math.cu 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/pten/kernels/cuda/math.h"

17
#include "paddle/fluid/operators/reduce_ops/reduce_functor_op.h"
18
#include "paddle/pten/kernels/functions/cuda/elementwise/elementwise.h"
19
#include "paddle/pten/kernels/functions/cuda/reduce/reduce.h"
20 21
#include "paddle/pten/kernels/functions/eigen/scale.h"
#include "paddle/pten/kernels/functions/eigen/sign.h"
22
#include "paddle/pten/kernels/functions/general/elementwise_functor.h"
23
#include "paddle/pten/kernels/functions/general/reduce_impl.h"
24 25 26 27 28 29 30 31 32

#ifdef __NVCC__
#include "cub/cub.cuh"
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif

33
#include "paddle/fluid/platform/complex.h"
34 35
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/float16.h"
36
#include "paddle/pten/api/lib/utils/tensor_utils.h"
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
#include "paddle/pten/core/convert_utils.h"
#include "paddle/pten/core/kernel_registry.h"

namespace pten {

/**
 * Util Functors
 */

template <typename T>
struct DivideFunctor {
  HOSTDEVICE explicit inline DivideFunctor(int n)
      : n_inv(static_cast<T>(1.0 / n)) {}

  HOSTDEVICE inline T operator()(const T& x) const { return x * n_inv; }

 private:
  T n_inv;
};

/**
 * Kernels
 */

template <typename T>
void Sign(const CUDAContext& dev_ctx, const DenseTensor& x, DenseTensor* out) {
  eigen::Sign<CUDAContext, T>(dev_ctx, x, out);
}

template <typename T>
67 68 69 70 71 72 73 74 75 76
void Mean(const CUDAContext& dev_ctx,
          const DenseTensor& x,
          const std::vector<int64_t>& dims,
          bool keep_dim,
          bool reduce_all,
          DataType in_dtype,
          DataType out_dtype,
          DenseTensor* out) {
  pten::Reduce<T, paddle::operators::CustomMean>(
      dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
}

template <typename T>
void Scale(const CUDAContext& dev_ctx,
           const DenseTensor& x,
           float scale,
           float bias,
           bool bias_after_scale,
           DenseTensor* out) {
  eigen::Scale<CUDAContext, T>(dev_ctx, x, scale, bias, bias_after_scale, out);
}

template <typename T>
void ScaleHost(const CUDAContext& dev_ctx,
               const DenseTensor& x,
               const DenseTensor& scale,
               float bias,
               bool bias_after_scale,
               DenseTensor* out) {
  PADDLE_ENFORCE_EQ(paddle::platform::is_gpu_place(scale.place()),
                    false,
                    paddle::platform::errors::InvalidArgument(
                        "Scale argument isn't a host tensor."));
  eigen::Scale<CUDAContext, T>(dev_ctx,
                               x,
                               static_cast<float>(*scale.data<T>()),
                               bias,
                               bias_after_scale,
                               out);
}

Y
YuanRisheng 已提交
108 109 110 111 112 113 114 115
// Create the definition of ElementwiseAdd
DEFINE_CUDA_ELEMENTWISE_OP(Add)
// Create the definition of ElementwiseSub
DEFINE_CUDA_ELEMENTWISE_OP(Sub)
// Create the definition of ElementwiseMul
DEFINE_CUDA_ELEMENTWISE_OP(Mul)
// Create the definition of ElementwiseDiv
DEFINE_CUDA_ELEMENTWISE_OP(Div)
116

117 118 119 120 121 122 123 124 125 126 127 128 129
template <typename T>
void Sum(const CUDAContext& dev_ctx,
         const DenseTensor& x,
         const std::vector<int64_t>& dims,
         bool keep_dim,
         bool reduce_all,
         DataType in_dtype,
         DataType out_dtype,
         DenseTensor* out) {
  pten::Reduce<T, paddle::operators::CustomSum>(
      dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}

130 131 132 133 134 135
}  // namespace pten

// TODO(chenweihang): replace by better impl
PT_REGISTER_MODULE(MathCUDA);

using float16 = paddle::platform::float16;
136 137 138
using complex64 = ::paddle::platform::complex<float>;
using complex128 = ::paddle::platform::complex<double>;

139
PT_REGISTER_KERNEL("sign", CUDA, ANY, pten::Sign, float, double, float16) {}
140
PT_REGISTER_KERNEL("reduce_mean", CUDA, ANY, pten::Mean, float, double, bool) {}
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
PT_REGISTER_KERNEL("scale",
                   CUDA,
                   ANY,
                   pten::Scale,
                   float,
                   double,
                   float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
PT_REGISTER_KERNEL("scale.host",
                   CUDA,
                   ANY,
                   pten::ScaleHost,
                   float,
                   double,
                   float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {
  kernel->InputAt(1).SetBackend(pten::Backend::CPU);
}
167 168 169 170 171 172 173 174 175 176 177
PT_REGISTER_KERNEL("elementwise_add",
                   CUDA,
                   ANY,
                   pten::ElementwiseAdd,
                   float,
                   double,
                   int,
                   int64_t,
                   float16,
                   complex64,
                   complex128) {}
178 179 180 181 182 183 184 185 186 187 188
PT_REGISTER_KERNEL("elementwise_sub",
                   CUDA,
                   ANY,
                   pten::ElementwiseSub,
                   float,
                   double,
                   int,
                   int64_t,
                   float16,
                   complex64,
                   complex128) {}
189 190 191 192 193 194 195 196 197 198 199
PT_REGISTER_KERNEL("elementwise_div",
                   CUDA,
                   ANY,
                   pten::ElementwiseDiv,
                   float,
                   double,
                   int,
                   int64_t,
                   float16,
                   complex64,
                   complex128) {}
Y
YuanRisheng 已提交
200 201 202 203 204 205 206 207 208 209 210 211
PT_REGISTER_KERNEL("elementwise_mul",
                   CUDA,
                   ANY,
                   pten::ElementwiseMul,
                   float,
                   double,
                   int,
                   int64_t,
                   bool,
                   float16,
                   complex64,
                   complex128) {}
212 213 214 215 216 217 218 219 220 221 222 223 224 225
PT_REGISTER_KERNEL("reduce_sum",
                   CUDA,
                   ANY,
                   pten::Sum,
                   bool,
                   float,
                   double,
                   float16,
                   int,
                   int64_t,
                   complex64,
                   complex128) {
  kernel->OutputAt(0).SetDataType(paddle::experimental::DataType::UNDEFINED);
}