1});
  tensor.data.Reset(data, sizeof(data));
  tensor.dtype = PaddleDType::INT64;

  std::vector<PaddleTensor> inputs(4, tensor);
  std::vector<PaddleTensor> outputs;
  ASSERT_TRUE(predictor->Run(inputs, &outputs));
}

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
#ifndef WIN32
TEST(AnalysisPredictor, lite_nn_adapter_npu) {
  AnalysisConfig config;
  config.SetModel(FLAGS_dirname);
  config.EnableLiteEngine();
  config.NNAdapter()
      .Disable()
      .Enable()
      .SetDeviceNames({"huawei_ascend_npu"})
      .SetContextProperties("HUAWEI_ASCEND_NPU_SELECTED_DEVICE_IDS=0")
      .SetModelCacheDir("cache_dirr")
      .SetSubgraphPartitionConfigPath("")
      .SetModelCacheBuffers("c1", {'c'});
#ifndef LITE_SUBGRAPH_WITH_NNADAPTER
  EXPECT_THROW(CreatePaddlePredictor<AnalysisConfig>(config),
               paddle::platform::EnforceNotMet);
#endif
}
#endif

94
TEST(AnalysisPredictor, analysis_on) {
95 96 97
  AnalysisConfig config;
  config.SetModel(FLAGS_dirname);
  config.SwitchIrOptim(true);
98
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
99
  config.EnableUseGpu(100, 0);
100
#else
101
  config.DisableGpu();
102
#endif
103
  LOG(INFO) << config.Summary();
104 105 106 107 108 109 110 111

  auto _predictor = CreatePaddlePredictor<AnalysisConfig>(config);
  auto* predictor = static_cast<AnalysisPredictor*>(_predictor.get());

  ASSERT_TRUE(predictor->scope_);
  ASSERT_TRUE(predictor->sub_scope_);
  ASSERT_EQ(predictor->scope_->parent(), nullptr);
  ASSERT_EQ(predictor->sub_scope_->parent(), predictor->scope_.get());
112
  ASSERT_EQ(predictor->GetInputTypes().size(), 4UL);
113 114
  ASSERT_EQ(predictor->GetOutputTypes().size(), 1UL);
  ASSERT_EQ(predictor->GetOutputTensorShape().size(), 1UL);
115 116 117 118 119 120 121 122 123 124 125 126
  // 2. Dummy Input Data
  int64_t data[4] = {1, 2, 3, 4};
  PaddleTensor tensor;
  tensor.shape = std::vector<int>({4, 1});
  tensor.data.Reset(data, sizeof(data));
  tensor.dtype = PaddleDType::INT64;

  std::vector<PaddleTensor> inputs(4, tensor);
  std::vector<PaddleTensor> outputs;
  ASSERT_TRUE(predictor->Run(inputs, &outputs));

  // compare with NativePredictor
127 128
  auto naive_predictor =
      CreatePaddlePredictor<NativeConfig>(config.ToNativeConfig());
129 130 131 132 133 134
  std::vector<PaddleTensor> naive_outputs;
  ASSERT_TRUE(naive_predictor->Run(inputs, &naive_outputs));
  ASSERT_EQ(naive_outputs.size(), 1UL);
  inference::CompareTensor(outputs.front(), naive_outputs.front());
}

135 136
TEST(AnalysisPredictor, ZeroCopy) {
  AnalysisConfig config;
137 138
  config.SetModel(FLAGS_dirname);
  config.SwitchUseFeedFetchOps(false);
139
  LOG(INFO) << config.Summary();
S
superjomn 已提交
140
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(config);
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

  auto w0 = predictor->GetInputTensor("firstw");
  auto w1 = predictor->GetInputTensor("secondw");
  auto w2 = predictor->GetInputTensor("thirdw");
  auto w3 = predictor->GetInputTensor("forthw");

  w0->Reshape({4, 1});
  w1->Reshape({4, 1});
  w2->Reshape({4, 1});
  w3->Reshape({4, 1});

  auto* w0_data = w0->mutable_data<int64_t>(PaddlePlace::kCPU);
  auto* w1_data = w1->mutable_data<int64_t>(PaddlePlace::kCPU);
  auto* w2_data = w2->mutable_data<int64_t>(PaddlePlace::kCPU);
  auto* w3_data = w3->mutable_data<int64_t>(PaddlePlace::kCPU);

  for (int i = 0; i < 4; i++) {
    w0_data[i] = i;
    w1_data[i] = i;
    w2_data[i] = i;
    w3_data[i] = i;
  }

  predictor->ZeroCopyRun();

  auto out = predictor->GetOutputTensor("fc_1.tmp_2");
  PaddlePlace place;
  int size = 0;
  auto* out_data = out->data<float>(&place, &size);
  LOG(INFO) << "output size: " << size / sizeof(float);
  LOG(INFO) << "output_data: " << out_data;
172
  predictor->TryShrinkMemory();
173 174
}

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
TEST(AnalysisPredictor, CollectShapeRangeInfo) {
  AnalysisConfig config;
  config.SetModel(FLAGS_dirname);
  config.SwitchUseFeedFetchOps(false);
  config.EnableUseGpu(100, 0);
  config.CollectShapeRangeInfo(FLAGS_dirname + "/shape_range.pbtxt");
  LOG(INFO) << config.Summary();
  AnalysisConfig config2(config);
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(config2);

  auto w0 = predictor->GetInputTensor("firstw");
  auto w1 = predictor->GetInputTensor("secondw");
  auto w2 = predictor->GetInputTensor("thirdw");
  auto w3 = predictor->GetInputTensor("forthw");

  w0->Reshape({4, 1});
  w1->Reshape({4, 1});
  w2->Reshape({4, 1});
  w3->Reshape({4, 1});
194 195 196 197 198
  std::vector<int64_t> input_data{0, 1, 2, 3};
  w0->copy_from_cpu(input_data.data());
  w1->copy_from_cpu(input_data.data());
  w2->copy_from_cpu(input_data.data());
  w3->copy_from_cpu(input_data.data());
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

  predictor->ZeroCopyRun();

  auto out = predictor->GetOutputTensor("fc_1.tmp_2");
  PaddlePlace place;
  int size = 0;
  out->data<float>(&place, &size);
  LOG(INFO) << "output size: " << size / sizeof(float);
  // TODO(wilber): check for windows
  // std::map<std::string, std::vector<int32_t>> min_shape;
  // std::map<std::string, std::vector<int32_t>> max_shape;
  // std::map<std::string, std::vector<int32_t>> opt_shape;
  // inference::DeserializeShapeRangeInfo(FLAGS_dirname + "/shape_range.pbtxt",
  //                                     &min_shape, &max_shape, &opt_shape);
  // ASSERT_EQ(min_shape.size(), 14u);
}

216 217
TEST(AnalysisPredictor, Clone) {
  AnalysisConfig config;
218 219 220
  config.SetModel(FLAGS_dirname);
  config.SwitchUseFeedFetchOps(true);
  config.SwitchIrOptim(true);
221
  LOG(INFO) << config.Summary();
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

  std::vector<std::unique_ptr<PaddlePredictor>> predictors;
  predictors.emplace_back(CreatePaddlePredictor(config));

  LOG(INFO) << "************** to clone ************************";
  const int num_threads = 3;
  for (int i = 1; i < num_threads; i++) {
    predictors.emplace_back(predictors.front()->Clone());
  }

  auto* root_scope =
      static_cast<AnalysisPredictor*>(predictors[0].get())->scope();
  ASSERT_FALSE(root_scope->kids().empty());
  LOG(INFO) << "***** scope ******\n"
            << framework::GenScopeTreeDebugInfo(root_scope);

  // 2. Dummy Input Data
  int64_t data[4] = {1, 2, 3, 4};
  PaddleTensor tensor;
  tensor.shape = std::vector<int>({4, 1});
  tensor.data.Reset(data, sizeof(data));
  tensor.dtype = PaddleDType::INT64;

  std::vector<PaddleTensor> inputs(4, tensor);
  std::vector<PaddleTensor> outputs;
  predictors[0]->Run(inputs, &outputs);

  LOG(INFO) << "Run with single thread";
  for (int i = 0; i < num_threads; i++) {
    LOG(INFO) << "run predictor " << i;
    ASSERT_TRUE(predictors[i]->Run(inputs, &outputs));
  }

  LOG(INFO) << "Run with multiple threads";
  std::vector<std::thread> threads;
  for (int i = 0; i < num_threads; i++) {
    threads.emplace_back([&predictors, &inputs, i] {
      LOG(INFO) << "thread #" << i << " running";
      std::vector<PaddleTensor> outputs;
Y
Yan Chunwei 已提交
261
      auto predictor = predictors.front()->Clone();
262
      for (int j = 0; j < 10; j++) {
Y
Yan Chunwei 已提交
263
        ASSERT_TRUE(predictor->Run(inputs, &outputs));
264 265 266 267 268 269 270 271 272
      }
    });
  }

  for (auto& t : threads) {
    t.join();
  }
}

S
superjomn 已提交
273 274 275
// This function is not released yet, will fail on some machine.
// TODO(Superjomn) Turn on it latter.
/*
Y
Yan Chunwei 已提交
276 277 278 279
TEST(AnalysisPredictor, memory_optim) {
  AnalysisConfig config(FLAGS_dirname);
  config.DisableGpu();
  config.EnableMemoryOptim(true);
Y
Yan Chunwei 已提交
280
  config.SwitchIrDebug();
Y
Yan Chunwei 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297

  auto native_predictor =
      CreatePaddlePredictor<NativeConfig>(config.ToNativeConfig());

  // 2. Dummy Input Data
  int64_t data[4] = {1, 2, 3, 4};
  PaddleTensor tensor;
  tensor.shape = std::vector<int>({4, 1});
  tensor.data.Reset(data, sizeof(data));
  tensor.dtype = PaddleDType::INT64;

  std::vector<PaddleTensor> inputs(4, tensor);
  std::vector<PaddleTensor> output, output1;

  {
    // The first predictor help to cache the memory optimize strategy.
    auto predictor = CreatePaddlePredictor<AnalysisConfig>(config);
298 299
    LOG(INFO) << "serialized program: " << predictor->GetSerializedProgram();
    ASSERT_FALSE(predictor->GetSerializedProgram().empty());
Y
Yan Chunwei 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325

    // Run several times to check the parameters are not reused by mistake.
    for (int i = 0; i < 5; i++) {
      ASSERT_TRUE(predictor->Run(inputs, &output));
    }
  }

  {
    output.clear();
    // The second predictor to perform memory optimization.
    config.EnableMemoryOptim(false);
    auto predictor = CreatePaddlePredictor<AnalysisConfig>(config);

    // Run with memory optimization
    ASSERT_TRUE(predictor->Run(inputs, &output));
  }

  // Run native
  ASSERT_TRUE(native_predictor->Run(inputs, &output1));

  LOG(INFO) << "the output " << inference::DescribeTensor(output.front());
  LOG(INFO) << "the native output "
            << inference::DescribeTensor(output1.front());

  inference::CompareResult(output, output1);
}
S
superjomn 已提交
326
*/
Y
Yan Chunwei 已提交
327

328
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
329 330 331 332 333 334 335
TEST(AnalysisPredictor, bf16_gpu_pass_strategy) {
  AnalysisConfig config;
  config.SetModel(FLAGS_dirname);
  config.SwitchIrOptim(true);
  config.EnableUseGpu(100, 0);
  config.EnableMkldnnBfloat16();
#ifdef PADDLE_WITH_MKLDNN
336
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_core))
337 338 339
    ASSERT_EQ(config.mkldnn_bfloat16_enabled(), true);
  else
    ASSERT_EQ(config.mkldnn_bfloat16_enabled(), false);
340 341 342 343 344 345 346 347 348 349 350 351
#else
  ASSERT_EQ(config.mkldnn_bfloat16_enabled(), false);
#endif
}
#endif

TEST(AnalysisPredictor, bf16_pass_strategy) {
  std::vector<std::string> passes;
  PassStrategy passStrategy(passes);
  passStrategy.EnableMkldnnBfloat16();
}

P
Paulina Gacek 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
TEST(AnalysisPredictor, mkldnn_fc_pass_strategy) {
  std::vector<std::string> passes;
  PassStrategy passStrategy(passes);
  passStrategy.DisableMkldnnFcPasses();
  ASSERT_EQ(passes.size(), (size_t)0);
}

#ifdef PADDLE_WITH_MKLDNN
TEST(AnalysisPredictor, mkldnn_fc_passes_cpu_pass_strategy) {
  CpuPassStrategy cpuPassStrategy;
  cpuPassStrategy.EnableMKLDNN();
  const std::vector<std::string> fc_passes_to_erase(
      {"fc_mkldnn_pass",
       "fc_act_mkldnn_fuse_pass",
       "fc_elementwise_add_mkldnn_fuse_pass"});
  for (const auto& pass : fc_passes_to_erase) {
    ASSERT_NE(cpuPassStrategy.GetPassIndex(pass), (size_t)-1);
  }
  cpuPassStrategy.DisableMkldnnFcPasses();
  for (const auto& pass : fc_passes_to_erase) {
    ASSERT_EQ(cpuPassStrategy.GetPassIndex(pass), (size_t)-1);
  }
}
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
TEST(AnalysisPredictor, mkldnn_fc_passes_gpu_pass_strategy) {
  AnalysisConfig config;
  config.EnableUseGpu(100, 0);
  config.EnableMKLDNN();
  config.DisableMkldnnFcPasses();
#ifdef PADDLE_WITH_MKLDNN
  ASSERT_TRUE(config.mkldnn_fc_passes_disabled());
#else
  ASSERT_FALSE(config.mkldnn_fc_passes_disabled());
#endif
}
#endif

391 392 393 394 395 396 397 398 399 400 401
#ifdef PADDLE_WITH_XPU
TEST(AnalysisPredictor, set_xpu_device_id) {
  AnalysisConfig config;
  config.EnableXpu();
  config.SetXpuDeviceId(0);
  ASSERT_EQ(config.xpu_device_id(), 0);
  config.SetXpuDeviceId(1);
  ASSERT_EQ(config.xpu_device_id(), 1);
}
#endif

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
TEST(AnalysisPredictor, enable_onnxruntime) {
  AnalysisConfig config;
  config.EnableONNXRuntime();
#ifdef PADDLE_WITH_ONNXRUNTIME
  ASSERT_TRUE(config.use_onnxruntime());
#else
  ASSERT_TRUE(!config.use_onnxruntime());
#endif
  config.EnableORTOptimization();
#ifdef PADDLE_WITH_ONNXRUNTIME
  ASSERT_TRUE(config.ort_optimization_enabled());
#else
  ASSERT_TRUE(!config.ort_optimization_enabled());
#endif
  config.DisableONNXRuntime();
  ASSERT_TRUE(!config.use_onnxruntime());
}

420
}  // namespace paddle
421 422 423 424

namespace paddle_infer {

TEST(Predictor, Run) {
425 426 427 428 429 430 431 432 433
  auto trt_compile_ver = GetTrtCompileVersion();
  auto trt_runtime_ver = GetTrtRuntimeVersion();
  LOG(INFO) << "trt compile version: " << std::get<0>(trt_compile_ver) << "."
            << std::get<1>(trt_compile_ver) << "."
            << std::get<2>(trt_compile_ver);
  LOG(INFO) << "trt runtime version: " << std::get<0>(trt_runtime_ver) << "."
            << std::get<1>(trt_runtime_ver) << "."
            << std::get<2>(trt_runtime_ver);

434 435 436 437
  Config config;
  config.SetModel(FLAGS_dirname);

  auto predictor = CreatePredictor(config);
438
  ASSERT_EQ(predictor->GetInputTypes().size(), 4UL);
439 440
  ASSERT_EQ(predictor->GetOutputTypes().size(), 1UL);
  ASSERT_EQ(predictor->GetOutputTensorShape().size(), 1UL);
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473

  auto w0 = predictor->GetInputHandle("firstw");
  auto w1 = predictor->GetInputHandle("secondw");
  auto w2 = predictor->GetInputHandle("thirdw");
  auto w3 = predictor->GetInputHandle("forthw");

  w0->Reshape({4, 1});
  w1->Reshape({4, 1});
  w2->Reshape({4, 1});
  w3->Reshape({4, 1});

  auto* w0_data = w0->mutable_data<int64_t>(PlaceType::kCPU);
  auto* w1_data = w1->mutable_data<int64_t>(PlaceType::kCPU);
  auto* w2_data = w2->mutable_data<int64_t>(PlaceType::kCPU);
  auto* w3_data = w3->mutable_data<int64_t>(PlaceType::kCPU);

  for (int i = 0; i < 4; i++) {
    w0_data[i] = i;
    w1_data[i] = i;
    w2_data[i] = i;
    w3_data[i] = i;
  }

  predictor->Run();

  auto out = predictor->GetOutputHandle("fc_1.tmp_2");
  PlaceType place;
  int size = 0;
  out->data<float>(&place, &size);
  LOG(INFO) << "output size: " << size / sizeof(float);
  predictor->TryShrinkMemory();
}

474 475 476 477 478 479 480 481
TEST(Predictor, EnableONNXRuntime) {
  Config config;
  config.SetModel(FLAGS_dirname);
  config.EnableONNXRuntime();
  config.EnableORTOptimization();
  auto predictor = CreatePredictor(config);
}

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
TEST(Tensor, CpuShareExternalData) {
  Config config;
  config.SetModel(FLAGS_dirname);

  auto predictor = CreatePredictor(config);

  auto w0 = predictor->GetInputHandle("firstw");
  auto w1 = predictor->GetInputHandle("secondw");
  auto w2 = predictor->GetInputHandle("thirdw");
  auto w3 = predictor->GetInputHandle("forthw");

  std::vector<std::vector<int64_t>> input_data(4, {0, 1, 2, 3});
  w0->ShareExternalData<int64_t>(input_data[0].data(), {4, 1}, PlaceType::kCPU);
  w1->ShareExternalData<int64_t>(input_data[1].data(), {4, 1}, PlaceType::kCPU);
  w2->ShareExternalData<int64_t>(input_data[2].data(), {4, 1}, PlaceType::kCPU);
  w3->ShareExternalData<int64_t>(input_data[3].data(), {4, 1}, PlaceType::kCPU);

  auto out = predictor->GetOutputHandle("fc_1.tmp_2");
  auto out_shape = out->shape();
  std::vector<float> out_data;
W
Wilber 已提交
502 503
  out_data.resize(std::accumulate(
      out_shape.begin(), out_shape.end(), 1, std::multiplies<int>()));
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
  out->ShareExternalData<float>(out_data.data(), out_shape, PlaceType::kCPU);

  predictor->Run();

  PlaceType place;
  int size = 0;
  out->data<float>(&place, &size);
  LOG(INFO) << "output size: " << size / sizeof(float);
  predictor->TryShrinkMemory();
}

#if defined(PADDLE_WITH_CUDA)
TEST(Tensor, GpuShareExternalData) {
  Config config;
  config.SetModel(FLAGS_dirname);
  config.EnableUseGpu(100, 0);

  auto predictor = CreatePredictor(config);

  auto w0 = predictor->GetInputHandle("firstw");
  auto w1 = predictor->GetInputHandle("secondw");
  auto w2 = predictor->GetInputHandle("thirdw");
  auto w3 = predictor->GetInputHandle("forthw");

  std::vector<std::vector<int64_t>> input_data(4, {0, 1, 2, 3});
  std::vector<int64_t*> input_gpu(4, nullptr);

  for (size_t i = 0; i < 4; ++i) {
    cudaMalloc(reinterpret_cast<void**>(&input_gpu[i]), 4 * sizeof(int64_t));
W
Wilber 已提交
533 534 535
    cudaMemcpy(input_gpu[i],
               input_data[i].data(),
               4 * sizeof(int64_t),
536 537 538 539 540 541 542 543 544 545
               cudaMemcpyHostToDevice);
  }

  w0->ShareExternalData<int64_t>(input_gpu[0], {4, 1}, PlaceType::kGPU);
  w1->ShareExternalData<int64_t>(input_gpu[1], {4, 1}, PlaceType::kGPU);
  w2->ShareExternalData<int64_t>(input_gpu[2], {4, 1}, PlaceType::kGPU);
  w3->ShareExternalData<int64_t>(input_gpu[3], {4, 1}, PlaceType::kGPU);

  auto out = predictor->GetOutputHandle("fc_1.tmp_2");
  auto out_shape = out->shape();
546
  float* out_data = nullptr;
W
Wilber 已提交
547 548 549 550
  auto out_size =
      std::accumulate(
          out_shape.begin(), out_shape.end(), 1, std::multiplies<int>()) *
      sizeof(float);
551 552 553 554 555 556 557 558 559 560 561
  cudaMalloc(reinterpret_cast<void**>(out_data), out_size * sizeof(float));
  out->ShareExternalData<float>(out_data, out_shape, PlaceType::kGPU);

  predictor->Run();

  PlaceType place;
  int size = 0;
  out->data<float>(&place, &size);
  LOG(INFO) << "output size: " << size / sizeof(float);
  predictor->TryShrinkMemory();
}
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658

TEST(Predictor, Streams) {
  // internal stream.
  {
    Config config;
    config.SetModel(FLAGS_dirname);
    config.EnableUseGpu(100, 0);
    auto predictor = CreatePredictor(config);
    gpuStream_t stream =
        reinterpret_cast<gpuStream_t>(predictor->GetExecStream());
    CHECK_EQ(paddle::ResourceManager::Instance().RefCount(stream), 0);
  }

  // internal stream, create 2 predictor.
  {
    Config config1;
    config1.SetModel(FLAGS_dirname);
    config1.EnableUseGpu(100, 0);
    auto predictor1 = CreatePredictor(config1);
    gpuStream_t stream1 =
        reinterpret_cast<gpuStream_t>(predictor1->GetExecStream());
    CHECK_EQ(paddle::ResourceManager::Instance().RefCount(stream1), 0);

    Config config2;
    config2.SetModel(FLAGS_dirname);
    config2.EnableUseGpu(100, 0);
    auto predictor2 = CreatePredictor(config2);
    gpuStream_t stream2 =
        reinterpret_cast<gpuStream_t>(predictor2->GetExecStream());
    CHECK_EQ(paddle::ResourceManager::Instance().RefCount(stream2), 0);
    CHECK_EQ(stream1, stream2);
  }

  // internal stream, clone
  {
    Config config;
    config.SetModel(FLAGS_dirname);
    config.EnableUseGpu(100, 0);
    auto predictor = CreatePredictor(config);
    gpuStream_t stream =
        reinterpret_cast<gpuStream_t>(predictor->GetExecStream());
    CHECK_EQ(paddle::ResourceManager::Instance().RefCount(stream), 0);

    auto predictor2 = predictor->Clone();
    gpuStream_t stream2 =
        reinterpret_cast<gpuStream_t>(predictor2->GetExecStream());
    CHECK_EQ(paddle::ResourceManager::Instance().RefCount(stream2), 0);
    CHECK_EQ(stream, stream2);
  }

  // external stream
  {
    cudaStream_t external_stream;
    cudaStreamCreate(&external_stream);
    Config config;
    config.SetModel(FLAGS_dirname);
    config.EnableUseGpu(100, 0);
    config.SetExecStream(external_stream);
    CHECK_EQ(config.external_stream_enabled(), true);

    auto predictor = CreatePredictor(config);
    gpuStream_t stream =
        reinterpret_cast<gpuStream_t>(predictor->GetExecStream());
    CHECK_EQ(external_stream, stream);
    CHECK_NOTNULL(paddle::ResourceManager::Instance().GetGPUResource(stream));
    CHECK_EQ(paddle::ResourceManager::Instance().RefCount(stream), 1);
  }

  // 2 predictor on 2 stream
  {
    cudaStream_t external_stream;
    cudaStreamCreate(&external_stream);
    Config config;
    config.SetModel(FLAGS_dirname);
    config.EnableUseGpu(100, 0);
    config.SetExecStream(external_stream);
    auto predictor = CreatePredictor(config);
    gpuStream_t stream =
        reinterpret_cast<gpuStream_t>(predictor->GetExecStream());
    CHECK_NOTNULL(paddle::ResourceManager::Instance().GetGPUResource(stream));
    CHECK_EQ(paddle::ResourceManager::Instance().RefCount(stream), 1);

    cudaStream_t external_stream2;
    cudaStreamCreate(&external_stream2);
    Config config2;
    config2.SetModel(FLAGS_dirname);
    config2.EnableUseGpu(100, 0);
    config2.SetExecStream(external_stream2);
    auto predictor2 = CreatePredictor(config2);
    gpuStream_t stream2 =
        reinterpret_cast<gpuStream_t>(predictor2->GetExecStream());
    CHECK_NOTNULL(paddle::ResourceManager::Instance().GetGPUResource(stream2));
    CHECK_EQ(paddle::ResourceManager::Instance().RefCount(stream2), 1);

    CHECK_NE(stream, stream2);
  }
}
659 660
#endif

C
csy0225 已提交
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
#if defined(PADDLE_WITH_XPU)
TEST(Predictor, XPUStreams) {
  // external stream
  {
    auto context = baidu::xpu::api::create_context();
    xpu_stream_create(&context->xpu_stream);

    Config config;
    config.SetModel(FLAGS_dirname);
    config.EnableXpu();
    config.SetExecStream(static_cast<void*>(context->xpu_stream));
    CHECK_EQ(config.external_stream_enabled(), true);

    auto predictor = CreatePredictor(config);
    auto stream = predictor->GetExecStream();
    CHECK_EQ(static_cast<void*>(context->xpu_stream), stream);
    CHECK_NOTNULL(paddle::ResourceManager::Instance().GetXPUResource(stream));
    CHECK_EQ(paddle::ResourceManager::Instance().RefCount(stream), 1);
  }

  // 2 predictor on 2 stream
  {
    auto context1 = baidu::xpu::api::create_context();
    xpu_stream_create(&context1->xpu_stream);

    Config config;
    config.SetModel(FLAGS_dirname);
    config.EnableXpu();
    config.SetExecStream(static_cast<void*>(context1->xpu_stream));
    auto predictor = CreatePredictor(config);
    auto stream1 = predictor->GetExecStream();
    CHECK_NOTNULL(paddle::ResourceManager::Instance().GetXPUResource(stream1));
    CHECK_EQ(paddle::ResourceManager::Instance().RefCount(stream1), 1);

    auto context2 = baidu::xpu::api::create_context();
    xpu_stream_create(&context2->xpu_stream);

    Config config2;
    config2.SetModel(FLAGS_dirname);
    config2.EnableXpu();
    config2.SetExecStream(static_cast<void*>(context2->xpu_stream));
    auto predictor2 = CreatePredictor(config2);
    auto stream2 = predictor2->GetExecStream();
    CHECK_NOTNULL(paddle::ResourceManager::Instance().GetXPUResource(stream2));
    CHECK_EQ(paddle::ResourceManager::Instance().RefCount(stream2), 1);

    CHECK_NE(stream1, stream2);
  }
}
#endif

712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
TEST(AnalysisPredictor, OutputHookFunc) {
  auto hookfunc = [](const std::string& type,
                     const std::string& var_name,
                     const Tensor& tensor) { LOG(INFO) << "in hook function"; };

  {
    Config config;
    config.SetModel(FLAGS_dirname);
    config.EnableUseGpu(100, 0);

    auto predictor = CreatePredictor(config);

    predictor->RegisterOutputHook(hookfunc);
    auto w0 = predictor->GetInputHandle("firstw");
    auto w1 = predictor->GetInputHandle("secondw");
    auto w2 = predictor->GetInputHandle("thirdw");
    auto w3 = predictor->GetInputHandle("forthw");
    w0->Reshape({4, 1});
    w1->Reshape({4, 1});
    w2->Reshape({4, 1});
    w3->Reshape({4, 1});
    auto* w0_data = w0->mutable_data<int64_t>(PlaceType::kCPU);
    auto* w1_data = w1->mutable_data<int64_t>(PlaceType::kCPU);
    auto* w2_data = w2->mutable_data<int64_t>(PlaceType::kCPU);
    auto* w3_data = w3->mutable_data<int64_t>(PlaceType::kCPU);
    for (int i = 0; i < 4; i++) {
      w0_data[i] = i;
      w1_data[i] = i;
      w2_data[i] = i;
      w3_data[i] = i;
    }
    predictor->Run();
    predictor->TryShrinkMemory();
  }

  {
    Config config;
    config.SetModel(FLAGS_dirname);
    config.EnableMemoryOptim();
    config.EnableUseGpu(100, 0);

    auto predictor = CreatePredictor(config);

    predictor->RegisterOutputHook(hookfunc);
  }
}

759
}  // namespace paddle_infer