imperative.cc 133.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/pybind/imperative.h"
16

17
#include <Python.h>
18 19 20 21
#include <pybind11/chrono.h>
#include <pybind11/complex.h>
#include <pybind11/functional.h>
#include <pybind11/stl.h>
22

23
#include <algorithm>
24
#include <memory>
25
#include <set>
J
Jiabin Yang 已提交
26
#include <string>
27
#include <unordered_map>
28
#include <unordered_set>
29
#include <utility>
J
Jiabin Yang 已提交
30
#include <vector>
31

J
Jiabin Yang 已提交
32
#include "paddle/fluid/eager/api/all.h"
33
#include "paddle/fluid/framework/convert_utils.h"
34
#include "paddle/fluid/framework/scope_guard.h"
35
#include "paddle/fluid/imperative/all_reduce.h"
36
#include "paddle/fluid/imperative/amp_auto_cast.h"
37
#include "paddle/fluid/imperative/basic_engine.h"
38
#include "paddle/fluid/imperative/bkcl_context.h"
39
#include "paddle/fluid/imperative/cncl_context.h"
40
#include "paddle/fluid/imperative/data_loader.h"
41
#include "paddle/fluid/imperative/gloo_context.h"
42
#include "paddle/fluid/imperative/hccl_context.h"
K
kuizhiqing 已提交
43
#include "paddle/fluid/imperative/heter_ccl_context.h"
44
#include "paddle/fluid/imperative/hooks.h"
45
#include "paddle/fluid/imperative/layer.h"
J
Jiabin Yang 已提交
46
#include "paddle/fluid/imperative/nccl_context.h"
47
#include "paddle/fluid/imperative/partial_grad_engine.h"
48
#include "paddle/fluid/imperative/profiler.h"
49
#include "paddle/fluid/imperative/py_layer_fwd.h"
50
#include "paddle/fluid/imperative/reducer.h"
51
#include "paddle/fluid/imperative/tracer.h"
M
minqiyang 已提交
52
#include "paddle/fluid/imperative/type_defs.h"
53
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
54
#include "paddle/fluid/operators/utils.h"
55
#include "paddle/fluid/pybind/op_function.h"
56
#include "paddle/fluid/pybind/pybind_boost_headers.h"
L
Leo Chen 已提交
57
#include "paddle/fluid/pybind/tensor_py.h"
58

59 60 61
namespace paddle {
namespace pybind {

62 63
PyTypeObject *g_varbase_pytype = nullptr;

64 65
namespace py = ::pybind11;

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s", typeid(T).name()));
  }
}

class PyVariableWrapperHook : public imperative::VariableWrapperHook {
 public:
  explicit PyVariableWrapperHook(PyObject *func) : py_func_(func) {
    Py_INCREF(py_func_);
  }

  ~PyVariableWrapperHook() {
    py::gil_scoped_acquire gil;
    Py_DECREF(py_func_);
  }

  std::shared_ptr<imperative::VariableWrapper> operator()(
      const std::shared_ptr<imperative::VariableWrapper> &var) override {
    py::gil_scoped_acquire gil;
    VLOG(3) << "Call PyVariableWrapperHook for var " << var->Name();

    // 1. unpack temp VarBase from VariableWrapper
    std::shared_ptr<imperative::VarBase> tmp_varbase =
        std::make_shared<imperative::VarBase>(var);

    // 2. call hook and return
    PyObject *res = nullptr;
    try {
      res = PyObject_CallFunctionObjArgs(py_func_, py::cast(tmp_varbase).ptr(),
                                         nullptr);
    } catch (platform::EnforceNotMet &e) {
      throw std::move(e);
    } catch (std::exception &e) {
      PADDLE_THROW(platform::errors::Unavailable(
          "Hook function of Tensor raises an exception: %s.", e.what()));
    } catch (...) {
      PADDLE_THROW(platform::errors::Fatal(
          "Hook function of Tensor raises an unknown exception."));
    }

    PADDLE_ENFORCE_NOT_NULL(res,
                            platform::errors::Unavailable(
                                "Hook function of Tensor return a nullptr."));
    if (res == Py_None) {
      return var;
    }

    return PyObjectCast<std::shared_ptr<imperative::VarBase>>(res)->SharedVar();
  }

 private:
  PyObject *py_func_;
};

L
Leo Chen 已提交
125 126 127 128 129
static const platform::Place PyObjectToPlace(const py::object &place_obj) {
  if (py::isinstance<platform::CPUPlace>(place_obj)) {
    return place_obj.cast<platform::CPUPlace>();
  } else if (py::isinstance<platform::CUDAPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPlace>();
130 131
  } else if (py::isinstance<platform::XPUPlace>(place_obj)) {
    return place_obj.cast<platform::XPUPlace>();
L
Leo Chen 已提交
132 133
  } else if (py::isinstance<platform::CUDAPinnedPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPinnedPlace>();
134 135
  } else if (py::isinstance<platform::NPUPlace>(place_obj)) {
    return place_obj.cast<platform::NPUPlace>();
136 137
  } else if (py::isinstance<platform::Place>(place_obj)) {
    return place_obj.cast<platform::Place>();
F
fwenguang 已提交
138 139
  } else if (py::isinstance<platform::MLUPlace>(place_obj)) {
    return place_obj.cast<platform::MLUPlace>();
140 141
  } else if (py::isinstance<platform::CustomPlace>(place_obj)) {
    return place_obj.cast<platform::CustomPlace>();
L
Leo Chen 已提交
142 143
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
144
        "Place should be one of "
145 146
        "Place/CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace/MLUPlace/"
        "CustomPlace"));
L
Leo Chen 已提交
147 148 149
  }
}

L
Leo Chen 已提交
150 151 152 153 154 155 156 157 158 159
// only initialize varbase, but not its tensor.
static void InitVarBaseOnly(imperative::VarBase *self, const std::string &name,
                            bool persistable = false, int stop_gradient = -1) {
  auto name_ = name == ""
                   ? imperative::GetCurrentTracer()->GenerateUniqueName(
                         "generated_tensor")
                   : name;

  VLOG(5) << "Init Tensor as: / name: " << name_
          << " / persistable: " << persistable
160
          << " / stop_gradient: " << stop_gradient;
L
Leo Chen 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174
  new (self) imperative::VarBase(name_);
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
  self->SetPersistable(persistable);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
}

// initialize varbase and its tensor.
static void InitVarBaseAndTensor(
    imperative::VarBase *self, const py::array &array,
    const platform::Place &place, const std::string &name,
    bool persistable = false, bool zero_copy = false, int stop_gradient = -1) {
  InitVarBaseOnly(self, name, persistable, stop_gradient);
175
  auto *tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
L
Leo Chen 已提交
176
  VLOG(4) << "zero_copy: " << zero_copy;
L
Leo Chen 已提交
177
  if (platform::is_cpu_place(place)) {
178
    SetTensorFromPyArray<platform::CPUPlace>(tensor, array, place, zero_copy);
179
  } else if (platform::is_xpu_place(place)) {
180
    SetTensorFromPyArray<platform::XPUPlace>(tensor, array, place, zero_copy);
L
Leo Chen 已提交
181
  } else if (platform::is_gpu_place(place)) {
182
    SetTensorFromPyArray<platform::CUDAPlace>(tensor, array, place, zero_copy);
L
Leo Chen 已提交
183
  } else if (platform::is_cuda_pinned_place(place)) {
184 185
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(tensor, array, place,
                                                    zero_copy);
186
  } else if (platform::is_npu_place(place)) {
187
    SetTensorFromPyArray<platform::NPUPlace>(tensor, array, place, zero_copy);
F
fwenguang 已提交
188
  } else if (platform::is_mlu_place(place)) {
189
    SetTensorFromPyArray<platform::MLUPlace>(tensor, array, place, zero_copy);
190 191 192
  } else if (platform::is_custom_place(place)) {
    SetTensorFromPyArray<platform::CustomPlace>(tensor, array, place,
                                                zero_copy);
193
  } else {
L
Leo Chen 已提交
194
    PADDLE_THROW(platform::errors::InvalidArgument(
195
        "Place should be one of "
F
fwenguang 已提交
196
        "CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace/MLUPlace"));
J
Jiabin Yang 已提交
197
  }
198
  self->SetDataType(framework::TransToProtoVarType(tensor->dtype()));
199 200 201 202
}

static void InitVarBaseFromNumpyWithKwargs(imperative::VarBase *self,
                                           const py::kwargs &kwargs) {
203
  VLOG(4) << "Init VarBase from kwargs: ";
L
Leo Chen 已提交
204 205 206 207 208 209
  auto persistable = kwargs.contains("persistable")
                         ? kwargs["persistable"].cast<bool>()
                         : false;
  auto zero_copy =
      kwargs.contains("zero_copy") ? kwargs["zero_copy"].cast<bool>() : false;
  auto name = kwargs.contains("name") ? kwargs["name"].cast<std::string>() : "";
210 211 212
  auto stop_gradient = kwargs.contains("stop_gradient")
                           ? kwargs["stop_gradient"].cast<int>()
                           : -1;
L
Leo Chen 已提交
213
  auto default_place = imperative::GetCurrentTracer()->ExpectedPlace();
L
Leo Chen 已提交
214 215 216 217 218 219 220 221 222 223 224 225

  if (kwargs.contains("value")) {
    auto array = kwargs["value"].cast<py::array>();
    // place is only used when array is given, otherwise, it is meaningless and
    // ignored
    auto place = kwargs.contains("place") ? PyObjectToPlace(kwargs["place"])
                                          : default_place;
    InitVarBaseAndTensor(self, array, place, name, persistable, zero_copy,
                         stop_gradient);
  } else {
    InitVarBaseOnly(self, name, persistable, stop_gradient);
  }
226
}
227

228 229 230
template <typename P>
static void InitVarBaseFromNumpyWithArg(imperative::VarBase *self,
                                        const py::array &array, const P &place,
L
Leo Chen 已提交
231 232
                                        bool persistable = false,
                                        bool zero_copy = false,
233 234 235 236 237
                                        std::string name = "",
                                        int stop_gradient = -1) {
  VLOG(4) << "Init VarBase from Arg: ";
  // 0: self, 1: value, 2: place, 3: persistable, 4: zero_copy, 5: name , 6:
  // stop_gradient
L
Leo Chen 已提交
238
  if (name == "") {
239 240
    name =
        imperative::GetCurrentTracer()->GenerateUniqueName("generated_tensor");
L
Leo Chen 已提交
241
  }
242 243
  VLOG(5) << "Init Tensor as: / name: " << name
          << " / persistable: " << persistable << " / zero_copy: " << zero_copy
244
          << " / stop_gradient: " << stop_gradient << " / at " << place;
L
Leo Chen 已提交
245
  new (self) imperative::VarBase(name);
246 247
  self->SetPersistable(persistable);
  auto *tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
248 249 250
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
251 252
  SetTensorFromPyArray<P>(tensor, array, place, zero_copy);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
253
  self->SetDataType(framework::TransToProtoVarType(tensor->dtype()));
254 255 256
}

static void InitVarBaseFromNumpyWithArgDefault(imperative::VarBase *self,
L
Leo Chen 已提交
257 258
                                               const py::array &array) {
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
259
  VLOG(4) << "Init VarBase from numpy at " << place;
L
Leo Chen 已提交
260
  InitVarBaseAndTensor(self, array, place, "");
261
}
262

B
Baibaifan 已提交
263 264 265
static void InitVarBaseFromTensorWithArgDefault(imperative::VarBase *self,
                                                const framework::Tensor &tensor,
                                                const std::string &name) {
266 267
  VLOG(4) << "Init VarBase";
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
B
Baibaifan 已提交
268 269 270 271 272
  auto name_ = name == ""
                   ? imperative::GetCurrentTracer()->GenerateUniqueName(
                         "generated_tensor")
                   : name;
  new (self) imperative::VarBase(name_);
273 274
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
275
  self->SetDataType(framework::TransToProtoVarType(tensor.dtype()));
276 277 278 279 280 281 282 283 284 285 286
  auto *new_tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
  // Same place,share data directly
  if (place == tensor.place()) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

287 288 289
template <typename P>
static void InitVarBaseFromTensorWithArg(imperative::VarBase *self,
                                         const framework::Tensor &tensor,
B
Baibaifan 已提交
290 291
                                         const P &place,
                                         const std::string &name) {
292
  VLOG(4) << "Init VarBase";
B
Baibaifan 已提交
293 294 295 296 297
  auto name_ = name == ""
                   ? imperative::GetCurrentTracer()->GenerateUniqueName(
                         "generated_tensor")
                   : name;
  new (self) imperative::VarBase(name_);
298 299
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
300
  self->SetDataType(framework::TransToProtoVarType(tensor.dtype()));
301 302 303 304 305 306 307 308 309 310 311
  auto *new_tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
  // Same place,share data directly
  if (platform::is_same_place(place, tensor.place())) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

312 313 314 315 316
static std::string GetTypeName(const imperative::VarBase &var) {
  if (var.Type() == framework::proto::VarType::RAW) {
    return "RAW";
  } else if (!var.Var().IsInitialized()) {
    return "nullptr";
317
  } else {
318
    return framework::ToTypeName(var.Var().Type());
319 320
  }
}
L
Leo Chen 已提交
321

322
using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;
323 324 325 326 327 328 329 330 331 332 333 334 335

// NOTE(zjl): py::handle is a very light wrapper of PyObject *.
// Unlike py::object, py::handle does not change reference count of PyObject *.
static std::vector<std::shared_ptr<imperative::VarBase>>
GetVarBaseListFromPyHandle(const py::handle &handle) {
  PyObject *py_obj = handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    return {};
  }

  std::vector<std::shared_ptr<imperative::VarBase>> result;

336
  if (PyList_Check(py_obj)) {  // List of VarBase
337 338 339
    size_t len = PyList_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
340 341 342
      PyObject *py_ivar = PyList_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
343 344 345
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
346
  } else if (PyTuple_Check(py_obj)) {  // Tuple of VarBase
347 348 349
    size_t len = PyTuple_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
350 351 352
      PyObject *py_ivar = PyTuple_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
353 354 355
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
356 357 358
  } else {  // VarBase
    result.emplace_back(
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
359 360 361 362
  }

  return result;
}
363 364 365 366 367 368 369 370
static bool IsNumpyType(PyObject *obj) {
  // It is not a good way to judge the type of obj by its type'name. Maybe using
  // `PyArray_IsScalar` will be better. However, this interface cannot be used
  // by including pybind11, and it needs to compile with numpy.
  auto type_name = std::string(Py_TYPE(obj)->tp_name);
  return type_name == "numpy.int64" || type_name == "numpy.longlong" ||
         type_name == "numpy.int32" || type_name == "numpy.int16";
}
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415

static bool PyCheckTensor(PyObject *obj) {
  return py::isinstance<imperative::VarBase>(obj);
}

// cast numpy type form S to T, this may allocate new memory
template <class T, class S>
static py::array_t<T> CastNumpyType(py::array_t<S> array) {
  if (std::is_same<T, S>::value) {
    return array;
  }
  auto dim = array.ndim();
  std::vector<py::ssize_t> result_shape(dim);
  for (auto i = 0; i < dim; i++) {
    result_shape[i] = array.shape(i);
  }

  py::array_t<T> result(result_shape);

  return py::vectorize([](S s) { return static_cast<T>(s); })(array);
}

template <class T>
static py::array_t<T> CastNumpyArray(const py::object &array) {
  if (py::isinstance<py::array_t<float>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<float>>());
  } else if (py::isinstance<py::array_t<double>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<double>>());
  } else if (py::isinstance<py::array_t<int32_t>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<int32_t>>());
  } else if (py::isinstance<py::array_t<int64_t>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<int64_t>>());
  } else if (py::isinstance<py::array_t<bool>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<bool>>());
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Value type error. The assign numpy value allows integer, float, "
        "double and bool, "
        "but received %s.",
        Py_TYPE(array.ptr())->tp_name));
  }
  // can't reach here
  return py::array_t<T>();
}

J
Jiabin Yang 已提交
416 417 418
static imperative::NameVarBaseMap ConvertToNameVarBaseMap(
    const PyNameVarBaseMap &map) {
  imperative::NameVarBaseMap result;
419 420 421 422 423 424
  for (auto &pair : map) {
    auto var_vec = GetVarBaseListFromPyHandle(pair.second);
    if (!var_vec.empty()) {
      result.emplace(pair.first, std::move(var_vec));
    }
  }
J
Jiabin Yang 已提交
425

426 427 428
  PADDLE_ENFORCE_EQ(
      PyErr_Occurred(), nullptr,
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
429 430 431
  return result;
}

432 433 434 435 436 437 438 439
static bool PyCheckInteger(PyObject *obj) {
#if PY_VERSION_HEX < 0x03000000
  return (PyLong_Check(obj) || PyInt_Check(obj)) && !PyBool_Check(obj);
#else
  return PyLong_Check(obj) && !PyBool_Check(obj);
#endif
}

440 441 442 443
static Py_ssize_t GetSliceIndexFromTensor(
    const std::shared_ptr<imperative::VarBase> &tensor_index) {
  const auto &tensor = tensor_index->Var().Get<framework::LoDTensor>();
  if (tensor.numel() == 1) {
444 445
    if (framework::TransToProtoVarType(tensor.dtype()) ==
        framework::proto::VarType::INT32) {
446
      return static_cast<Py_ssize_t>(operators::GetValue<int32_t>(&tensor));
447 448
    } else if (framework::TransToProtoVarType(tensor.dtype()) ==
               framework::proto::VarType::INT64) {
449 450 451 452 453 454 455 456 457 458 459 460 461 462
      return static_cast<Py_ssize_t>(operators::GetValue<int64_t>(&tensor));
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Currently, the type of tensor in slice indices only allows "
          "int32 and int64, please check the type of index tensor."));
    }
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Currently, tensor in slice indices only allows 1 element, "
        "but received %d.",
        tensor.numel()));
  }
}

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
// NOTE(zhiqiu): Revised version of PySlice_GetIndices. From:
// https://github.com/python/cpython/blob/8d21aa21f2cbc6d50aab3f420bb23be1d081dac4/Objects/sliceobject.c#L103
// Original PySlice_GetIndices return wrong result when
// slice_item contains long int, such as arr[:180L].
// NOT sure why this happens !!!
// Besides, PySlice_GetIndices cannot raise error when float in slice item.
// So, I make a revised version of PySlice_GetIndices, named to
// _PySlice_GetIndices. Try to use _PySlice_Unpack which is more robust than
// PySlice_GetIndices in the future.
static int _PySlice_GetIndices(PySliceObject *r, Py_ssize_t length,
                               Py_ssize_t *start, Py_ssize_t *stop,
                               Py_ssize_t *step) {
  /* XXX support long ints */
  if (r->step == Py_None) {
    *step = 1;
  } else {
479
    if (PyCheckInteger(r->step) || IsNumpyType(r->step)) {
480
      *step = PyLong_AsLong(r->step);
481 482 483
    } else if (PyCheckTensor(r->step)) {
      *step = GetSliceIndexFromTensor(
          py::cast<std::shared_ptr<imperative::VarBase>>(r->step));
484 485
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
486 487
          "Currently, slice indices only allows None, integers, "
          "tensor(int) and numpy(int) in slice item, but received %s.",
488 489 490 491 492 493
          std::string(Py_TYPE(r->step)->tp_name)));
    }
  }
  if (r->start == Py_None) {
    *start = *step < 0 ? length - 1 : 0;
  } else {
494
    if (PyCheckInteger(r->start) || IsNumpyType(r->start)) {
495
      *start = PyLong_AsLong(r->start);
496 497 498
    } else if (PyCheckTensor(r->start)) {
      *start = GetSliceIndexFromTensor(
          py::cast<std::shared_ptr<imperative::VarBase>>(r->start));
499 500
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
501 502
          "Currently, slice indices only allows None, integers, "
          "tensor(int) and numpy(int) in slice item, but received %s.",
503 504 505
          std::string(Py_TYPE(r->start)->tp_name)));
    }
    if (*start < 0) *start += length;
506
    *start = std::max(*start, static_cast<Py_ssize_t>(0));
507 508 509 510
  }
  if (r->stop == Py_None) {
    *stop = *step < 0 ? -1 : length;
  } else {
511
    if (PyCheckInteger(r->stop) || IsNumpyType(r->stop)) {
512
      *stop = PyLong_AsLong(r->stop);
513 514 515
    } else if (PyCheckTensor(r->stop)) {
      *stop = GetSliceIndexFromTensor(
          py::cast<std::shared_ptr<imperative::VarBase>>(r->stop));
516 517
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
518 519
          "Currently, slice indices only allows None, integers, "
          "tensor(int) and numpy(int) in slice item, but received %s.",
520 521
          std::string(Py_TYPE(r->stop)->tp_name)));
    }
522
    if (0 < *step && *stop < 0) *stop += length;
523
    *stop = std::min(*stop, length);
524 525 526 527 528 529 530
  }
  if (*stop > length) return -1;
  if (*start >= length) return -1;
  if (*step == 0) return -1;
  return 0;
}

Z
zyfncg 已提交
531 532 533 534 535 536 537 538 539
static void ParseIndexingSlice(
    framework::LoDTensor *tensor, PyObject *_index,
    std::vector<int> *slice_axes, std::vector<int> *slice_starts,
    std::vector<int> *slice_ends, std::vector<int> *slice_strides,
    std::vector<int> *decrease_axis, std::vector<int> *none_axes,
    std::vector<int> *infer_flags, std::vector<int> *list_select_idxs,
    bool *list_select_flag) {
  // We allow indexing by Integers, Slices, Ellipsis, None, tuples of those
  // types, and list of Bool and Integers.
S
songyouwei 已提交
540
  // wrap to tuple
541 542

  // NOTE(zhiqiu): PyTuple_Pack increases refcount.
S
songyouwei 已提交
543
  PyObject *index = !PyTuple_Check(_index) ? PyTuple_Pack(1, _index) : _index;
544 545 546 547 548 549
  DEFINE_PADDLE_SCOPE_GUARD([index, _index]() {
    if (!PyTuple_Check(_index)) {
      Py_DECREF(index);
      VLOG(4) << "Call Py_DECREF";
    }
  });
S
songyouwei 已提交
550 551 552 553 554 555
  PADDLE_ENFORCE_EQ(
      tensor->IsInitialized(), true,
      platform::errors::InvalidArgument("tensor has not been initialized"));
  const auto &shape = tensor->dims();
  const int rank = shape.size();
  const int size = PyTuple_GET_SIZE(index);
556 557 558 559

  // specified_dims is the number of dimensions which indexed by Interger,
  // Slices.
  int specified_dims = 0;
560
  int ell_count = 0;
561 562 563 564
  for (int dim = 0; dim < size; ++dim) {
    PyObject *slice_item = PyTuple_GetItem(index, dim);
    if (PyCheckInteger(slice_item) || PySlice_Check(slice_item)) {
      specified_dims++;
565 566
    } else if (slice_item == Py_Ellipsis) {
      ell_count++;
567 568 569
    }
  }

570 571 572
  PADDLE_ENFORCE_LE(ell_count, 1,
                    platform::errors::InvalidArgument(
                        "An index can only have a single ellipsis ('...')"));
573
  int none_count = 0;
574 575 576
  for (int i = 0, dim = 0; i < size; ++i) {
    PyObject *slice_item = PyTuple_GetItem(index, i);

S
songyouwei 已提交
577 578
    infer_flags->push_back(1);
    int dim_len = shape[dim];
579
    if (PyCheckInteger(slice_item) || IsNumpyType(slice_item)) {
580
      // integer, PyLong_AsLong supports both int and long
S
songyouwei 已提交
581
      int start = static_cast<int>(PyLong_AsLong(slice_item));
H
hong 已提交
582
      auto s_t = start;
S
songyouwei 已提交
583
      start = start < 0 ? start + dim_len : start;
584
      if (start >= dim_len || start < 0) {
H
hong 已提交
585 586 587 588 589 590 591 592 593
        std::string str_error_message =
            "The starting index " + std::to_string(s_t) +
            " of slice is out of bounds in tensor " + std::to_string(dim) +
            "-th axis, it shound be in the range of [" +
            std::to_string(-dim_len) + ", " + std::to_string(dim_len) + ")";
        // py::index_error is corresponding to IndexError in Python
        // Used to indicate out of bounds access in __getitem__, __setitem__
        throw py::index_error(str_error_message);
      }
S
songyouwei 已提交
594 595 596 597 598
      slice_axes->push_back(dim);
      slice_starts->push_back(start);
      slice_ends->push_back(start + 1);
      slice_strides->push_back(1);
      decrease_axis->push_back(dim);
599 600
      dim++;
    } else if (PySlice_Check(slice_item)) {
601
      // slice item
S
songyouwei 已提交
602
      Py_ssize_t start, end, step;
603 604 605
      PySliceObject *p = reinterpret_cast<PySliceObject *>(slice_item);
      _PySlice_GetIndices(p, dim_len, &start, &end, &step);

S
songyouwei 已提交
606
      // :: or : or 0:dim_len:1
607
      if (start == 0 && end == dim_len && step == 1) {
608
        dim++;
609 610
        continue;
      }
S
songyouwei 已提交
611 612 613 614
      slice_axes->push_back(dim);
      slice_starts->push_back(start);
      slice_ends->push_back(end);
      slice_strides->push_back(step);
615 616 617
      dim++;
    } else if (slice_item == Py_Ellipsis) {
      dim += rank - specified_dims;
618
    } else if (slice_item == Py_None) {
619 620
      none_axes->push_back(dim + none_count);
      none_count++;
Z
zyfncg 已提交
621 622
    } else if (PyList_Check(slice_item)) {
      *list_select_flag = true;
Z
zyfncg 已提交
623 624 625 626 627 628
      PADDLE_ENFORCE_EQ(
          size, 1,
          platform::errors::InvalidArgument(
              "When index contains a list, its length is excepted to 1, "
              "but received %d",
              size));
Z
zyfncg 已提交
629 630 631 632 633 634 635 636 637 638 639 640
      bool all_bool = true;
      int list_size = PyList_GET_SIZE(slice_item);
      for (int j = 0; j < list_size; ++j) {
        PyObject *list_item = PyList_GetItem(slice_item, j);
        if (PyCheckInteger(list_item)) {
          all_bool = false;
        } else if (!PyBool_Check(list_item)) {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Only support int or bool in index list."));
        }
      }
      if (all_bool) {
Z
zyfncg 已提交
641 642 643 644 645 646 647
        PADDLE_ENFORCE_EQ(
            list_size, shape[0],
            platform::errors::InvalidArgument(
                "The dimension of bool index doesn't match indexed array along "
                "dimension 0, the target dimension is %d, but received %d.",
                shape[0], list_size));

Z
zyfncg 已提交
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
        for (int j = 0; j < list_size; ++j) {
          PyObject *list_item = PyList_GetItem(slice_item, j);
          if (list_item == Py_True) {
            list_select_idxs->push_back(j);
          }
        }
      } else {
        for (int j = 0; j < list_size; ++j) {
          PyObject *list_item = PyList_GetItem(slice_item, j);
          if (PyCheckInteger(list_item)) {
            list_select_idxs->push_back(
                static_cast<int>(PyLong_AsLong(list_item)));
          } else if (list_item == Py_True) {
            list_select_idxs->push_back(1);
          } else {
            list_select_idxs->push_back(0);
          }
        }
      }

668 669
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
670
          "Currently, Tensor.__indices__() only allows indexing "
Z
zyfncg 已提交
671 672 673
          "by Integers, Slices, Ellipsis, None, tuples of these types "
          "and list of Bool and Integers, but received "
          "%s in %dth slice item",
674
          std::string(Py_TYPE(slice_item)->tp_name), i + 1));
S
songyouwei 已提交
675 676
    }
  }
677 678

  // valid_index is the number of dimensions exclude None index
679
  const int valid_indexs = size - none_axes->size() - ell_count;
680 681 682 683
  PADDLE_ENFORCE_EQ(valid_indexs <= rank, true,
                    platform::errors::InvalidArgument(
                        "Too many indices (%d) for tensor of dimension %d.",
                        valid_indexs, rank));
S
songyouwei 已提交
684 685
}

686
template <typename P>
687 688 689
static void VarBaseCopy(std::shared_ptr<imperative::VarBase> &src,  // NOLINT
                        imperative::VarBase &dst,                   // NOLINT
                        const P &dst_device, const bool blocking) {
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
  if (dst.SharedVar()->IsEmpty()) {
    VLOG(3) << "deep copy Variable from " << src->Name() << " to "
            << dst.Name();
    dst.SetPersistable(src->Persistable());
    dst.SetDataType(src->DataType());
    dst.SetType(src->Type());
    dst.SetOverridedStopGradient(src->OverridedStopGradient());
    if (!src->SharedVar()->IsEmpty()) {
      if (src->Var().IsType<framework::LoDTensor>()) {
        auto &src_tensor = src->Var().Get<framework::LoDTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<framework::LoDTensor>();
        dst_tensor->set_lod(src_tensor.lod());
        framework::TensorCopy(src_tensor, dst_device, dst_tensor);
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_tensor.place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
710 711
      } else if (src->Var().IsType<phi::SelectedRows>()) {
        auto &src_selected_rows = src->Var().Get<phi::SelectedRows>();
712
        auto *dst_selected_rows =
713
            dst.MutableVar()->GetMutable<phi::SelectedRows>();
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
        dst_selected_rows->set_height(src_selected_rows.height());
        dst_selected_rows->set_rows(src_selected_rows.rows());
        framework::TensorCopy(src_selected_rows.value(), dst_device,
                              dst_selected_rows->mutable_value());
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_selected_rows.value().place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
      }

      if (!blocking) {
        IncreaseVarbaseReferenceCountUntilCopyComplete(src, dst_device);
      }

    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The source Tensor(%s) can not copy when it is empty.", src->Name()));
    }
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The destion Tensor(%s) can not copy when it is not empty.",
        dst.Name()));
  }
}

742
// Bind Methods
J
Jiabin Yang 已提交
743
void BindImperative(py::module *m_ptr) {
744 745
  auto &m = *m_ptr;

746 747
  BindOpFunctions(&m);

748 749
#ifndef _WIN32
  // Dygraph DataLoader signal handler
750 751 752 753 754 755 756 757 758 759 760 761 762
  m.def("_set_process_pids", [](int64_t key, py::object &obj) {
    PADDLE_ENFORCE_EQ(
        py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj), true,
        platform::errors::InvalidArgument(
            "The subprocess ids set in DataLoader is illegal."
            "Expected data type is tuple or list, but received %s",
            obj.get_type()));
    py::list pids = py::cast<py::list>(obj);
    std::set<pid_t> pids_set = {};
    for (size_t i = 0; i < pids.size(); i++) {
      pids_set.insert(pids[i].cast<pid_t>());
    }
    imperative::SetLoadProcessPIDs(key, pids_set);
763
  });
764 765
  m.def("_erase_process_pids",
        [](int64_t key) { imperative::EraseLoadProcessPIDs(key); });
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
  m.def("_set_process_signal_handler",
        []() { imperative::SetLoadProcessSignalHandler(); });
  m.def("_throw_error_if_process_failed",
        []() { imperative::ThrowErrorIfLoadProcessFailed(); });
  // Dygraph DataLoader reader process & thread related functions
  m.def(
      "_convert_to_tensor_list",
      [](py::object &obj) -> py::list {
        // 0. input data check
        PADDLE_ENFORCE(
            py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
            platform::errors::InvalidArgument(
                "The batch data read into DataLoader is illegal."
                "Expected data type is tuple or list, but received %s",
                obj.get_type()));
        py::list batch = py::cast<py::list>(obj);
        py::list tensors;
        for (size_t i = 0; i < batch.size(); ++i) {
          // 1. cast to python array
          auto array = batch[i].cast<py::array>();
          PADDLE_ENFORCE_NE(
              string::Sprintf("%s", array.dtype()).compare("object"), 0,
              platform::errors::InvalidArgument(
                  "Faild to convert input data to a regular ndarray.\n  * "
                  "Usually this means the input data contains nested "
                  "lists with different lengths.\n  * Check the reader "
                  "function passed to 'set_(sample/sample_list/batch)"
                  "_generator' to locate the data causes this issue."));
          // 2. construcct LoDTensor
          framework::LoDTensor t;
          SetTensorFromPyArray<platform::CPUPlace>(&t, array,
                                                   platform::CPUPlace(), true);
          // 3. allocate shared memory
799
          void *data_ptr = t.data();
800
          size_t data_size = t.numel() * framework::DataTypeSize(t.dtype());
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
          auto shared_writer_holder =
              memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
          // 4. maintain mmap fd set & backup ipc_name
          const std::string &ipc_name = shared_writer_holder->ipc_name();
          memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
          // 5. copy data & reset holder
          memory::Copy(platform::CPUPlace(), shared_writer_holder->ptr(),
                       platform::CPUPlace(), data_ptr, data_size);
          t.ResetHolder(shared_writer_holder);
          // 6. append to result list
          tensors.append(t);
        }
        return tensors;
      },
      py::return_value_policy::take_ownership);

K
Kaipeng Deng 已提交
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
  m.def("_array_to_share_memory_tensor",
        [](py::object &obj) {
          // 1. cast to python array
          auto array = obj.cast<py::array>();
          PADDLE_ENFORCE_NE(
              string::Sprintf("%s", array.dtype()).compare("object"), 0,
              platform::errors::InvalidArgument(
                  "Faild to convert input data to a regular ndarray.\n  * "
                  "Usually this means the input data contains nested "
                  "lists with different lengths.\n  * Check the reader "
                  "function passed to 'set_(sample/sample_list/batch)"
                  "_generator' to locate the data causes this issue."));
          // 2. construcct LoDTensor
          framework::LoDTensor t;
          SetTensorFromPyArray<platform::CPUPlace>(&t, array,
                                                   platform::CPUPlace(), true);
          // 3. allocate shared memory
834
          void *data_ptr = t.data();
835
          size_t data_size = t.numel() * framework::DataTypeSize(t.dtype());
K
Kaipeng Deng 已提交
836 837 838 839 840 841 842 843 844 845 846 847 848 849
          auto shared_writer_holder =
              memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
          // 4. maintain mmap fd set & backup ipc_name
          const std::string &ipc_name = shared_writer_holder->ipc_name();
          memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
          // 5. copy data & reset holder
          memory::Copy(platform::CPUPlace(), shared_writer_holder->ptr(),
                       platform::CPUPlace(), data_ptr, data_size);
          t.ResetHolder(shared_writer_holder);

          return t;
        },
        py::return_value_policy::take_ownership);

850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
  m.def("_remove_tensor_list_mmap_fds", [](py::list &tensor_list) {
    for (size_t i = 0; i < tensor_list.size(); ++i) {
      auto t = tensor_list[i].cast<framework::LoDTensor>();
      auto *mmap_writer_allocation =
          dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
              t.Holder().get());
      PADDLE_ENFORCE_NOT_NULL(
          mmap_writer_allocation,
          platform::errors::NotFound("The shared memory of LoDTensor in "
                                     "DataLoader's child process has been "
                                     "released."));
      memory::allocation::MemoryMapFdSet::Instance().Remove(
          mmap_writer_allocation->ipc_name());
    }
  });

  m.def("_cleanup_mmap_fds",
        []() { memory::allocation::MemoryMapFdSet::Instance().Clear(); });
#endif

870 871
  m.def("start_imperative_gperf_profiler",
        []() { imperative::StartProfile(); });
872 873 874 875
  m.def("_set_eager_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
          egr::Controller::Instance().SetCurrentTracer(tracer);
        });
876 877
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });

Z
Zeng Jinle 已提交
878 879 880
  m.def("_is_dygraph_debug_enabled",
        []() { return imperative::IsDebugEnabled(); });
  m.def("_dygraph_debug_level", []() { return imperative::GetDebugLevel(); });
881 882
  m.def("_switch_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
J
Jiabin Yang 已提交
883 884 885
          if (egr::Controller::Instance().InEagerMode()) {
            egr::Controller::Instance().SetCurrentTracer(tracer);
          }
886
          imperative::SetCurrentTracer(tracer);
887
        });
J
Jiabin Yang 已提交
888 889 890 891 892 893
  m.def("_enable_eager_mode",
        []() { egr::Controller::Instance().SetInEagerMode(true); });
  m.def("_disable_eager_mode",
        []() { egr::Controller::Instance().SetInEagerMode(false); });
  m.def("_in_eager_mode",
        []() { return egr::Controller::Instance().InEagerMode(); });
894 895 896 897
  py::class_<imperative::VarBase, std::shared_ptr<imperative::VarBase>> varbase(
      m, "VarBase", R"DOC()DOC");
  g_varbase_pytype = (PyTypeObject *)varbase.ptr();  // NOLINT
  varbase.def_static("_alive_vars", &imperative::VarBase::AliveVarNames)
898 899 900 901 902 903 904
      .def("__init__",
           [](imperative::VarBase &self) {
             std::string name =
                 imperative::GetCurrentTracer()->GenerateUniqueName(
                     "generated_tensor");
             new (&self) imperative::VarBase(name);
           })
J
Jiabin Yang 已提交
905
      .def("__init__",
906 907 908
           [](imperative::VarBase &self, framework::proto::VarType::Type dtype,
              const std::vector<int> &dims, const py::handle &name,
              framework::proto::VarType::Type type, bool persistable) {
909
             VLOG(4) << "Init VarBase";
910 911 912
             std::string act_name = "";
             if (!name.ptr() || name.ptr() == Py_None) {
               act_name = imperative::GetCurrentTracer()->GenerateUniqueName(
913
                   "generated_tensor");
914 915 916 917
             } else {
               act_name = name.cast<std::string>();
             }
             new (&self) imperative::VarBase(act_name);
J
Jiabin Yang 已提交
918 919 920 921 922 923
             self.SetPersistable(persistable);
             self.SetType(type);
             self.SetDataType(dtype);
             if (type == framework::proto::VarType::LOD_TENSOR) {
               auto *tensor =
                   self.MutableVar()->GetMutable<framework::LoDTensor>();
924
               tensor->Resize(phi::make_ddim(dims));
J
Jiabin Yang 已提交
925 926
             }
           })
927 928
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::CPUPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
929 930
           py::arg("zero_copy") = false, py::arg("name") = "",
           py::arg("stop_gradient") = -1)
931 932 933 934
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::XPUPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
           py::arg("zero_copy") = false, py::arg("name") = "",
           py::arg("stop_gradient") = -1)
935 936
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::CUDAPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
937 938
           py::arg("zero_copy") = false, py::arg("name") = "",
           py::arg("stop_gradient") = -1)
939 940
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::CUDAPinnedPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
941 942
           py::arg("zero_copy") = false, py::arg("name") = "",
           py::arg("stop_gradient") = -1)
943 944 945 946
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::NPUPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
           py::arg("zero_copy") = false, py::arg("name") = "",
           py::arg("stop_gradient") = -1)
F
fwenguang 已提交
947 948 949 950
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::MLUPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
           py::arg("zero_copy") = false, py::arg("name") = "",
           py::arg("stop_gradient") = -1)
951 952 953 954
      .def("__init__", &InitVarBaseFromNumpyWithArg<platform::CustomPlace>,
           py::arg("value"), py::arg("place"), py::arg("persistable") = false,
           py::arg("zero_copy") = false, py::arg("name") = "",
           py::arg("stop_gradient") = -1)
L
Leo Chen 已提交
955
      .def("__init__", &InitVarBaseFromNumpyWithArgDefault, py::arg("value"))
B
Baibaifan 已提交
956 957
      .def("__init__", &InitVarBaseFromTensorWithArgDefault, py::arg("tensor"),
           py::arg("name") = "")
958
      .def("__init__", &InitVarBaseFromTensorWithArg<platform::CPUPlace>,
B
Baibaifan 已提交
959
           py::arg("tensor"), py::arg("place"), py::arg("name") = "")
960
      .def("__init__", &InitVarBaseFromTensorWithArg<platform::XPUPlace>,
B
Baibaifan 已提交
961
           py::arg("tensor"), py::arg("place"), py::arg("name") = "")
962
      .def("__init__", &InitVarBaseFromTensorWithArg<platform::CUDAPlace>,
B
Baibaifan 已提交
963
           py::arg("tensor"), py::arg("place"), py::arg("name") = "")
964
      .def("__init__", &InitVarBaseFromTensorWithArg<platform::CUDAPinnedPlace>,
B
Baibaifan 已提交
965
           py::arg("tensor"), py::arg("place"), py::arg("name") = "")
966
      .def("__init__", &InitVarBaseFromTensorWithArg<platform::NPUPlace>,
B
Baibaifan 已提交
967
           py::arg("tensor"), py::arg("place"), py::arg("name") = "")
F
fwenguang 已提交
968 969
      .def("__init__", &InitVarBaseFromTensorWithArg<platform::MLUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("name") = "")
970 971
      .def("__init__", &InitVarBaseFromTensorWithArg<platform::CustomPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("name") = "")
972
      .def("__init__", &InitVarBaseFromNumpyWithKwargs)
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
      .def(
          "__setitem_varbase__",
          [](std::shared_ptr<imperative::VarBase> &self, py::handle _index,
             py::object &value_obj) {
            VLOG(4) << "Call __setitem_varbase__";

            auto self_tensor =
                self->MutableVar()->GetMutable<framework::LoDTensor>();
            // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
            // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
            PyObject *index_ptr = !PyTuple_Check(_index.ptr())
                                      ? PyTuple_Pack(1, _index.ptr())
                                      : _index.ptr();
            DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
              if (!PyTuple_Check(_index.ptr())) {
                Py_DECREF(index_ptr);
                VLOG(4) << "Call Py_DECREF";
              }
            });

            auto is_tensor = [](py::handle var) {
              if (!var.ptr() || var.ptr() == Py_None) {
                return false;
              }
              try {
                py::cast<std::shared_ptr<imperative::VarBase>>(var);
                return true;
              } catch (py::cast_error &) {
                return false;
              }
            };

1005 1006 1007 1008 1009
            // NOTE(liym27):
            // Increase the version of VarBase self because __setitem__ is an
            // inplace operator for the VarBase self.
            self->BumpInplaceVersion();

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
            // 1. Check argumnets
            bool parse_index = true;

            // Check whether _index can be parsed.
            const int size = PyTuple_GET_SIZE(index_ptr);
            for (int dim = 0; dim < size; ++dim) {
              PyObject *slice_item = PyTuple_GetItem(index_ptr, dim);
              if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
                    slice_item == Py_Ellipsis || slice_item == Py_None)) {
                parse_index = false;
                break;
              }
            }

            // 2. Call op set_value to speed up if the condition is met,
            // otherwise call TensorToPyArray.
            // TODO(liym27): Try not to call TensorToPyArray because it always
            // copys data to cpu place, which reduces performance.
            if (parse_index) {
              std::vector<int> axes, starts, ends, steps, decrease_axes,
                  none_axes, infer_flags, list_select_idxs;
              // if index is a list, list_select_flag will be true
              bool list_select_flag = false;
              ParseIndexingSlice(self_tensor, index_ptr, &axes, &starts, &ends,
                                 &steps, &decrease_axes, &none_axes,
                                 &infer_flags, &list_select_idxs,
                                 &list_select_flag);

              framework::AttributeMap attrs = {{"axes", axes},
                                               {"starts", starts},
                                               {"ends", ends},
                                               {"steps", steps},
                                               {"decrease_axes", decrease_axes},
                                               {"none_axes", none_axes}};

              imperative::NameVarBaseMap ins = {{"Input", {self}}};
              imperative::NameVarBaseMap outs = {{"Out", {self}}};

              const auto &tracer = imperative::GetCurrentTracer();

              if (tracer->HasGrad()) {
                PADDLE_ENFORCE_EQ(
                    self->IsLeaf() && !self->OverridedStopGradient(), false,
                    platform::errors::InvalidArgument(
                        "Leaf Tensor (%s) that doesn't stop gradient can't use "
                        "inplace strategy.",
                        self->Name()));
              }

              if (PyCheckTensor(value_obj.ptr())) {
                auto value_tensor =
                    value_obj.cast<std::shared_ptr<imperative::VarBase>>();
                ins.insert({"ValueTensor", {value_tensor}});
1063 1064 1065 1066 1067 1068

                // pass the stop_gradient from value to tensor
                if (!value_tensor->OverridedStopGradient() &&
                    self->OverridedStopGradient()) {
                  self->SetOverridedStopGradient(false);
                }
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
              } else if (py::isinstance<py::array>(value_obj)) {
                auto value_tensor = std::shared_ptr<imperative::VarBase>(
                    new imperative::VarBase(false,
                                            tracer->GenerateUniqueName()));
                py::object value = value_obj;
                if (self->DataType() == framework::proto::VarType::FP32) {
                  if (!py::isinstance<py::array_t<float>>(value_obj)) {
                    value = CastNumpyArray<float>(value_obj);
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::FP64) {
                  if (!py::isinstance<py::array_t<double>>(value_obj)) {
                    value = CastNumpyArray<double>(value_obj);
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::INT32) {
                  if (!py::isinstance<py::array_t<int32_t>>(value_obj)) {
                    value = CastNumpyArray<int32_t>(value_obj);
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::INT64) {
                  if (!py::isinstance<py::array_t<int64_t>>(value_obj)) {
                    value = CastNumpyArray<int64_t>(value_obj);
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::BOOL) {
                  if (!py::isinstance<py::array_t<bool>>(value_obj)) {
                    value = CastNumpyArray<bool>(value_obj);
                  }
                } else {
                  PADDLE_THROW(platform::errors::InvalidArgument(
                      "When assign a numpy.np value to a paddle.Tensor, "
                      "the data type of the paddle.Tensor must be bool, "
                      "float32, int32 or int64, "
                      "please check the type of tensor."));
                }

                SetTensorFromPyArray(value_tensor->MutableVar()
                                         ->GetMutable<framework::LoDTensor>(),
                                     value, self->Place(), false);
                ins.insert({"ValueTensor", {value_tensor}});

              } else {
                // convert the value to self data type
                if (py::isinstance<py::float_>(value_obj) ||
                    py::isinstance<py::int_>(value_obj) ||
                    py::isinstance<py::bool_>(value_obj)) {
                  if (self->DataType() == framework::proto::VarType::FP32) {
                    attrs["fp32_values"] =
                        std::vector<float>{value_obj.cast<float>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::FP64) {
                    attrs["fp64_values"] =
                        std::vector<double>{value_obj.cast<double>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::INT32) {
                    attrs["int32_values"] =
                        std::vector<int32_t>{value_obj.cast<int32_t>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::INT64) {
                    attrs["int64_values"] =
                        std::vector<int64_t>{value_obj.cast<int64_t>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::BOOL) {
                    attrs["bool_values"] =
                        std::vector<int>{value_obj.cast<bool>()};
                  } else {
                    PADDLE_THROW(platform::errors::InvalidArgument(
                        "When assign a value to a paddle.Tensor, "
                        "the data type of the paddle.Tensor must be bool, "
                        "float32, int32 or int64, "
                        "please check the type of tensor."));
                  }
                  attrs["shape"] = std::vector<int64_t>{1};

                } else {
                  PADDLE_THROW(platform::errors::InvalidArgument(
                      "Value type error. The assign value allows "
                      "numpy.ndarray, integer, float or bool, "
                      "but received %s.",
                      Py_TYPE(value_obj.ptr())));
                }
              }

              {
                // Release gil and do tracing
                py::gil_scoped_release release;
                tracer->TraceOp("set_value", ins, outs, std::move(attrs),
                                {{"Input", "Out"}});
              }
            } else {
              auto self_numpy = TensorToPyArray(*self_tensor);
              VLOG(4) << "parse_index is false";
              if (is_tensor(_index)) {
                VLOG(4) << "index is tensor";
                auto index_var =
                    py::cast<std::shared_ptr<imperative::VarBase>>(_index);
                auto index_tensor =
                    index_var->MutableVar()->GetMutable<framework::LoDTensor>();
                auto index_numpy = TensorToPyArray(*index_tensor);
                self_numpy[index_numpy] = value_obj;
              } else {
                VLOG(4) << "index is not tensor";
                self_numpy[_index] = value_obj;
              }
              SetTensorFromPyArray(self_tensor, self_numpy,
                                   self_tensor->place(), false);
            }
          })
1178
      .def("_getitem_index_not_tensor",
S
songyouwei 已提交
1179
           [](std::shared_ptr<imperative::VarBase> &self, py::handle _index) {
1180
             VLOG(4) << "Call _getitem_index_not_tensor";
1181
             std::vector<int> slice_axes, slice_starts, slice_ends,
Z
zyfncg 已提交
1182 1183 1184 1185
                 slice_strides, decrease_axis, none_axes, infer_flags,
                 list_select_idxs;
             // if index is a list, list_select_flag will be true
             bool list_select_flag = false;
S
songyouwei 已提交
1186 1187 1188 1189
             auto tensor =
                 self->MutableVar()->GetMutable<framework::LoDTensor>();
             ParseIndexingSlice(tensor, _index.ptr(), &slice_axes,
                                &slice_starts, &slice_ends, &slice_strides,
Z
zyfncg 已提交
1190 1191
                                &decrease_axis, &none_axes, &infer_flags,
                                &list_select_idxs, &list_select_flag);
1192 1193 1194
             // release gil and do tracing
             py::gil_scoped_release release;
             const auto &tracer = imperative::GetCurrentTracer();
1195

Z
zyfncg 已提交
1196
             auto out = slice_axes.empty() && !list_select_flag
1197 1198 1199 1200
                            ? self
                            : std::shared_ptr<imperative::VarBase>(
                                  new imperative::VarBase(
                                      tracer->GenerateUniqueName()));
Z
zyfncg 已提交
1201

1202
             if (!slice_axes.empty()) {
S
songyouwei 已提交
1203
               imperative::NameVarBaseMap ins = {{"Input", {self}}};
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
               framework::AttributeMap attrs = {
                   {"axes", slice_axes},
                   {"starts", slice_starts},
                   {"ends", slice_ends},
                   {"infer_flags", infer_flags},
                   {"decrease_axis", decrease_axis}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               std::string op_type = "slice";
               for (auto stride : slice_strides) {
                 if (stride != 1) {
                   op_type = "strided_slice";
                   attrs.insert({"strides", slice_strides});
                   attrs.erase("decrease_axis");
                   break;
                 }
               }
               tracer->TraceOp(op_type, ins, outs, std::move(attrs));
             }
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
             if (!none_axes.empty()) {
               // Deal with cases when all axes are decreased.
               // After slice, the shape of out is [1], which should have been
               // [], but Paddle doesn't support scalar.
               // In order to ensure the correctness of the final shape of out,
               // one dimension of out needs to be decreased.
               // For example:
               // # x.shape: (2,3,4)
               // out = x[0, 1, 1, None] # out.shape : (1)
               if (static_cast<int>(decrease_axis.size()) ==
                   tensor->dims().size()) {
                 none_axes.pop_back();
               }
               if (!none_axes.empty()) {
                 // Deal with cases that decrease_axes is not empty
                 // For example:
                 // # x.shape: (2,3,4)
                 // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
                 for (auto &axis : none_axes) {
                   int len = 0;
                   for (int da : decrease_axis) {
                     if (da < axis) {
                       len++;
                     }
                   }
                   axis -= len;
                 }

                 imperative::NameVarBaseMap ins = {{"X", {out}}};
                 framework::AttributeMap attrs = {{"axes", none_axes}};
                 auto new_out = std::shared_ptr<imperative::VarBase>(
                     new imperative::VarBase(tracer->GenerateUniqueName()));
                 auto out_xshape = std::shared_ptr<imperative::VarBase>(
                     new imperative::VarBase(tracer->GenerateUniqueName()));
                 imperative::NameVarBaseMap outs = {{"Out", {new_out}},
                                                    {"XShape", {out_xshape}}};
                 tracer->TraceOp("unsqueeze2", ins, outs, std::move(attrs));

                 return new_out;
               }
             }

Z
zyfncg 已提交
1264 1265 1266 1267 1268 1269 1270 1271
             // the index is a list
             if (list_select_flag) {
               auto select_index = std::shared_ptr<imperative::VarBase>(
                   new imperative::VarBase(tracer->GenerateUniqueName()));
               auto *idx_tensor = select_index->MutableVar()
                                      ->GetMutable<framework::LoDTensor>();
               auto *dev_ctx = platform::DeviceContextPool::Instance().Get(
                   tracer->ExpectedPlace());
1272 1273
               paddle::framework::TensorFromVector(list_select_idxs, *dev_ctx,
                                                   idx_tensor);
Z
zyfncg 已提交
1274 1275 1276 1277 1278 1279 1280

               imperative::NameVarBaseMap ins = {{"X", {self}},
                                                 {"Index", {select_index}}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               tracer->TraceOp("index_select", ins, outs, {{"dim", 0}});
             }

1281
             return out;
1282
           })
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
      .def(
          "_getitem_from_offset",
          [](std::shared_ptr<imperative::VarBase> &self, const py::args &args) {
            const auto &tensor = self->Var().Get<framework::LoDTensor>();
            PADDLE_ENFORCE_EQ(
                tensor.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "Tensor of %s is Empty, please check if it has no data.",
                    self->Name()));

            const auto &tensor_dims = tensor.dims();

            std::vector<size_t> dims(tensor_dims.size());
            std::vector<size_t> strides(tensor_dims.size());

            size_t numel = 1;
            for (int i = tensor_dims.size() - 1; i >= 0; --i) {
              strides[i] = numel;
              dims[i] = static_cast<size_t>(tensor_dims[i]);
              numel *= dims[i];
            }
            size_t offset = 0;
            if (args.empty()) {
              PADDLE_ENFORCE_EQ(
                  numel, 1,
                  platform::errors::InvalidArgument(
                      "only one element tensors can be converted to Python "
                      "scalars when no input coordinates"));
            } else if (args.size() == 1) {
              offset = args[0].cast<size_t>();
              PADDLE_ENFORCE_LT(
                  offset, numel,
                  platform::errors::InvalidArgument(
                      "index %d is out of bounds for size %d", offset, numel));
            } else {
              PADDLE_ENFORCE_EQ(args.size(), dims.size(),
                                platform::errors::InvalidArgument(
                                    "incorrect number of indices for Tensor"));

              for (size_t i = 0; i < args.size(); ++i) {
                size_t index = args[i].cast<size_t>();
                PADDLE_ENFORCE_LT(
                    index, dims[i],
                    platform::errors::InvalidArgument(
                        "index %d is out fo bounds for axis %d with size %d",
                        index, i, dims[i]));
                offset += index * strides[i];
              }
            }
#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
1333
  if (framework::TransToProtoVarType(tensor.dtype()) == proto_type) {        \
1334 1335 1336 1337 1338 1339 1340 1341 1342
    std::string py_dtype_str = details::TensorDTypeToPyDTypeStr(proto_type); \
    T b = TensorGetElement<T>(tensor, offset);                               \
    return py::array(py::dtype(py_dtype_str.c_str()), {}, {},                \
                     static_cast<void *>(&b));                               \
  }

            _ForEachDataType_(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
            PADDLE_THROW(platform::errors::Unimplemented(
1343
                "Unsupported tensor data type: %s", tensor.dtype()));
1344 1345
          },
          py::return_value_policy::copy)
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
      .def("_inplace_version",
           [](imperative::VarBase &self) -> uint32_t {
             const auto &var = self.MutableVar();
             PADDLE_ENFORCE_EQ(
                 var->IsInitialized(), true,
                 platform::errors::InvalidArgument(
                     "Tensor of %s is Empty, please check if it has no data.",
                     self.Name()));
             return var->CurrentInplaceVersion();
           })
      .def("_bump_inplace_version",
           [](std::shared_ptr<imperative::VarBase> &self) {
             // NOTE(liym27): _bump_inplace_version is only used for inplace
             // operation
             self->BumpInplaceVersion();
           },
           R"DOC(
        **Notes**:
            **This API is ONLY available in Dygraph mode.**
            **This is a very low level API. Users should not use it directly. **
         Bump the version whenever the Tensor is modified through an inplace operation.
            )DOC")
1368
      .def("numpy",
1369

1370 1371 1372 1373 1374 1375
           [](imperative::VarBase &self) -> py::array {
             const auto &tensor =
                 self.MutableVar()->Get<framework::LoDTensor>();
             PADDLE_ENFORCE_EQ(
                 tensor.IsInitialized(), true,
                 platform::errors::InvalidArgument(
1376
                     "Tensor of %s is Empty, please check if it has no data.",
1377 1378 1379 1380
                     self.Name()));
             return TensorToPyArray(tensor, true);
           },
           R"DOC(
Z
Zhou Wei 已提交
1381 1382
        Returns a numpy array shows the value of current Tensor.
        
1383
        Returns:
Z
Zhou Wei 已提交
1384
            ndarray: The numpy value of current Tensor.
1385 1386

        Returns type:
Z
Zhou Wei 已提交
1387
            ndarray: dtype is same as current Tensor
1388 1389 1390 1391

        Examples:
            .. code-block:: python

Z
Zhou Wei 已提交
1392
                import paddle
1393 1394
                import numpy as np
                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
Z
Zhou Wei 已提交
1395 1396 1397 1398
                linear = paddle.nn.Linear(32, 64)
                data = paddle.to_tensor(data)
                x = linear(data)
                print(x.numpy())
1399
       )DOC")
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
      .def("detach",
           [](const imperative::VarBase
                  &self) -> std::shared_ptr<imperative::VarBase> {
             PADDLE_ENFORCE_EQ(
                 self.Var().IsInitialized(), true,
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self.Name()));

             PADDLE_ENFORCE_EQ(
                 self.Var().IsType<framework::LoDTensor>() ||
1410
                     self.Var().IsType<phi::SelectedRows>(),
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
                 true,
                 platform::errors::InvalidArgument(
                     "Type of Tensor[%s] must be LoDTensor or SelectedRows!",
                     self.Name()));

             auto detach_var = std::make_shared<imperative::VarBase>(
                 true, "detach_" + self.Name());

             detach_var->SetPersistable(self.Persistable());
             detach_var->SetType(self.Type());
             detach_var->SetDataType(self.DataType());

             if (self.Var().IsType<framework::LoDTensor>()) {
               const auto &origin_tensor =
                   self.Var().Get<framework::LoDTensor>();
               PADDLE_ENFORCE_EQ(
                   origin_tensor.IsInitialized(), true,
                   platform::errors::InvalidArgument(
                       "Tensor %s has not been initialized!", self.Name()));

               auto *detach_tensor =
                   detach_var->MutableVar()->GetMutable<framework::LoDTensor>();
               detach_tensor->ShareDataWith(origin_tensor);
               // NOTE(liym27): Call ShareInplaceVersionCounterWith to share the
               // same TensorInplaceVersion, which is used to check whether
               // inplace
               // operations are correct.
               detach_tensor->ShareInplaceVersionCounterWith(origin_tensor);
             } else {
               const auto &origin_selected_rows =
1441
                   self.Var().Get<phi::SelectedRows>();
1442 1443 1444 1445 1446 1447
               PADDLE_ENFORCE_EQ(
                   origin_selected_rows.value().IsInitialized(), true,
                   platform::errors::InvalidArgument(
                       "Tensor %s has not been initialized!", self.Name()));

               auto *detach_selected_rows =
1448
                   detach_var->MutableVar()->GetMutable<phi::SelectedRows>();
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
               detach_selected_rows->set_height(origin_selected_rows.height());
               detach_selected_rows->set_rows(origin_selected_rows.rows());
               detach_selected_rows->mutable_value()->ShareDataWith(
                   origin_selected_rows.value());
               detach_selected_rows->mutable_value()
                   ->ShareInplaceVersionCounterWith(
                       origin_selected_rows.value());
             }
             VLOG(3) << "The detached Tensor(" << detach_var->Name()
                     << ") share data with " << self.Name();
             return detach_var;
           },
           py::return_value_policy::take_ownership, R"DOC(
1462

1463
        Returns a new Tensor, detached from the current graph.
Z
Zhou Wei 已提交
1464 1465
        It will share data with origin Tensor and always doesn't have a Tensor copy.
        In addition, the detached Tensor doesn't provide gradient propagation.
1466

1467
        Returns: The detached Tensor.
1468 1469 1470 1471

        Examples:
            .. code-block:: python

1472
                import paddle
Z
Zhou Wei 已提交
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497

                x = paddle.to_tensor(1.0, stop_gradient=False)
                detach_x = x.detach()
                detach_x[:] = 10.0
                print(x)  # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=False,
                          #        [10.])
                y = x**2
                y.backward()
                print(x.grad)         # [20.0]
                print(detach_x.grad)  # None, 'stop_gradient=True' by default

                detach_x.stop_gradient = False # Set stop_gradient to be False, supported auto-grad
                z = detach_x**3
                z.backward()

                print(x.grad)         # [20.0], detach_x is detached from x's graph, not affect each other
                print(detach_x.grad)  # [300.0], detach_x has its own graph

                # Due to sharing of data with origin Tensor, There are some unsafe operations:
                y = 2 * x
                detach_x[:] = 5.0
                y.backward() 
                # It will raise Error:
                #   one of the variables needed for gradient computation has been modified by an inplace operation.
             
1498
       )DOC")
1499 1500
      .def("clear_gradient", &imperative::VarBase::ClearGradient,
           py::arg("set_to_zero") = true, R"DOC(
1501

1502
        Only for Tensor that has gradient, normally we use this for Parameters since other temporary Tensor doesen't has gradient.
1503

1504
        The Gradient of current Tensor will be set to ``0`` .
1505 1506 1507 1508 1509 1510

        Returns:  None

        Examples:
             .. code-block:: python

1511
                import paddle
Z
Zhou Wei 已提交
1512 1513 1514 1515 1516 1517 1518
                input = paddle.uniform([10, 2])
                linear = paddle.nn.Linear(2, 3)
                out = linear(input)
                out.backward()
                print("Before clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
                linear.weight.clear_gradient()
                print("After clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
1519
      )DOC")
1520 1521 1522
      .def("_gradient_set_empty", &imperative::VarBase::_GradientSetEmpty,
           py::arg("set_is_empty") = true)
      .def("_is_gradient_set_empty", &imperative::VarBase::_IsGradientSetEmpty)
Z
Zhou Wei 已提交
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
      .def("clone",
           [](std::shared_ptr<imperative::VarBase> &self) {
             const auto &tensor = self->Var().Get<framework::LoDTensor>();
             PADDLE_ENFORCE_EQ(
                 tensor.IsInitialized(), true,
                 platform::errors::InvalidArgument(
                     "%s has not been initialized", self->Name()));
             auto tracer = imperative::GetCurrentTracer();
             auto new_var = std::make_shared<imperative::VarBase>(
                 true, tracer->GenerateUniqueName(self->Name() + "_clone"));
             framework::AttributeMap attrs;
             imperative::NameVarBaseMap ins = {{"X", {self}}};
             imperative::NameVarBaseMap outs = {{"Out", {new_var}}};
             tracer->TraceOp("assign", ins, outs, attrs);
             return new_var;
           },
           py::return_value_policy::copy, R"DOC(

        Returns a new Tensor, which is clone of origin Tensor, and it remains in the current graph.
        It will always have a Tensor copy.
        Tn addition, the cloned Tensor provides gradient propagation.

        Returns: The cloned Tensor.

        Examples:
            .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.0, stop_gradient=False)
              clone_x = x.clone()
              y = clone_x**2
              y.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [2.0], support gradient propagation
              print(x.stop_gradient)       # False
              print(x.grad)                # [2.0], clone_x support gradient propagation for x

              x = paddle.to_tensor(1.0)
              clone_x = x.clone()
              clone_x.stop_gradient = False
              z = clone_x**3
              z.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [3.0], support gradient propagation
              print(x.stop_gradient) # True
              print(x.grad)          # None
       )DOC")
L
Leo Chen 已提交
1571 1572 1573 1574 1575 1576
      .def("_grad_name", &imperative::VarBase::GradVarName)
      .def("_grad_value",
           [](imperative::VarBase &self) {
             return self.MutableGradVar()->Get<framework::LoDTensor>();
           },
           py::return_value_policy::reference)
1577 1578 1579 1580
      .def("_set_grad_type",
           [](imperative::VarBase &self, framework::proto::VarType::Type type) {
             self.MutableGradVarBase()->SetType(type);
           })
1581
      .def("_reset_grad_inplace_version",
1582
           [](imperative::VarBase &self, bool set_to_zero) {
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
             /*
             *** This interfaceis a complete hack ***
             reset_grad_inplace_version removes all inplace related records to
             Grad VarBase/VariableWrapper,
             the essential purpose of which is to let you use inplace operations
             as if using its non-inplaced version,
             which of course will cause unexpected consequences if not used with
             care.
             Make sure you fully understand what you're doing before make use of
             this interface, and prepare for the worst.
             */
1594 1595
             py::gil_scoped_release release;

1596 1597 1598
             if (self.HasGradVar()) {
               auto grad_var = self.GradVarBase();
               auto var_wrapper = grad_var->SharedVar();
1599 1600 1601
               if (var_wrapper) {
                 var_wrapper->ResetInplaceVersion(set_to_zero);
               }
1602 1603
             }
           })
1604
      .def("_grad_ivar",
J
Jiabin Yang 已提交
1605 1606
           [](const imperative::VarBase &self) {
             auto &grad_var = self.GradVarBase();
1607

1608 1609 1610 1611 1612 1613
             if (grad_var && grad_var->Var().IsInitialized()) {
               auto *tensor =
                   grad_var->MutableVar()->IsType<framework::LoDTensor>()
                       ? grad_var->MutableVar()
                             ->GetMutable<framework::LoDTensor>()
                       : grad_var->MutableVar()
1614
                             ->GetMutable<phi::SelectedRows>()
1615
                             ->mutable_value();
1616

1617 1618 1619
               if (tensor->IsInitialized()) {
                 return grad_var;
               }
J
Jiabin Yang 已提交
1620
             }
1621
             return std::shared_ptr<imperative::VarBase>(nullptr);
J
Jiabin Yang 已提交
1622 1623
           },
           py::return_value_policy::copy)
C
chentianyu03 已提交
1624 1625 1626 1627
      .def("_set_grad_ivar",
           [](imperative::VarBase &self, imperative::VarBase &grad) {
             self.SetGradVarBase(grad);
           })
1628 1629
      .def("_is_sparse",
           [](imperative::VarBase &self) {
1630
             return self.Var().IsType<phi::SelectedRows>();
1631 1632 1633 1634 1635
           })
      .def("_allreduce",
           [](imperative::VarBase &self,
              const imperative::ParallelStrategy &strategy) {
             if (strategy.nranks_ > 1) {
1636
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1637 1638 1639
#if NCCL_VERSION_CODE >= 2212
               imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
#else
1640
               if (!self.Var().IsType<phi::SelectedRows>()) {
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
                 imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
               } else {
                 PADDLE_THROW(platform::errors::Unimplemented(
                     "Imperative SelectedRows allreduce is not supported when "
                     "paddle is compiled with NCCL verison lower than v2.2.12. "
                     "You can set is_sparse=False for the Layer containing "
                     "this argument, such as Embedding(is_sparse=False)."));
               }
#endif  // NCCL_VERSION_CODE
#else
               PADDLE_THROW(platform::errors::Unimplemented(
                   "Imperative allreduce is not supported when paddle is "
                   "not compiled with NCCL."));
1654
#endif  // PADDLE_WITH_NCCL or PADDLE_WITH_RCCL
1655 1656 1657
             }
           },
           py::call_guard<py::gil_scoped_release>())
1658 1659 1660
      .def("_register_grad_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
1661
                 !self.OverridedStopGradient() && self.HasGradVar(), true,
1662
                 platform::errors::InvalidArgument(
1663 1664 1665
                     "Cannot register gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->AddVariableWrapperHook(
1666 1667 1668 1669 1670
                 std::make_shared<PyVariableWrapperHook>(hook.ptr()));
           })
      .def("_remove_grad_hook",
           [](imperative::VarBase &self, int64_t hook_id) {
             PADDLE_ENFORCE_EQ(
1671
                 !self.OverridedStopGradient() && self.HasGradVar(), true,
1672
                 platform::errors::InvalidArgument(
1673 1674 1675
                     "Cannot remove gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->RemoveVariableWrapperHook(hook_id);
1676
           })
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
      .def("_register_void_function_post_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
                 !self.OverridedStopGradient() && self.HasGradVar(), true,
                 platform::errors::InvalidArgument(
                     "Cannot register void function post hook on a Tensor that "
                     "stop "
                     "gradient or without gradient."));
             auto py_func = PyObjectCast<std::function<void()>>(hook.ptr());
             auto grad_node = self.MutableGradVarBase()->GradNode();
             for (auto &cur_op : *grad_node) {
               cur_op.AddVoidFunctionPostHook(
                   std::make_shared<std::function<void()>>(py_func));
             }
           })
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
      .def("_register_backward_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
                 self.IsLeaf(), true,
                 platform::errors::InvalidArgument(
                     "Only can register backward hook for leaf Tensor."));
             PADDLE_ENFORCE_EQ(
                 !self.OverridedStopGradient() && self.HasGradVar(), true,
                 platform::errors::InvalidArgument(
                     "Cannot register backward hook on a Tensor that stop "
                     "gradient or without gradient."));
             auto py_func = PyObjectCast<std::function<void()>>(hook.ptr());
             self.GradVarBase()->AddVoidHook(
                 std::make_shared<std::function<void()>>(py_func));
           },
           R"DOC(
             Registers a backward hook for current Tensor.

             This hook will be called every time the gradient of current Tensor has been fully calculated.

             There are two differences with `_register_grad_hook`:
             1. This backward hook will be executed after the gradient accumulation completed across batchs,
                but the hook registered by `_register_grad_hook` will be executed the gradient accumulation
                completed in current batch.
             2. This backward hook function should have the following signature:

                  hook() -> None

                It requires no input and no return value.

             Args:
                 hook(function): A backward hook to be registered for Tensor.gradient

             Returns:
                 None
           )DOC")
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
      .def("cpu",
           [](const std::shared_ptr<imperative::VarBase> &self) {
             if (platform::is_cpu_place(self->Place())) {
               return self;
             } else {
               auto new_var = self->NewVarBase(platform::CPUPlace(), true);
               new_var->SetOverridedStopGradient(self->OverridedStopGradient());
               return new_var;
             }
           },
           R"DOC(
        Returns a copy of this Tensor in CPU memory.

        If this Tensor is already in CPU memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)    # CUDAPlace(0)
              
              y = x.cpu()
              print(y.place)    # CPUPlace

              )DOC")
      .def("pin_memory",
           [](const std::shared_ptr<imperative::VarBase> &self) {
1756
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot copy this Tensor to pinned memory in CPU version "
                 "Paddle, "
                 "Please recompile or reinstall Paddle with CUDA support."));
#endif
             if (platform::is_cuda_pinned_place(self->Place())) {
               return self;
             } else {
               auto new_var =
                   self->NewVarBase(platform::CUDAPinnedPlace(), true);
               new_var->SetOverridedStopGradient(self->OverridedStopGradient());
               return new_var;
             }
           },
           R"DOC(
        Returns a copy of this Tensor in pin memory.

        If this Tensor is already in pin memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)      # CUDAPlace(0)

              y = x.pin_memory()
              print(y.place)      # CUDAPinnedPlace

      )DOC")
      .def("cuda",
1788 1789
           [](const std::shared_ptr<imperative::VarBase> &self,
              py::handle &handle, bool blocking) {
1790
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1791 1792 1793 1794
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot copy this Tensor to GPU in CPU version Paddle, "
                 "Please recompile or reinstall Paddle with CUDA support."));
#else
1795
             int device_count = platform::GetGPUDeviceCount();
1796 1797
             int device_id = 0;
             if (handle == py::none()) {
1798 1799 1800
               if (platform::is_gpu_place(self->Place())) {
                 return self;
               }
1801 1802 1803 1804 1805 1806 1807
             } else {
               PyObject *py_obj = handle.ptr();
               PADDLE_ENFORCE_EQ(
                   PyCheckInteger(py_obj), true,
                   platform::errors::InvalidArgument(
                       " 'device_id' must be a positive integer"));
               device_id = py::cast<int>(handle);
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
             }
             PADDLE_ENFORCE_GE(
                 device_id, 0,
                 platform::errors::InvalidArgument(
                     "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                     "must inside [0, %d)",
                     device_id, device_count));
             PADDLE_ENFORCE_LT(
                 device_id, device_count,
                 platform::errors::InvalidArgument(
                     "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                     "must inside [0, %d)",
                     device_id, device_count));
             platform::CUDAPlace place = platform::CUDAPlace(device_id);
             if (platform::is_same_place(self->Place(), place)) {
               return self;
             } else {
               auto new_var = self->NewVarBase(place, blocking);
               new_var->SetOverridedStopGradient(self->OverridedStopGradient());
               return new_var;
             }
#endif
           },
1831
           py::arg("device_id") = py::none(), py::arg("blocking") = true, R"DOC(
1832 1833 1834 1835 1836 1837
        Returns a copy of this Tensor in GPU memory.

        If this Tensor is already in GPU memory and device_id is default, 
        then no copy is performed and the original Tensor is returned.
        
        Args:
1838
            device_id(int, optional): The destination GPU device id. Default: None, means current device.
1839 1840 1841 1842 1843 1844
            blocking(bool, optional): If False and the source is in pinned memory, the copy will be 
              asynchronous with respect to the host. Otherwise, the argument has no effect. Default: False.

        Examples:
            .. code-block:: python

1845
              # required: gpu
1846 1847 1848 1849 1850 1851
              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CPUPlace())
              print(x.place)        # CPUPlace

              y = x.cuda()
              print(y.place)        # CUDAPlace(0)
1852 1853 1854
            
              y = x.cuda(None)
              print(y.place)        # CUDAPlace(0)
1855 1856 1857 1858

              y = x.cuda(1)
              print(y.place)        # CUDAPlace(1)
       )DOC")
K
Kaipeng Deng 已提交
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
      .def("_share_memory",
           [](const std::shared_ptr<imperative::VarBase> &self) {
#ifndef _WIN32
             PADDLE_ENFORCE_EQ(
                 platform::is_cpu_place(self->Place()), true,
                 platform::errors::InvalidArgument(
                     "Sharing memory only support CPU Tensor currently"));
             // 1. get LoDTensor
             auto *t = self->MutableVar()->GetMutable<framework::LoDTensor>();
             // 2. allocate shared memory
1869
             void *data_ptr = t->data();
1870 1871 1872
             size_t data_size =
                 t->numel() * framework::SizeOfType(
                                  framework::TransToProtoVarType(t->dtype()));
K
Kaipeng Deng 已提交
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
             auto shared_writer_holder =
                 memory::allocation::AllocateMemoryMapWriterAllocation(
                     data_size);
             // 3. maintain mmap fd set & backup ipc_name
             const std::string &ipc_name = shared_writer_holder->ipc_name();
             memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
             // 4. copy data & reset holder
             memory::Copy(platform::CPUPlace(), shared_writer_holder->ptr(),
                          platform::CPUPlace(), data_ptr, data_size);
             t->ResetHolder(shared_writer_holder);
             return *t;
#else
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Sharing memory in Windows OS is not supported currently"));
#endif
           },
           py::return_value_policy::reference)
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
#if defined(PADDLE_WITH_CUDA)
      .def("_uva",
           [](const std::shared_ptr<imperative::VarBase> &self, int device_id) {
             PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->Place()), true,
                               platform::errors::InvalidArgument(
                                   "Unified virtual addressing only support "
                                   "CPU Tensor currently."));
             platform::DeviceContextPool &pool =
                 platform::DeviceContextPool::Instance();
             auto *dev_ctx = pool.Get(platform::CUDAPlace(device_id));
             VLOG(4) << "Init the DeviceContext, and the place is "
                     << dev_ctx->GetPlace();
             auto *self_tensor =
                 self->MutableVar()->GetMutable<framework::LoDTensor>();
             // Register the cpu memory as the cuda host memory
             const auto &data_numel = self_tensor->numel();
             const size_t &need_allocate_size =
1907 1908 1909
                 data_numel *
                 framework::SizeOfType(
                     framework::TransToProtoVarType(self_tensor->dtype()));
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
             void *data_ptr = self_tensor->data();
             auto result = cudaHostRegister(data_ptr, need_allocate_size,
                                            cudaHostRegisterDefault);
             if (cudaSuccess != result) {
               VLOG(4) << "UVA(unified virtual addressing) failed allocate:"
                       << need_allocate_size << ", the error code:" << result;
             }

             // Get device pointer from the function of cudaHostGetDevicePointer
             void *cuda_device_pointer = nullptr;
             cudaHostGetDevicePointer(
                 reinterpret_cast<void **>(&cuda_device_pointer),
                 reinterpret_cast<void *>(data_ptr), 0);

             // Reset the memory with device pointer
             std::shared_ptr<memory::allocation::Allocation> holder =
                 std::make_shared<memory::allocation::Allocation>(
                     cuda_device_pointer, need_allocate_size,
                     platform::CUDAPlace(device_id));
1929
             self_tensor->ResetHolderWithType(holder, self_tensor->dtype());
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
           },
           py::arg("device_id") = 0, py::return_value_policy::reference, R"DOC(
        Returns self tensor with the UVA(unified virtual addressing).

        Args:
            device_id(int, optional): The destination GPU device id. Default: None, means current device.

        Examples:
            .. code-block:: python

              # required: gpu
              import paddle
              x = paddle.to_tensor([1, 2, 3], place=paddle.CPUPlace())
              x._uva()
              print(x)
       )DOC")
#endif
1947
      .def("copy_", &imperative::VarBase::CopyFrom)
1948
      .def("_copy_to",
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
           [](const std::shared_ptr<imperative::VarBase> &self,
              const platform::CPUPlace &place, bool blocking) {
             auto new_var = self->NewVarBase(place, blocking);
             // Note(zhiqiu): Since NewVarBase may use GpuCopyAsync to
             // copy data from the tensor of self to the tensor of new varbase,
             // we need to ensure that the varbase self is not destructed until
             // the GpuCopyAsync is completed. Otherwise, the memory may be
             // freed
             // when varbase self is destructed.
             // To do that, we increase the reference count of self by 1 and
             // add a cuda event to wait the GpuCopyAsync's completion.
             if (!blocking) {
               IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
             }
             return new_var;
           },
J
Jiabin Yang 已提交
1965
           py::return_value_policy::copy)
1966
      .def("_copy_to",
1967 1968 1969 1970 1971 1972 1973 1974
           [](const std::shared_ptr<imperative::VarBase> &self,
              const platform::CUDAPinnedPlace &place, bool blocking) {
             auto new_var = self->NewVarBase(place, blocking);
             if (!blocking) {
               IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
             }
             return new_var;
           },
1975
           py::return_value_policy::copy)
1976
      .def("_copy_to",
1977 1978 1979 1980 1981 1982 1983 1984
           [](const std::shared_ptr<imperative::VarBase> &self,
              const platform::XPUPlace &place, bool blocking) {
             auto new_var = self->NewVarBase(place, blocking);
             if (!blocking) {
               IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
             }
             return new_var;
           },
1985
           py::return_value_policy::copy)
1986
      .def("_copy_to",
1987 1988 1989 1990 1991 1992 1993 1994
           [](const std::shared_ptr<imperative::VarBase> &self,
              const platform::CUDAPlace &place, bool blocking) {
             auto new_var = self->NewVarBase(place, blocking);
             if (!blocking) {
               IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
             }
             return new_var;
           },
J
Jiabin Yang 已提交
1995
           py::return_value_policy::copy)
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
      .def("_copy_to",
           [](const std::shared_ptr<imperative::VarBase> &self,
              const platform::NPUPlace &place, bool blocking) {
             auto new_var = self->NewVarBase(place, blocking);
             if (!blocking) {
               IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
             }
             return new_var;
           },
           py::return_value_policy::copy)
F
fwenguang 已提交
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
      .def("_copy_to",
           [](const std::shared_ptr<imperative::VarBase> &self,
              const platform::MLUPlace &place, bool blocking) {
             auto new_var = self->NewVarBase(place, blocking);
             if (!blocking) {
               IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
             }
             return new_var;
           },
           py::return_value_policy::copy)
C
chentianyu03 已提交
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
      .def("_copy_to",
           [](const std::shared_ptr<imperative::VarBase> &self,
              const platform::Place &place, bool blocking) {
             auto new_var = self->NewVarBase(place, blocking);
             if (!blocking) {
               IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
             }
             return new_var;
           },
           py::return_value_policy::copy)
J
Jiabin Yang 已提交
2026
      .def("value", [](imperative::VarBase &self) { return self.MutableVar(); },
2027
           py::return_value_policy::reference)
2028 2029 2030
      .def("_clear",
           [](const std::shared_ptr<imperative::VarBase> &self) {
             auto *t = self->MutableVar()->GetMutable<framework::LoDTensor>();
2031 2032 2033 2034
             PADDLE_ENFORCE_EQ(
                 t->IsInitialized(), true,
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
2035 2036 2037 2038 2039
             t->clear();
           })
      .def("_offset",
           [](const std::shared_ptr<imperative::VarBase> &self) {
             auto *t = self->MutableVar()->GetMutable<framework::LoDTensor>();
2040 2041 2042 2043
             PADDLE_ENFORCE_EQ(
                 t->IsInitialized(), true,
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
2044 2045
             return t->offset();
           })
2046
      .def("_share_buffer_to",
2047
           [](const std::shared_ptr<imperative::VarBase> &self,
2048 2049 2050 2051 2052 2053 2054 2055
              std::shared_ptr<imperative::VarBase> &dst) {
             auto *src = self->MutableVar()->GetMutable<framework::LoDTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<framework::LoDTensor>();
             PADDLE_ENFORCE_EQ(
                 src->IsInitialized(), true,
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
             dst_->ShareBufferWith(*src);
B
Baibaifan 已提交
2056
             dst_->ShareDataTypeWith(*src);
2057 2058 2059
           })
      .def("_is_shared_buffer_with",
           [](const std::shared_ptr<imperative::VarBase> &self,
2060 2061 2062 2063 2064 2065 2066
              std::shared_ptr<imperative::VarBase> &dst) {
             auto *src = self->MutableVar()->GetMutable<framework::LoDTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<framework::LoDTensor>();
             if (!src->IsInitialized() || !dst_->IsInitialized()) {
               return false;
             }
             return dst_->IsSharedBufferWith(*src);
2067
           })
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
      .def("_share_underline_tensor_to",
           [](const std::shared_ptr<imperative::VarBase> &self,
              std::shared_ptr<imperative::VarBase> &dst) {
             auto *src = self->MutableVar()->GetMutable<framework::LoDTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<framework::LoDTensor>();
             PADDLE_ENFORCE_EQ(
                 src->IsInitialized(), true,
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
             dst_->ShareBufferWith(*src);
             dst_->ShareDataTypeWith(*src);
             dst_->Resize(src->dims());
           })
      .def("_is_shared_underline_tensor_with",
           [](const std::shared_ptr<imperative::VarBase> &self,
              std::shared_ptr<imperative::VarBase> &dst) {
             auto *src = self->MutableVar()->GetMutable<framework::LoDTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<framework::LoDTensor>();
             if (!src->IsInitialized() || !dst_->IsInitialized()) {
               return false;
             }
             return dst_->IsSharedBufferWith(*src);
           })
2091 2092 2093 2094
      .def("_slice",
           [](const std::shared_ptr<imperative::VarBase> &self,
              int64_t begin_idx, int64_t end_idx) {
             auto *t = self->MutableVar()->GetMutable<framework::LoDTensor>();
2095 2096 2097 2098
             PADDLE_ENFORCE_EQ(
                 t->IsInitialized(), true,
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
             return t->Slice(begin_idx, end_idx);
           })
      .def("_copy_gradient_from",
           [](std::shared_ptr<imperative::VarBase> &self,
              const imperative::VarBase &src) { self->_CopyGradientFrom(src); })
      .def("_numel",
           [](std::shared_ptr<imperative::VarBase> &self) {
             auto *t = self->MutableVar()->GetMutable<framework::LoDTensor>();
             return t->numel();
           })
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
      .def("element_size", &imperative::VarBase::ElementSize, R"DOC(
        Returns the size in bytes of an element in the Tensor.
        
        Examples:
          .. code-block:: python

            import paddle

            x = paddle.to_tensor(1, dtype='bool')
            x.element_size() # 1

            x = paddle.to_tensor(1, dtype='float16')
            x.element_size() # 2

            x = paddle.to_tensor(1, dtype='float32')
            x.element_size() # 4

            x = paddle.to_tensor(1, dtype='float64')
            x.element_size() # 8

            x = paddle.to_tensor(1, dtype='complex128')
            x.element_size() # 16
       )DOC")
2132 2133
      .def_property("name", &imperative::VarBase::Name,
                    &imperative::VarBase::SetName)
L
Leo Chen 已提交
2134 2135 2136 2137 2138
      .def_property("stop_gradient",
                    &imperative::VarBase::OverridedStopGradient,
                    &imperative::VarBase::SetOverridedStopGradient)
      .def_property("persistable", &imperative::VarBase::Persistable,
                    &imperative::VarBase::SetPersistable)
2139 2140 2141
      .def_property_readonly("shape",
                             [](imperative::VarBase &self) {
                               if (self.Var().IsType<framework::LoDTensor>()) {
2142
                                 return phi::vectorize<int>(
2143 2144 2145 2146
                                     self.Var()
                                         .Get<framework::LoDTensor>()
                                         .dims());
                               } else if (self.Var()
2147 2148
                                              .IsType<phi::SelectedRows>()) {
                                 return phi::vectorize<int>(
2149
                                     self.Var()
2150
                                         .Get<phi::SelectedRows>()
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
                                         .value()
                                         .dims());
                               } else if (self.Var()
                                              .IsType<framework::Strings>()) {
                                 return std::vector<int>{static_cast<int>(
                                     self.Var()
                                         .Get<framework::Strings>()
                                         .size())};
                               } else if (self.Var()
                                              .IsType<framework::Vocab>()) {
                                 return std::vector<int>{static_cast<int>(
                                     self.Var()
                                         .Get<framework::Vocab>()
                                         .size())};
                               } else {
                                 VLOG(2) << "It is meaningless to get shape of "
                                            "variable type "
                                         << GetTypeName(self);
                                 return std::vector<int>();
                               }
                             })
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
      .def_property_readonly("is_leaf", &imperative::VarBase::IsLeaf,
                             R"DOC(
      Whether a Tensor is leaf Tensor.

      For the Tensor whose stop_gradient is ``True`` , it will be leaf Tensor. 
      
      For the Tensor whose stop_gradient is ``False`` , it will be leaf Tensor too if it is created by user.

      Returns:
          bool: Whether a Tensor is leaf Tensor.

      Examples:
          .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.)
              print(x.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=True)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=False)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # False
       )DOC")
2201 2202 2203
      .def_property_readonly(
          "place", [](imperative::VarBase &self) { return self.Place(); },
          py::return_value_policy::copy)
2204 2205 2206 2207 2208 2209
      .def_property_readonly("_place_str",
                             [](imperative::VarBase &self) {
                               std::stringstream ostr;
                               ostr << self.Place();
                               return ostr.str();
                             })
J
Jiabin Yang 已提交
2210
      .def_property_readonly("type", &imperative::VarBase::Type)
L
Leo Chen 已提交
2211
      .def_property_readonly("dtype", &imperative::VarBase::DataType);
2212

2213 2214 2215 2216 2217
  py::class_<imperative::jit::ProgramDescTracer>(m, "ProgramDescTracer", "")
      .def("create_program_desc",
           &imperative::jit::ProgramDescTracer::CreateProgramDesc)
      .def("reset", &imperative::jit::ProgramDescTracer::Reset);

L
Leo Chen 已提交
2218 2219 2220 2221 2222 2223 2224
  py::enum_<paddle::imperative::AmpLevel>(m, "AmpLevel", py::arithmetic())
      .value("O0", paddle::imperative::AmpLevel::O0)
      .value("O1", paddle::imperative::AmpLevel::O1)
      .value("O2", paddle::imperative::AmpLevel::O2)
      .value("O3", paddle::imperative::AmpLevel::O3)
      .export_values();

2225
  py::class_<imperative::Tracer, std::shared_ptr<imperative::Tracer>>(
2226
      m, "Tracer", R"DOC()DOC")
2227
      .def("__init__",
J
Jiabin Yang 已提交
2228
           [](imperative::Tracer &self) { new (&self) imperative::Tracer(); })
2229 2230 2231
      .def_property("_enable_program_desc_tracing",
                    &imperative::Tracer::IsProgramDescTracingEnabled,
                    &imperative::Tracer::SetEnableProgramDescTracing)
L
Leo Chen 已提交
2232 2233
      .def_property("_amp_level", &imperative::Tracer::GetAmpLevel,
                    &imperative::Tracer::SetAmpLevel)
2234 2235
      .def_property("_amp_dtype", &imperative::Tracer::GetAmpDtype,
                    &imperative::Tracer::SetAmpDtype)
2236
      .def_property("_has_grad", &imperative::Tracer::HasGrad,
2237
                    &imperative::Tracer::SetHasGrad)
2238 2239 2240 2241 2242 2243 2244 2245
      .def_property(
          "_expected_place",
          [](const imperative::Tracer &self) -> py::object {
            return py::cast(self.ExpectedPlace());
          },
          [](imperative::Tracer &self, const py::object &obj) {
            if (py::isinstance<platform::CUDAPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPlace *>();
L
Leo Chen 已提交
2246
              self.SetExpectedPlace(*p);
2247 2248
              // TODO(jiabin): Support eager here when we need to make all
              // dygraph in eager mode
2249 2250
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2251 2252 2253
            } else if (py::isinstance<platform::XPUPlace>(obj)) {
              auto p = obj.cast<platform::XPUPlace *>();
              self.SetExpectedPlace(*p);
2254 2255
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2256 2257
            } else if (py::isinstance<platform::CPUPlace>(obj)) {
              auto p = obj.cast<platform::CPUPlace *>();
L
Leo Chen 已提交
2258
              self.SetExpectedPlace(*p);
2259 2260
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2261 2262
            } else if (py::isinstance<platform::CUDAPinnedPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPinnedPlace *>();
L
Leo Chen 已提交
2263
              self.SetExpectedPlace(*p);
2264 2265
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2266 2267 2268 2269 2270
            } else if (py::isinstance<platform::NPUPlace>(obj)) {
              auto p = obj.cast<platform::NPUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
F
fwenguang 已提交
2271 2272 2273 2274 2275
            } else if (py::isinstance<platform::MLUPlace>(obj)) {
              auto p = obj.cast<platform::MLUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2276 2277 2278 2279 2280
            } else if (py::isinstance<platform::CustomPlace>(obj)) {
              auto p = obj.cast<platform::CustomPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2281 2282 2283 2284 2285
            } else if (py::isinstance<platform::Place>(obj)) {
              auto p = obj.cast<platform::Place *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2286
            } else {
L
Leo Chen 已提交
2287
              PADDLE_THROW(platform::errors::InvalidArgument(
2288
                  "Incompatible Place Type: supports XPUPlace, CUDAPlace, "
F
fwenguang 已提交
2289
                  "CPUPlace, NPUPlace, MLUPlace"
L
Leo Chen 已提交
2290 2291
                  "and CUDAPinnedPlace, "
                  "but got Unknown Type!"));
2292 2293
            }
          })
2294 2295 2296
      .def("_get_program_desc_tracer",
           &imperative::Tracer::GetProgramDescTracer,
           py::return_value_policy::reference)
2297
      .def("_generate_unique_name", &imperative::Tracer::GenerateUniqueName,
2298
           py::arg("key") = "dygraph_tmp")
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
      .def("_set_amp_op_list",
           [](imperative::Tracer &self,
              std::unordered_set<std::string> &allow_ops,
              std::unordered_set<std::string> &block_ops) {
             // NOTE(zhiqiu): The automatic conversion in pybind11 between
             // c++
             // STL and python set/list/dict involve a copy operation that
             // prevents pass-by-reference semantics, so it is ok to swap.
             // The reaseon why not directly pass
             // std::shared_ptr<std::unordered_set<std::string>>
             // is that pybind11 forbid shared_ptr<T> where T is not custom
             // type.
             imperative::AmpOperators::Instance().GetMutableAllowOps()->swap(
                 allow_ops);
             imperative::AmpOperators::Instance().GetMutableBlockOps()->swap(
                 block_ops);
2315
             VLOG(5) << "AMP operators changed, "
2316 2317
                     << imperative::AmpOperators::Instance();
           })
2318 2319 2320
      .def("_get_amp_op_list",
           [](imperative::Tracer &self) {
             return std::make_tuple(
2321 2322
                 *(imperative::AmpOperators::Instance().GetMutableAllowOps()),
                 *(imperative::AmpOperators::Instance().GetMutableBlockOps()));
2323
           })
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
      .def("trace",
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::CustomPlace &place,
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
               self.TraceOp<imperative::VarBase>(
                   type, std::move(ins_map), std::move(outs_map),
                   std::move(attrs), place, trace_backward, inplace_map);
             }
           })
2339 2340 2341 2342
      .def("trace",
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::XPUPlace &place,
Z
zyfncg 已提交
2343 2344
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
2345 2346 2347 2348
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
J
Jiabin Yang 已提交
2349 2350 2351
               self.TraceOp<imperative::VarBase>(
                   type, std::move(ins_map), std::move(outs_map),
                   std::move(attrs), place, trace_backward, inplace_map);
2352 2353
             }
           })
M
minqiyang 已提交
2354
      .def("trace",
J
Jiabin Yang 已提交
2355 2356 2357
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::CUDAPlace &place,
Z
zyfncg 已提交
2358 2359
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
J
Jiabin Yang 已提交
2360 2361
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
2362 2363
             {
               py::gil_scoped_release release;
J
Jiabin Yang 已提交
2364 2365 2366
               self.TraceOp<imperative::VarBase>(
                   type, std::move(ins_map), std::move(outs_map),
                   std::move(attrs), place, trace_backward, inplace_map);
2367
             }
M
minqiyang 已提交
2368
           })
2369 2370 2371 2372
      .def("trace",
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::NPUPlace &place,
Z
zyfncg 已提交
2373 2374
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
2375 2376 2377 2378
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
J
Jiabin Yang 已提交
2379 2380 2381
               self.TraceOp<imperative::VarBase>(
                   type, std::move(ins_map), std::move(outs_map),
                   std::move(attrs), place, trace_backward, inplace_map);
2382 2383
             }
           })
F
fwenguang 已提交
2384 2385 2386 2387
      .def("trace",
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::MLUPlace &place,
Z
zyfncg 已提交
2388 2389
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
F
fwenguang 已提交
2390 2391 2392 2393
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
J
Jiabin Yang 已提交
2394 2395 2396
               self.TraceOp<imperative::VarBase>(
                   type, std::move(ins_map), std::move(outs_map),
                   std::move(attrs), place, trace_backward, inplace_map);
F
fwenguang 已提交
2397 2398
             }
           })
J
Jiabin Yang 已提交
2399 2400 2401 2402
      .def("trace",
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::CPUPlace &place,
Z
zyfncg 已提交
2403 2404
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
J
Jiabin Yang 已提交
2405 2406 2407 2408
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
J
Jiabin Yang 已提交
2409 2410 2411
               self.TraceOp<imperative::VarBase>(
                   type, std::move(ins_map), std::move(outs_map),
                   std::move(attrs), place, trace_backward, inplace_map);
J
Jiabin Yang 已提交
2412 2413
             }
           });
2414 2415

  // define parallel context
2416 2417 2418
  py::class_<imperative::ParallelStrategy> parallel_strategy(
      m, "ParallelStrategy", "");
  parallel_strategy.def(py::init())
2419 2420
      .def_property(
          "nranks",
2421 2422
          [](const imperative::ParallelStrategy &self) { return self.nranks_; },
          [](imperative::ParallelStrategy &self, int nranks) {
2423 2424 2425
            self.nranks_ = nranks;
          })
      .def_property("local_rank",
2426
                    [](const imperative::ParallelStrategy &self) {
2427 2428
                      return self.local_rank_;
                    },
2429
                    [](imperative::ParallelStrategy &self, int local_rank) {
2430 2431 2432 2433
                      self.local_rank_ = local_rank;
                    })
      .def_property(
          "trainer_endpoints",
2434
          [](const imperative::ParallelStrategy &self) {
2435 2436
            return self.trainer_endpoints_;
          },
2437
          [](imperative::ParallelStrategy &self, std::vector<std::string> eps) {
2438 2439 2440
            self.trainer_endpoints_ = eps;
          })
      .def_property("current_endpoint",
2441
                    [](const imperative::ParallelStrategy &self) {
2442 2443
                      return self.current_endpoint_;
                    },
2444
                    [](imperative::ParallelStrategy &self,
2445 2446 2447 2448 2449 2450 2451
                       const std::string &ep) { self.current_endpoint_ = ep; })
      .def_property(
          "nrings",
          [](const imperative::ParallelStrategy &self) { return self.nrings_; },
          [](imperative::ParallelStrategy &self, int nrings) {
            self.nrings_ = nrings;
          });
2452

2453 2454 2455 2456
  m.def("varbase_copy", &VarBaseCopy<platform::Place>);
  m.def("varbase_copy", &VarBaseCopy<platform::CPUPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::XPUPlace>);
2457
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPinnedPlace>);
2458
  m.def("varbase_copy", &VarBaseCopy<platform::NPUPlace>);
F
fwenguang 已提交
2459
  m.def("varbase_copy", &VarBaseCopy<platform::MLUPlace>);
2460

2461 2462 2463 2464 2465 2466 2467
  m.def(
      "dygraph_partial_grad",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &input_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>>
             &output_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>> &output_grads,
         const std::vector<std::shared_ptr<imperative::VarBase>> &no_grad_vars,
2468 2469
         const platform::Place &place, bool create_graph, bool retain_graph,
         bool allow_unused, bool only_inputs) {
Z
Zeng Jinle 已提交
2470 2471
        imperative::PartialGradEngine engine(
            input_targets, output_targets, output_grads, no_grad_vars, place,
2472
            create_graph, retain_graph, allow_unused, only_inputs);
2473 2474 2475 2476 2477
        engine.Execute();
        return engine.GetResult();
      },
      py::call_guard<py::gil_scoped_release>());

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
  m.def(
      "dygraph_run_backward",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &tensors,
         const std::vector<std::shared_ptr<imperative::VarBase>> &grad_tensors,
         bool retain_graph, const imperative::Tracer &tracer) {
        auto *engine = tracer.GetEngine();
        engine->Init(tensors, grad_tensors, retain_graph);
        VLOG(3) << "Start backward";
        engine->Execute();
        VLOG(3) << "Finish backward";
      },
      py::call_guard<py::gil_scoped_release>());

2491
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
2492
    defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_GLOO)
2493 2494 2495 2496 2497 2498
  py::class_<imperative::ParallelContext,
             std::shared_ptr<imperative::ParallelContext>>(m,
                                                           "ParallelContext");

  py::class_<imperative::Reducer, std::shared_ptr<imperative::Reducer>>(
      m, "Reducer", R"DOC()DOC")
S
ShenLiang 已提交
2499 2500 2501 2502 2503
      .def(py::init<const std::vector<std::shared_ptr<imperative::VarBase>> &,
                    const std::vector<std::vector<size_t>> &,
                    const std::vector<bool> &,
                    std::shared_ptr<imperative::ParallelContext>,
                    const std::vector<size_t> &, bool>())
2504
      .def("prepare_for_backward", &imperative::Reducer::PrepareForBackward,
2505
           py::arg("vars"), py::call_guard<py::gil_scoped_release>());
2506 2507 2508 2509

  m.def("assign_group_by_size", &imperative::AssignGroupBySize, py::arg("vars"),
        py::arg("is_sparse_gradient"),
        py::arg("group_size_limits") = std::vector<size_t>{25 * 1024 * 1024},
2510
        py::arg("tensor_indices") = std::vector<int64_t>{},
2511
        py::call_guard<py::gil_scoped_release>());
2512
#endif
2513

2514
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
2515 2516 2517 2518 2519
  py::class_<imperative::NCCLParallelContext, imperative::ParallelContext,
             std::shared_ptr<imperative::NCCLParallelContext>>(
      m, "NCCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CUDAPlace &>())
K
kuizhiqing 已提交
2520 2521 2522 2523
      .def("init", [](imperative::NCCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::NCCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2524 2525 2526 2527 2528 2529 2530 2531
#endif

#if defined(PADDLE_WITH_XPU_BKCL)
  py::class_<imperative::BKCLParallelContext, imperative::ParallelContext,
             std::shared_ptr<imperative::BKCLParallelContext>>(
      m, "BKCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::XPUPlace &>())
K
kuizhiqing 已提交
2532 2533 2534 2535
      .def("init", [](imperative::BKCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::BKCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2536
#endif
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547

#if defined(PADDLE_WITH_GLOO)
  // xiongkun
  py::class_<imperative::GLOOParallelContext, imperative::ParallelContext,
             std::shared_ptr<imperative::GLOOParallelContext>>(
      m, "GLOOParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CPUPlace &>())
      .def("init", [](imperative::GLOOParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::GLOOParallelContext::InitWithRingID,
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
           py::arg("ring_id"));
#endif

#if defined(PADDLE_WITH_ASCEND_CL)
  py::class_<imperative::HCCLParallelContext, imperative::ParallelContext,
             std::shared_ptr<imperative::HCCLParallelContext>>(
      m, "HCCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::NPUPlace &>())
      .def("init", [](imperative::HCCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::HCCLParallelContext::InitWithRingID,
2560 2561 2562
           py::arg("ring_id"));
#endif

2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
#if defined(PADDLE_WITH_CNCL)
  py::class_<imperative::CNCLParallelContext, imperative::ParallelContext,
             std::shared_ptr<imperative::CNCLParallelContext>>(
      m, "CNCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::MLUPlace &>())
      .def("init", [](imperative::CNCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::CNCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
#endif

K
kuizhiqing 已提交
2575 2576 2577 2578 2579 2580 2581 2582 2583
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
    defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_ASCEND_CL)
  py::class_<imperative::HeterParallelContext, imperative::ParallelContext,
             std::shared_ptr<imperative::HeterParallelContext>>(
      m, "HeterParallelContext")
      .def(py::init<const imperative::ParallelStrategy &, const int &>())
      .def("init", [](imperative::HeterParallelContext &self) { self.Init(); });
#endif

2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
  m.def("pylayer_apply",
        [](const platform::CPUPlace &place, const py::object &cls,
           const py::args args, const py::kwargs kwargs) {
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });

  m.def("pylayer_apply",
        [](const platform::CUDAPlace &place, const py::object &cls,
           const py::args args, const py::kwargs kwargs) {
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });

  m.def("pylayer_apply",
        [](const platform::XPUPlace &place, const py::object &cls,
           const py::args args, const py::kwargs kwargs) {
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });

  m.def("pylayer_apply",
        [](const platform::CUDAPinnedPlace &place, const py::object &cls,
           const py::args args, const py::kwargs kwargs) {
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });
2607 2608 2609 2610 2611 2612

  m.def("pylayer_apply",
        [](const platform::NPUPlace &place, const py::object &cls,
           const py::args args, const py::kwargs kwargs) {
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });
F
fwenguang 已提交
2613 2614 2615 2616 2617
  m.def("pylayer_apply",
        [](const platform::MLUPlace &place, const py::object &cls,
           const py::args args, const py::kwargs kwargs) {
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });
2618

S
Siming Dai 已提交
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
#if defined(PADDLE_WITH_CUDA)
  m.def("to_uva_tensor",
        [](const py::object &obj, int device_id) {
          const auto &tracer = imperative::GetCurrentTracer();
          auto new_tensor = std::shared_ptr<imperative::VarBase>(
              new imperative::VarBase(tracer->GenerateUniqueName()));
          auto array = obj.cast<py::array>();
          if (py::isinstance<py::array_t<int32_t>>(array)) {
            SetUVATensorFromPyArray<int32_t>(new_tensor, array, device_id);
          } else if (py::isinstance<py::array_t<int64_t>>(array)) {
            SetUVATensorFromPyArray<int64_t>(new_tensor, array, device_id);
          } else if (py::isinstance<py::array_t<float>>(array)) {
            SetUVATensorFromPyArray<float>(new_tensor, array, device_id);
          } else if (py::isinstance<py::array_t<double>>(array)) {
            SetUVATensorFromPyArray<double>(new_tensor, array, device_id);
          } else if (py::isinstance<py::array_t<int8_t>>(array)) {
            SetUVATensorFromPyArray<int8_t>(new_tensor, array, device_id);
          } else if (py::isinstance<py::array_t<int16_t>>(array)) {
            SetUVATensorFromPyArray<int16_t>(new_tensor, array, device_id);
          } else if (py::isinstance<py::array_t<paddle::platform::float16>>(
                         array)) {
            SetUVATensorFromPyArray<paddle::platform::float16>(
                new_tensor, array, device_id);
          } else if (py::isinstance<py::array_t<bool>>(array)) {
            SetUVATensorFromPyArray<bool>(new_tensor, array, device_id);
          } else {
            // obj may be any type, obj.cast<py::array>() may be failed,
            // then the array.dtype will be string of unknown meaning.
            PADDLE_THROW(platform::errors::InvalidArgument(
                "Input object type error or incompatible array data type. "
                "tensor.set() supports array with bool, float16, float32, "
                "float64, int8, int16, int32, int64,"
                "please check your input or input array data type."));
          }
          return new_tensor;
        },
        py::arg("obj"), py::arg("device_id") = 0,
        py::return_value_policy::reference, R"DOC(
  Returns tensor with the UVA(unified virtual addressing) created from numpy array.

  Args:
      obj(numpy.ndarray): The input numpy array, supporting bool, float16, float32,
                          float64, int8, int16, int32, int64 dtype currently.

      device_id(int, optional): The destination GPU device id.
                                Default: 0, means current device.

  Returns:

      new_tensor(paddle.Tensor): Return the UVA Tensor with the sample dtype and 
                                 shape with the input numpy array.

  Examples:
      .. code-block:: python

        # required: gpu
        import numpy as np
        import paddle
        
        data = np.random.randint(10, size=(3, 4))
        tensor = paddle.fluid.core.to_uva_tensor(data)
        print(tensor)
)DOC");

#endif

2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
#if defined(PADDLE_WITH_CUDA)
  m.def(
      "async_write",
      [](const imperative::VarBase &src, imperative::VarBase &dst,
         const imperative::VarBase &offset, const imperative::VarBase &count) {
        PADDLE_ENFORCE_EQ(
            platform::is_gpu_place(src.Place()), true,
            platform::errors::InvalidArgument(
                "Required `src` device should be CUDAPlace, but received %d. ",
                src.Place()));
        PADDLE_ENFORCE_EQ(
            platform::is_cuda_pinned_place(dst.Place()), true,
            platform::errors::InvalidArgument(
                "Required `dst` device should be CUDAPinnedPlace, "
                "but received %d. ",
                dst.Place()));
        PADDLE_ENFORCE_EQ(
            platform::is_cpu_place(offset.Place()), true,
            platform::errors::InvalidArgument("Required `offset` device should "
                                              "be CPUPlace, but received %d. ",
                                              offset.Place()));
        PADDLE_ENFORCE_EQ(
            platform::is_cpu_place(count.Place()), true,
            platform::errors::InvalidArgument(
                "Required `count` device should be CPUPlace, but received %d. ",
                count.Place()));

        // TODO(daisiming): In future, add index as arguments following
        // async_read.
        auto &src_tensor = src.Var().Get<framework::LoDTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<framework::LoDTensor>();
        auto &offset_tensor = offset.Var().Get<framework::LoDTensor>();
        auto &count_tensor = count.Var().Get<framework::LoDTensor>();
        const auto &deviceId = paddle::platform::GetCurrentDeviceId();

        PADDLE_ENFORCE_EQ(offset_tensor.dims().size(), 1,
                          platform::errors::InvalidArgument(
                              "`offset` tensor should be one-dimensional."));
        PADDLE_ENFORCE_EQ(count_tensor.dims().size(), 1,
                          platform::errors::InvalidArgument(
                              "`count` tensor should be one-dimensional."));
        PADDLE_ENFORCE_EQ(offset_tensor.numel(), count_tensor.numel(),
                          platform::errors::InvalidArgument(
                              "`offset` and `count` tensor size dismatch."));
        PADDLE_ENFORCE_EQ(
            src_tensor.dims().size(), dst_tensor->dims().size(),
            platform::errors::InvalidArgument(
                "`src` and `dst` should have the same tensor shape, "
                "except for the first dimension."));
        for (int i = 1; i < src_tensor.dims().size(); i++) {
          PADDLE_ENFORCE_EQ(
              src_tensor.dims()[i], dst_tensor->dims()[i],
              platform::errors::InvalidArgument(
                  "`src` and `dst` should have the same tensor shape, "
                  "except for the first dimension."));
        }

        auto stream = paddle::platform::stream::get_current_stream(deviceId)
                          ->raw_stream();

        int64_t size = src_tensor.numel() / src_tensor.dims()[0];
        auto *src_data = src_tensor.data<float>();
        auto *dst_data = dst_tensor->mutable_data<float>(dst.Place());
        const int64_t *offset_data = offset_tensor.data<int64_t>();
        const int64_t *count_data = count_tensor.data<int64_t>();
        int64_t src_offset = 0, dst_offset, c;
        for (int64_t i = 0; i < offset_tensor.numel(); i++) {
          dst_offset = offset_data[i], c = count_data[i];
          PADDLE_ENFORCE_LE(src_offset + c, src_tensor.dims()[0],
                            platform::errors::InvalidArgument(
                                "Invalid offset or count index"));
          PADDLE_ENFORCE_LE(dst_offset + c, dst_tensor->dims()[0],
                            platform::errors::InvalidArgument(
                                "Invalid offset or count index"));
          cudaMemcpyAsync(
              dst_data + (dst_offset * size), src_data + (src_offset * size),
              c * size * sizeof(float), cudaMemcpyDeviceToHost, stream);
          src_offset += c;
        }
      },
      R"DOC(
  This api provides a way to write pieces of source tensor to destination tensor 
  inplacely and asynchronously. In which, we use `offset` and `count` to determine 
  where to copy. `offset` means the begin points of the copy pieces of `src`, and 
  `count` means the lengths of the copy pieces of `src`. To be noted, the copy process 
  will run asynchronously from cuda to pin memory. We can simply remember this as 
  "gpu async_write to pin_memory".
  
  Arguments:
  
    src (Tensor): The source tensor, and the data type should be `float32` currently. 
                  Besides, `src` should be placed on CUDAPlace.

    dst (Tensor): The destination tensor, and the data type should be `float32` currently. 
                  Besides, `dst` should be placed on CUDAPinnedPlace. The shape of `dst` 
                  should be the same with `src` except for the first dimension. 

    offset (Tensor): The offset tensor, and the data type should be `int64` currently. 
                     Besides, `offset` should be placed on CPUPlace. The shape of `offset` 
                     should be one-dimensional. 
    
    count (Tensor): The count tensor, and the data type should be `int64` currently. 
                    Besides, `count` should be placed on CPUPlace. The shape of `count` 
                    should be one-dimensinal. 

  Examples:
      .. code-block:: python

          import numpy as np
          import paddle
          from paddle.fluid import core  
          from paddle.device import cuda
          
          if core.is_compiled_with_cuda():
              src = paddle.rand(shape=[100, 50, 50])
              dst = paddle.emtpy(shape=[200, 50, 50]).pin_memory()
              offset = paddle.to_tensor(
                  np.array([0, 60], dtype="int64"), place=paddle.CPUPlace())
              count = paddle.to_tensor(
                  np.array([40, 60], dtype="int64"), place=paddle.CPUPlace())

              stream = cuda.Stream()
              with cuda.stream_guard(stream):
                  core.async_write(src, dst, offset, count)

              offset_a = paddle.gather(dst, paddle.to_tensor(np.arange(0, 40)))
              offset_b = paddle.gather(dst, paddle.to_tensor(np.arange(60, 120)))
              offset_array = paddle.concat([offset_a, offset_b], axis=0)
              print(np.allclose(src.numpy(), offset_array.numpy())) # True
)DOC");

  m.def(
      "async_read",
      [](const imperative::VarBase &src, imperative::VarBase &dst,
         const imperative::VarBase &index, imperative::VarBase &buffer,
         const imperative::VarBase &offset, const imperative::VarBase &count) {
        PADDLE_ENFORCE_EQ(platform::is_cuda_pinned_place(src.Place()), true,
                          platform::errors::InvalidArgument(
                              "Required `src` device should be "
                              "CUDAPinnedPlace, but received %d.",
                              src.Place()));
        PADDLE_ENFORCE_EQ(
            platform::is_gpu_place(dst.Place()), true,
            platform::errors::InvalidArgument(
                "Required `dst` device should be CUDAPlace, but received %d.",
                dst.Place()));
        PADDLE_ENFORCE_EQ(
            platform::is_cpu_place(index.Place()), true,
            platform::errors::InvalidArgument(
                "Required `index` device should be CPUPlace, but received %d.",
                index.Place()));
        PADDLE_ENFORCE_EQ(
            platform::is_cuda_pinned_place(buffer.Place()), true,
            platform::errors::InvalidArgument(
                "Required `buffer` device should be CUDAPinnedPlace, "
                "but received %d.",
                buffer.Place()));
        PADDLE_ENFORCE_EQ(
            platform::is_cpu_place(offset.Place()), true,
            platform::errors::InvalidArgument(
                "Required `offset` device should be CPUPlace, but received %d.",
                offset.Place()));
        PADDLE_ENFORCE_EQ(
            platform::is_cpu_place(count.Place()), true,
            platform::errors::InvalidArgument(
                "Required `count` device should be CPUPlace, but received %d.",
                count.Place()));

        auto &src_tensor = src.Var().Get<framework::LoDTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<framework::LoDTensor>();
        auto &index_tensor = index.Var().Get<framework::LoDTensor>();
        auto *buffer_tensor =
            buffer.MutableVar()->GetMutable<framework::LoDTensor>();
        auto &offset_tensor = offset.Var().Get<framework::LoDTensor>();
        auto &count_tensor = count.Var().Get<framework::LoDTensor>();
        auto *dst_data = dst_tensor->mutable_data<float>(dst.Place());
        const auto &deviceId = paddle::platform::GetCurrentDeviceId();

        PADDLE_ENFORCE_EQ(src_tensor.dims().size(), dst_tensor->dims().size(),
                          platform::errors::InvalidArgument(
                              "`src` and `dst` should have same tensor shape, "
                              "except for the first dimension."));
        PADDLE_ENFORCE_EQ(
            src_tensor.dims().size(), buffer_tensor->dims().size(),
            platform::errors::InvalidArgument(
                "`src` and `buffer` should have same tensor shape, "
                "except for the first dimension."));
        for (int i = 1; i < src_tensor.dims().size(); i++) {
          PADDLE_ENFORCE_EQ(
              src_tensor.dims()[i], dst_tensor->dims()[i],
              platform::errors::InvalidArgument(
                  "`src` and `dst` should have the same tensor shape, "
                  "except for the first dimension."));
          PADDLE_ENFORCE_EQ(
              src_tensor.dims()[i], buffer_tensor->dims()[i],
              platform::errors::InvalidArgument(
                  "`src` and `buffer` should have the same tensor shape, "
                  "except for the first dimension."));
        }
        PADDLE_ENFORCE_EQ(index_tensor.dims().size(), 1,
                          platform::errors::InvalidArgument(
                              "`index` tensor should be one-dimensional."));

        auto stream = paddle::platform::stream::get_current_stream(deviceId)
                          ->raw_stream();

        int64_t numel = 0;  // total copy length
        int64_t copy_flag = offset_tensor.dims()[0];
        int64_t size = src_tensor.numel() / src_tensor.dims()[0];

        if (copy_flag != 0) {
          PADDLE_ENFORCE_EQ(offset_tensor.dims().size(), 1,
                            platform::errors::InvalidArgument(
                                "`offset` tensor should be one-dimensional."));
          PADDLE_ENFORCE_EQ(count_tensor.dims().size(), 1,
                            platform::errors::InvalidArgument(
                                "`count` tensor should be one-dimensional."));
          PADDLE_ENFORCE_EQ(offset_tensor.numel(), count_tensor.numel(),
                            platform::errors::InvalidArgument(
                                "`offset` and `count` tensor size dismatch."));
          auto *offset_data = offset_tensor.data<int64_t>();
          auto *count_data = count_tensor.data<int64_t>();
          for (int64_t i = 0; i < count_tensor.numel(); i++) {
            numel += count_data[i];
          }
          PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                            buffer_tensor->dims()[0],
                            platform::errors::InvalidArgument(
                                "Buffer tensor size is too small."));
          PADDLE_ENFORCE_LE(numel + index_tensor.numel(), dst_tensor->dims()[0],
                            platform::errors::InvalidArgument(
                                "Target tensor size is too small."));

          int64_t src_offset, dst_offset = 0, c;
          auto *src_data = src_tensor.data<float>();
          for (int64_t i = 0; i < offset_tensor.numel(); i++) {
            src_offset = offset_data[i], c = count_data[i];
            PADDLE_ENFORCE_LE(src_offset + c, src_tensor.dims()[0],
                              platform::errors::InvalidArgument(
                                  "Invalid offset or count index."));
            PADDLE_ENFORCE_LE(dst_offset + c, dst_tensor->dims()[0],
                              platform::errors::InvalidArgument(
                                  "Invalid offset or count index."));
            cudaMemcpyAsync(
                dst_data + (dst_offset * size), src_data + (src_offset * size),
                c * size * sizeof(float), cudaMemcpyHostToDevice, stream);
            dst_offset += c;
          }
        } else {
          PADDLE_ENFORCE_LE(index_tensor.numel(), buffer_tensor->dims()[0],
                            platform::errors::InvalidArgument(
                                "Buffer tensor size is too small."));
        }

        // Select the index data to the buffer
        auto index_select = [](const framework::Tensor &src_tensor,
                               const framework::Tensor &index_tensor,
                               framework::Tensor *buffer_tensor) {
          auto *src_data = src_tensor.data<float>();
          auto *index_data = index_tensor.data<int64_t>();
          auto *buffer_data =
              buffer_tensor->mutable_data<float>(buffer_tensor->place());
          const int &slice_size = src_tensor.numel() / src_tensor.dims()[0];
          const int &copy_bytes = slice_size * sizeof(float);
          int64_t c = 0;
          for (int64_t i = 0; i < index_tensor.numel(); i++) {
            std::memcpy(buffer_data + c * slice_size,
                        src_data + index_data[i] * slice_size, copy_bytes);
            c += 1;
          }
        };
        index_select(src_tensor, index_tensor, buffer_tensor);

        // Copy the data to device memory
        cudaMemcpyAsync(dst_data + (numel * size), buffer_tensor->data<float>(),
                        index_tensor.numel() * size * sizeof(float),
                        cudaMemcpyHostToDevice, stream);
      },
      R"DOC(
  This api provides a way to read from pieces of source tensor to destination tensor 
  asynchronously. In which, we use `index`, `offset` and `count` to determine where 
  to read. `index` means the index position of src tensor we want to read. `offset` 
  and count means the begin points and length of pieces of src tensor we want to read. 
  To be noted, the copy process will run asynchronously from pin memory to cuda place. 
  We can simply remember this as "cuda async_read from pin_memory".

  Arguments:
  
    src (Tensor): The source tensor, and the data type should be `float32` currently. 
                  Besides, `src` should be placed on CUDAPinnedPlace.
  
    dst (Tensor): The destination tensor, and the data type should be `float32` currently. 
                  Besides, `dst` should be placed on CUDAPlace. The shape of `dst` should 
                  be the same with `src` except for the first dimension.

    index (Tensor): The index tensor, and the data type should be `int64` currently. 
                    Besides, `index` should be on CPUplace. The shape of `index` should 
                    be one-dimensional.

    buffer (Tensor): The buffer tensor, used to buffer index copy tensor temporarily. 
                     The data type should be `float32` currently, and should be placed 
                     on CUDAPinnedPlace. The shape of `buffer` should be the same with `src` except for the first dimension.

    offset (Tensor): The offset tensor, and the data type should be `int64` currently. 
                     Besides, `offset` should be placed on CPUPlace. The shape of `offset` 
                     should be one-dimensional.

    count (Tensor): The count tensor, and the data type should be `int64` currently. 
                    Besides, `count` should be placed on CPUPlace. The shape of `count` 
                    should be one-dimensinal.
    
  Examples:
      .. code-block:: python

          import numpy as np
          import paddle
          from paddle.fluid import core
          from paddle.device import cuda

          if core.is_compiled_with_cuda():
              src = paddle.rand(shape=[100, 50, 50], dtype="float32").pin_memory()
              dst = paddle.empty(shape=[100, 50, 50], dtype="float32")
              offset = paddle.to_tensor(
                  np.array([0, 60], dtype="int64"), place=paddle.CPUPlace())
              count = paddle.to_tensor(
                  np.array([40, 60], dtype="int64"), place=paddle.CPUPlace())
              buffer = paddle.empty(shape=[50, 50, 50], dtype="float32").pin_memory()
              index = paddle.to_tensor(
                  np.array([1, 3, 5, 7, 9], dtype="int64")).cpu()
          
              stream = cuda.Stream()
              with cuda.stream_guard(stream):
                  core.async_read(src, dst, index, buffer, offset, count)
 
)DOC");
#endif
3021 3022 3023 3024
}

}  // namespace pybind
}  // namespace paddle