pool_op.cc 16.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/pool_op.h"
16 17 18 19 20 21
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
22 23 24 25

namespace paddle {
namespace operators {

26 27 28 29 30 31 32 33 34
int PoolOutputSize(int input_size, int filter_size, int padding, int stride,
                   bool ceil_mode) {
  int output_size;
  if (!ceil_mode) {
    output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  } else {
    output_size =
        (input_size - filter_size + 2 * padding + stride - 1) / stride + 1;
  }
C
chengduoZH 已提交
35 36 37 38 39
  PADDLE_ENFORCE(output_size > 0,
                 "Due to the settings of padding(%d), filter_size(%d) and "
                 "stride(%d), the output size is less than 0, please check "
                 "again. Input_size:%d",
                 padding, filter_size, stride, input_size);
40 41 42
  return output_size;
}

C
chengduo 已提交
43
void PoolOp::InferShape(framework::InferShapeContext* ctx) const {
44 45 46 47 48 49
  PADDLE_ENFORCE(ctx->HasInput("X"), "X(Input) of Pooling should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Out"),
                 "Out(Output) of Pooling should not be null.");

  auto in_x_dims = ctx->GetInputDim("X");

C
chengduoZH 已提交
50
  std::string pooling_type = ctx->Attrs().Get<std::string>("pooling_type");
51 52 53
  std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
54
  bool ceil_mode = ctx->Attrs().Get<bool>("ceil_mode");
55 56

  PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
C
chengduoZH 已提交
57
                 "Pooling intput should be 4-D or 5-D tensor.");
58

C
chengduoZH 已提交
59
  if (ctx->Attrs().Get<bool>("global_pooling")) {
60
    ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
C
fix bug  
chengduoZH 已提交
61 62
    for (size_t i = 0; i < ksize.size(); ++i) {
      paddings[i] = 0;
63
      ksize[i] = static_cast<int>(in_x_dims[i + 2]);
C
fix bug  
chengduoZH 已提交
64
    }
65
  }
66 67 68 69 70 71 72 73 74 75

  PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
                 "Input size and pooling size should be consistent.");
  PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
                    "Strides size and pooling size should be the same.");
  PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
                    "Paddings size and pooling size should be the same.");

  std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
  for (size_t i = 0; i < ksize.size(); ++i) {
76 77
    output_shape.push_back(PoolOutputSize(in_x_dims[i + 2], ksize[i],
                                          paddings[i], strides[i], ceil_mode));
78
  }
79
  ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
80
  ctx->ShareLoD("X", "Out");
81 82
}

83
framework::OpKernelType PoolOp::GetExpectedKernelType(
C
chengduo 已提交
84
    const framework::ExecutionContext& ctx) const {
85
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
86 87 88
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
89
#ifdef PADDLE_WITH_CUDA
90 91
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
92 93
  }
#endif
94 95 96 97
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
98
    layout_ = framework::DataLayout::kMKLDNN;
99
  }
100
#endif
101 102 103 104 105 106

  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
      layout_, library_);
}

C
chengduo 已提交
107
void PoolOpGrad::InferShape(framework::InferShapeContext* ctx) const {
108 109 110 111 112 113
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
  PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                 "Input(X@GRAD) should not be null.");
  ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

114
framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
C
chengduo 已提交
115
    const framework::ExecutionContext& ctx) const {
116
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
117 118 119
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
120
#ifdef PADDLE_WITH_CUDA
121 122
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
123 124
  }
#endif
125 126 127 128
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
129
    layout_ = framework::DataLayout::kMKLDNN;
130
  }
131
#endif
132

K
Kexin Zhao 已提交
133 134 135 136 137 138 139
  auto input_data_type = framework::ToDataType(ctx.Input<Tensor>("X")->type());
  if (input_data_type == framework::proto::VarType::FP16) {
    PADDLE_ENFORCE_EQ(library_, framework::LibraryType::kCUDNN,
                      "float16 can only be used when CUDNN is used");
  }
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                 library_);
140 141
}

Y
Yu Yang 已提交
142
void Pool2dOpMaker::Make() {
143 144
  AddInput(
      "X",
C
chengduoZH 已提交
145
      "(Tensor) The input tensor of pooling operator. "
K
kexinzhao 已提交
146 147 148
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
149
  AddOutput("Out",
K
kexinzhao 已提交
150 151 152 153
            "(Tensor) The output tensor of pooling operator. "
            "The format of output tensor is also NCHW, "
            "where N is batch size, C is the number of channels, "
            "H is the height of the feature, "
154
            "and W is the width of the feature.");
155

C
chengduoZH 已提交
156
  AddAttr<std::string>("pooling_type",
C
chengduoZH 已提交
157 158
                       "(string), pooling type, can be \"max\" for max-pooling "
                       "and \"avg\" for average-pooling.")
159
      .InEnum({"max", "avg"});
C
fix bug  
chengduoZH 已提交
160
  AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
161 162
                            "(vector<int>) The pooling window "
                            "size(height, width) of the pooling operator. "
C
chengduoZH 已提交
163
                            "If global_pooling = true, ksize and paddings will "
C
fix bug  
chengduoZH 已提交
164 165
                            "be ignored.");  // TODO(Chengduo): Add checker.
                                             // (Currently,
C
fix doc  
chengduoZH 已提交
166
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
167
  AddAttr<bool>("global_pooling",
K
kexinzhao 已提交
168
                "(bool, default false) Whether to use the global pooling. "
C
chengduoZH 已提交
169
                "If global_pooling = true, ksize and paddings will be ignored.")
170
      .SetDefault(false);
K
kexinzhao 已提交
171 172 173
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default {1, 1}), strides(height, "
                            "width) of pooling operator.")
174 175
      .SetDefault({1, 1});
  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
176 177 178
  // TypedAttrChecker don't support vector type.)
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
179
      "(vector<int>, default {0,0}), paddings(height, width) of pooling "
K
kexinzhao 已提交
180
      "operator."
C
chengduoZH 已提交
181
      "If global_pooling = true, paddings and ksize will be ignored.")
182
      .SetDefault({0, 0});
183 184 185 186 187 188
  AddAttr<bool>(
      "exclusive",
      "(bool, default True) When true, will exclude the zero-padding in the "
      "averaging calculating, otherwise, include the zero-padding. Note, it "
      "is only used when pooling_type is avg. The defalut is True.")
      .SetDefault(true);
189 190 191 192
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
193 194 195
  AddAttr<bool>(
      "ceil_mode",
      "(bool, default false) Wether to use the ceil function to calculate "
W
wanghaoshuang 已提交
196 197
      "output height and width. False is the default. If it is set to False, "
      "the floor function will be used.")
198
      .SetDefault(false);
199 200 201
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
202 203 204 205 206 207 208
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
209 210 211 212 213
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);

214
  // TODO(dzhwinter): need to registered layout transform function
215 216

  AddComment(R"DOC(
C
chengduoZH 已提交
217
The pooling2d operation calculates the output based on
C
chengduoZH 已提交
218
the input, pooling_type and ksize, strides, paddings parameters.
K
kexinzhao 已提交
219 220
Input(X) and output(Out) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature, and W is the width of the feature.
C
fix doc  
chengduoZH 已提交
221 222
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
223 224
The input(X) size and output(Out) size may be different.

225
Example:
F
fengjiayi 已提交
226

C
chengduoZH 已提交
227
  Input:
F
fengjiayi 已提交
228

K
kexinzhao 已提交
229
       X shape: $(N, C, H_{in}, W_{in})$
F
fengjiayi 已提交
230

C
chengduoZH 已提交
231
  Output:
F
fengjiayi 已提交
232

K
kexinzhao 已提交
233
       Out shape: $(N, C, H_{out}, W_{out})$
F
fengjiayi 已提交
234

235 236
  For ceil_mode = false:
       $$
F
fengjiayi 已提交
237
       H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1
F
fengjiayi 已提交
238 239
       $$
       $$
F
fengjiayi 已提交
240
       W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
K
kexinzhao 已提交
241
       $$
242 243
  For ceil_mode = true:
       $$
F
fengjiayi 已提交
244
       H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1
F
fengjiayi 已提交
245 246
       $$
       $$
F
fengjiayi 已提交
247
       W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1
248
       $$
K
kexinzhao 已提交
249

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
  For exclusive = true:
       $$
       hstart = i * strides[0] - paddings[0]
       hend = hstart + ksize[0]
       wstart = j * strides[1] - paddings[1]
       wend = wstart + ksize[1]
       Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}
       $$
  For exclusive = false:
       $$
       hstart = max(0, i * strides[0] - paddings[0])
       hend = min(H, hstart + ksize[0])
       wstart = max(0, j * strides[1] - paddings[1])
       wend = min(W, wstart + ksize[1])
       Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
       $$

267
)DOC");
268 269
}

C
chengduo 已提交
270 271 272 273 274 275 276 277
class PoolOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
  }
};

Y
Yu Yang 已提交
278
void Pool3dOpMaker::Make() {
K
kexinzhao 已提交
279 280 281 282 283 284
  AddInput("X",
           "(Tensor) The input tensor of pooling operator. "
           "The format of input tensor is NCDHW, where N is batch size, C is "
           "the number of channels, and D, H and W is the depth, height and "
           "width of "
           "the feature, respectively.");
285
  AddOutput("Out",
C
chengduoZH 已提交
286
            "(Tensor) The output tensor of pooling operator."
K
kexinzhao 已提交
287 288 289
            "The format of output tensor is also NCDHW, "
            "where N is batch size, C is "
            "the number of channels, and D, H and W is the depth, height and "
290
            "width of the feature, respectively.");
291

C
chengduoZH 已提交
292
  AddAttr<std::string>("pooling_type",
K
kexinzhao 已提交
293
                       "(string) Pooling type, can be \"max\" for max-pooling "
C
chengduoZH 已提交
294
                       "and \"avg\" for average-pooling.")
295
      .InEnum({"max", "avg"});
K
kexinzhao 已提交
296 297 298 299
  AddAttr<std::vector<int>>(
      "ksize",
      "(vector<int>) The pooling window size(depth, height, "
      "width) of pooling operator. "
C
chengduoZH 已提交
300
      "If global_pooling = true, ksize and paddings will "
K
kexinzhao 已提交
301 302
      "be ignored.");  // TODO(Chengduo): Add checker.
                       // (Currently,
C
fix bug  
chengduoZH 已提交
303
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
304 305 306 307
  AddAttr<bool>(
      "global_pooling",
      "(bool, default false) Whether to use the global pooling. "
      "If global_pooling = true, ksize and paddings wille be ignored.")
308
      .SetDefault(false);
K
kexinzhao 已提交
309 310 311 312
  AddAttr<std::vector<int>>(
      "strides",
      "(vector<int>, default {1,1,1}) Strides(depth, height, "
      "width) of the pooling operator.")
313 314
      .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
315 316
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
317
      "(vector<int>, default {0,0,0}), paddings(depth, height, "
K
kexinzhao 已提交
318
      "width) of pooling operator. "
C
chengduoZH 已提交
319
      "If global_pooling = true, ksize and paddings will be ignored.")
320 321
      .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
322 323 324 325 326 327
  AddAttr<bool>(
      "exclusive",
      "(bool, default True) When true, will exclude the zero-padding in the "
      "averaging calculating, otherwise, include the zero-padding. Note, it "
      "is only used when pooling_type is avg. The defalut is True.")
      .SetDefault(true);
328

329 330 331 332
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
333 334 335
  AddAttr<bool>(
      "ceil_mode",
      "(bool, default false) Wether to use the ceil function to calculate "
W
wanghaoshuang 已提交
336 337
      "output height and width. False is the default. If it is set to False, "
      "the floor function will be used.")
338
      .SetDefault(false);
339 340 341
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
342 343 344 345 346 347 348 349 350
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function

351
  AddComment(R"DOC(
K
kexinzhao 已提交
352 353
Pool3d Operator.

C
chengduoZH 已提交
354
The pooling3d operation calculates the output based on
C
chengduoZH 已提交
355
the input, pooling_type, ksize, strides, and paddings parameters.
K
kexinzhao 已提交
356 357
Input(X) and output(Out) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
358 359
width of the feature, respectively. Parameters(ksize, strides, paddings)
are three elements. These three elements represent depth, height and
K
kexinzhao 已提交
360
width, respectively. The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
361 362 363

Example:
  Input:
K
kexinzhao 已提交
364
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
365
  Output:
K
kexinzhao 已提交
366
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
367
  For ceil_mode = false:
C
chengduoZH 已提交
368 369 370 371 372
  $$
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
  $$
373 374 375 376 377 378
  For ceil_mode = true:
  $$
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0] + strides[0] -1)}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1] + strides[1] -1)}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2] + strides[2] -1)}{strides[2]} + 1
  $$
K
kexinzhao 已提交
379

380
)DOC");
381
}
382 383 384 385 386
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

Y
Yang Yang 已提交
387
REGISTER_OPERATOR(pool2d, ops::PoolOp, ops::Pool2dOpMaker,
C
chengduo 已提交
388
                  ops::PoolOpInferVarType,
389 390
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(pool2d_grad, ops::PoolOpGrad);
391

Q
QI JUN 已提交
392 393 394 395 396
REGISTER_OP_CPU_KERNEL(
    pool2d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool2d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
397
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);
398

Y
Yang Yang 已提交
399
REGISTER_OPERATOR(pool3d, ops::PoolOp, ops::Pool3dOpMaker,
C
chengduo 已提交
400
                  ops::PoolOpInferVarType,
401 402
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(pool3d_grad, ops::PoolOpGrad);
403

Q
QI JUN 已提交
404 405 406 407 408 409
REGISTER_OP_CPU_KERNEL(
    pool3d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool3d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);