elementwise_op_function.h 12.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
17
#include "paddle/framework/op_registry.h"
18
#include "paddle/framework/operator.h"
C
chengduoZH 已提交
19
#include "paddle/platform/transform.h"
20

C
chengduoZH 已提交
21 22 23 24
#ifdef __NVCC__
#include <thrust/iterator/iterator_adaptor.h>
#endif

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
#include "paddle/operators/math/math_function.h"

namespace paddle {
namespace operators {

/*
 * Out = X ⊙ Y
 * If Y's shape does not match X' shape, they will be reshaped.
 * For example:
 * 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
 *    pre=2, n=3*4, post=5
 *    x.shape(2, 12, 5) * y.shape(1,12,1).broadcast(2,12,5)
 * 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5)
 *    pre=2*3, n=4*5, post=1
 *    x.shape(2, 3, 20) * y.shape(1,1,20).broadcast(2,3,20)
 */
inline void get_mid_dims(const framework::DDim& x_dims,
                         const framework::DDim& y_dims, const int axis,
                         int& pre, int& n, int& post) {
  pre = 1;
  n = 1;
  post = 1;
  for (int i = 0; i < axis; ++i) {
    pre *= x_dims[i];
  }

  for (int i = 0; i < y_dims.size(); ++i) {
    PADDLE_ENFORCE_EQ(x_dims[i + axis], y_dims[i],
                      "Broadcast dimension mismatch.");
    n *= y_dims[i];
  }

  for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
    post *= x_dims[i];
  }
}

Q
QI JUN 已提交
62
template <typename T, typename DeviceContext>
C
chengduoZH 已提交
63
class RowwiseTransformIterator;
Q
QI JUN 已提交
64
template <typename T, typename DeviceContext>
C
chengduoZH 已提交
65
class MidWiseTransformIterator;
C
chengduoZH 已提交
66 67

template <typename T>
Q
QI JUN 已提交
68
class RowwiseTransformIterator<T, platform::CPUDeviceContext> {
C
chengduoZH 已提交
69
 public:
C
chengduoZH 已提交
70 71
  RowwiseTransformIterator(const T* ptr, int n) : ptr_(ptr), i_(0), n_(n) {}

Q
QI JUN 已提交
72
  RowwiseTransformIterator<T, platform::CPUDeviceContext>& operator++() {
C
chengduoZH 已提交
73
    ++i_;
C
chengduoZH 已提交
74 75 76
    if (UNLIKELY(i_ == n_)) {
      i_ = 0;
    }
C
chengduoZH 已提交
77 78 79
    return *this;
  }

Q
QI JUN 已提交
80 81
  bool operator==(const RowwiseTransformIterator<T, platform::CPUDeviceContext>&
                      rhs) const {
C
chengduoZH 已提交
82
    return (ptr_ + i_) == &(*rhs);
C
chengduoZH 已提交
83 84
  }

Q
QI JUN 已提交
85 86
  bool operator!=(const RowwiseTransformIterator<T, platform::CPUDeviceContext>&
                      rhs) const {
C
chengduoZH 已提交
87
    return (ptr_ + i_) != &(*rhs);
C
chengduoZH 已提交
88 89 90 91
  }

  const T& operator*() { return ptr_[i_]; }

C
chengduoZH 已提交
92
 private:
C
chengduoZH 已提交
93 94
  const T* ptr_;
  int i_;
C
chengduoZH 已提交
95
  int64_t n_;
C
chengduoZH 已提交
96 97 98
};

template <typename T>
Q
QI JUN 已提交
99
class MidWiseTransformIterator<T, platform::CPUDeviceContext> {
C
chengduoZH 已提交
100
 public:
C
chengduoZH 已提交
101 102 103
  MidWiseTransformIterator(const T* ptr, int n, int post)
      : ptr_(ptr), i_(0), j_(0), n_(n), post_(post) {}

Q
QI JUN 已提交
104
  MidWiseTransformIterator<T, platform::CPUDeviceContext>& operator++() {
C
chengduoZH 已提交
105
    ++j_;
C
chengduoZH 已提交
106 107 108 109 110 111
    if (UNLIKELY(j_ == post_)) {
      ++i_;
      if (UNLIKELY(i_ == n_)) {
        j_ = 0;
        i_ = 0;
      }
C
chengduoZH 已提交
112
    }
C
chengduoZH 已提交
113 114 115
    return *this;
  }

Q
QI JUN 已提交
116 117
  bool operator==(const MidWiseTransformIterator<T, platform::CPUDeviceContext>&
                      rhs) const {
C
chengduoZH 已提交
118
    return (ptr_ + i_) == &(*rhs);
C
chengduoZH 已提交
119 120
  }

Q
QI JUN 已提交
121 122
  bool operator!=(const MidWiseTransformIterator<T, platform::CPUDeviceContext>&
                      rhs) const {
C
chengduoZH 已提交
123
    return (ptr_ + i_) != &(*rhs);
C
chengduoZH 已提交
124 125 126 127
  }

  const T& operator*() { return ptr_[i_]; }

C
chengduoZH 已提交
128
 private:
C
chengduoZH 已提交
129 130
  const T* ptr_;
  int i_;
C
chengduoZH 已提交
131 132
  int64_t j_;
  int64_t n_;
C
chengduoZH 已提交
133 134 135
  int post_;
};

C
chengduoZH 已提交
136 137
#ifdef __NVCC__
template <typename T>
Q
QI JUN 已提交
138
class RowwiseTransformIterator<T, platform::CUDADeviceContext>
C
chengduoZH 已提交
139
    : public thrust::iterator_adaptor<
Q
QI JUN 已提交
140
          RowwiseTransformIterator<T, platform::CUDADeviceContext>, const T*> {
C
chengduoZH 已提交
141 142
 public:
  typedef thrust::iterator_adaptor<
Q
QI JUN 已提交
143
      RowwiseTransformIterator<T, platform::CUDADeviceContext>, const T*>
C
chengduoZH 已提交
144
      super_t;
C
chengduoZH 已提交
145
  HOSTDEVICE RowwiseTransformIterator(const T* x, int n)
C
chengduoZH 已提交
146 147 148 149 150 151
      : super_t(x), begin_(x), n_(n){};
  friend class thrust::iterator_core_access;

 private:
  unsigned int n_;
  const T* begin_;
C
chengduoZH 已提交
152
  HOSTDEVICE typename super_t::reference dereference() const {
C
chengduoZH 已提交
153 154 155 156 157
    return *(begin_ + (this->base() - begin_) % n_);
  }
};

template <typename T>
Q
QI JUN 已提交
158
class MidWiseTransformIterator<T, platform::CUDADeviceContext>
C
chengduoZH 已提交
159
    : public thrust::iterator_adaptor<
Q
QI JUN 已提交
160
          MidWiseTransformIterator<T, platform::CUDADeviceContext>, const T*> {
C
chengduoZH 已提交
161 162
 public:
  typedef thrust::iterator_adaptor<
Q
QI JUN 已提交
163
      MidWiseTransformIterator<T, platform::CUDADeviceContext>, const T*>
C
chengduoZH 已提交
164
      super_t;
C
chengduoZH 已提交
165
  HOSTDEVICE MidWiseTransformIterator(const T* x, int n, int post)
C
chengduoZH 已提交
166 167 168 169 170 171 172
      : super_t(x), begin_(x), n_(n), post_(post){};
  friend class thrust::iterator_core_access;

 private:
  unsigned int post_;
  unsigned int n_;
  const T* begin_;
C
chengduoZH 已提交
173
  HOSTDEVICE typename super_t::reference dereference() const {
C
chengduoZH 已提交
174 175 176 177 178
    return *(begin_ + (((this->base() - begin_) / post_) % n_));
  }
};
#endif

Q
QI JUN 已提交
179
template <typename Functor, typename T, typename DeviceContext>
C
chengduoZH 已提交
180 181
class TransformFunctor {
 public:
C
chengduoZH 已提交
182
  TransformFunctor(const framework::Tensor* x, const framework::Tensor* y,
Q
QI JUN 已提交
183
                   framework::Tensor* z, const DeviceContext& ctx, Functor func)
C
chengduoZH 已提交
184 185 186 187 188 189 190 191
      : x_(x->data<T>()),
        y_(y->data<T>()),
        z_(z->mutable_data<T>(ctx.GetPlace())),
        nx_(x->numel()),
        ctx_(ctx),
        func_(func) {}

  inline void Run() const {
Q
QI JUN 已提交
192
    platform::Transform<DeviceContext> trans;
C
chengduoZH 已提交
193
    trans(ctx_, x_, x_ + nx_, y_, z_, func_);
C
chengduoZH 已提交
194 195 196
  }

  inline void RunRowWise(int n, int pre) const {
Q
QI JUN 已提交
197 198 199
    platform::Transform<DeviceContext> trans;
    trans(ctx_, x_, x_ + nx_, RowwiseTransformIterator<T, DeviceContext>(y_, n),
          z_, func_);
C
chengduoZH 已提交
200 201 202
  }

  inline void RunMidWise(int n, int pre, int post) const {
Q
QI JUN 已提交
203 204 205
    platform::Transform<DeviceContext> trans;
    trans(ctx_, x_, x_ + nx_,
          MidWiseTransformIterator<T, DeviceContext>(y_, n, post), z_, func_);
C
chengduoZH 已提交
206 207
  }

C
chengduoZH 已提交
208
 private:
C
chengduoZH 已提交
209 210 211 212
  const T* x_;
  const T* y_;
  T* z_;
  int64_t nx_;
Q
QI JUN 已提交
213
  const DeviceContext& ctx_;
C
chengduoZH 已提交
214 215 216
  Functor func_;
};

217 218
#define EIGEN_FUNCTOR(name, eigen_op)                                          \
  struct Eigen##name##Functor {                                                \
Q
QI JUN 已提交
219
    template <typename DeviceContext, typename T>                              \
220 221 222 223 224 225
    inline void Run(const framework::Tensor* x, const framework::Tensor* y,    \
                    framework::Tensor* z,                                      \
                    const framework::ExecutionContext& ctx) {                  \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
Q
QI JUN 已提交
226 227 228
      z_e.device(                                                              \
          *ctx.template device_context<DeviceContext>().eigen_device()) =      \
          eigen_op(x_e, y_e);                                                  \
229
    }                                                                          \
Q
QI JUN 已提交
230
    template <typename DeviceContext, typename T>                              \
231 232 233 234 235 236 237 238 239 240
    inline void RunBroadCast(const framework::Tensor* x,                       \
                             const framework::Tensor* y, framework::Tensor* z, \
                             const framework::ExecutionContext& ctx, int pre,  \
                             int n) {                                          \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
      auto y_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))                  \
                         .broadcast(Eigen::DSizes<int, 2>(pre, 1))             \
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));          \
Q
QI JUN 已提交
241 242 243
      z_e.device(                                                              \
          *ctx.template device_context<DeviceContext>().eigen_device()) =      \
          eigen_op(x_e, y_bcast);                                              \
244
    }                                                                          \
Q
QI JUN 已提交
245
    template <typename DeviceContext, typename T>                              \
246 247 248 249 250 251 252 253 254 255 256
    inline void RunBroadCast2(const framework::Tensor* x,                      \
                              const framework::Tensor* y,                      \
                              framework::Tensor* z,                            \
                              const framework::ExecutionContext& ctx, int pre, \
                              int n, int post) {                               \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
      auto y_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))               \
                         .broadcast(Eigen::DSizes<int, 3>(pre, 1, post))       \
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));          \
Q
QI JUN 已提交
257 258 259
      z_e.device(                                                              \
          *ctx.template device_context<DeviceContext>().eigen_device()) =      \
          eigen_op(x_e, y_bcast);                                              \
260 261 262
    }                                                                          \
  }

Q
QI JUN 已提交
263
template <class functor, typename DeviceContext, typename T>
264 265 266 267 268 269 270 271 272 273 274
void ElementwiseCompute(const framework::ExecutionContext& ctx) {
  using Tensor = framework::Tensor;

  auto* x = ctx.Input<Tensor>("X");
  auto* y = ctx.Input<Tensor>("Y");
  auto* z = ctx.Output<Tensor>("Out");
  z->mutable_data<T>(ctx.GetPlace());

  auto x_dims = x->dims();
  auto y_dims = y->dims();
  PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
275
                    "Rank of first input must >= rank of second input.");
276

Q
qijun 已提交
277
  if (x_dims == y_dims) {
278
    functor f;
Q
QI JUN 已提交
279
    f.template Run<DeviceContext, T>(x, y, z, ctx);
280 281 282 283 284 285 286 287 288 289 290 291
    return;
  }

  int axis = ctx.Attr<int>("axis");
  axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
  PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
                 "Axis should be in range [0, x_dims)");

  int pre, n, post;
  get_mid_dims(x_dims, y_dims, axis, pre, n, post);
  if (post == 1) {
    functor f;
Q
QI JUN 已提交
292
    f.template RunBroadCast<DeviceContext, T>(x, y, z, ctx, pre, n);
293 294 295
    return;
  } else {
    functor f;
Q
QI JUN 已提交
296
    f.template RunBroadCast2<DeviceContext, T>(x, y, z, ctx, pre, n, post);
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
    return;
  }
}

#define EIGEN_ADD(x, y) ((x) + (y))
EIGEN_FUNCTOR(Add, EIGEN_ADD);

#define EIGEN_SUB(x, y) ((x) - (y))
EIGEN_FUNCTOR(Sub, EIGEN_SUB);

#define EIGEN_MUL(x, y) ((x) * (y))
EIGEN_FUNCTOR(Mul, EIGEN_MUL);

#define EIGEN_DIV(x, y) ((x) / (y))
EIGEN_FUNCTOR(Div, EIGEN_DIV);

Q
QI JUN 已提交
313 314 315
template <typename DeviceContext, typename T, typename functor,
          typename functor1, typename broadcastfunctor,
          typename broadcast2functor>
316 317 318 319 320 321 322 323
void ElementwiseGradCompute(const framework::ExecutionContext& ctx) {
  using Tensor = framework::Tensor;

  auto* x = ctx.Input<Tensor>("X");
  auto* y = ctx.Input<Tensor>("Y");
  auto* out = ctx.Input<Tensor>("Out");
  auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));

Q
QI JUN 已提交
324
  auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361

  auto x_dims = x->dims();
  auto y_dims = y->dims();

  auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
  auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
  if (dx) {
    dx->mutable_data<T>(ctx.GetPlace());
  }
  if (dy) {
    dy->mutable_data<T>(ctx.GetPlace());
  }

  if (x_dims == y_dims) {
    functor f;
    f(place, x, y, out, dx, dy, dout);
    return;
  }

  int axis = ctx.Attr<int>("axis");
  axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);

  int pre, n, post;
  get_mid_dims(x_dims, y_dims, axis, pre, n, post);

  if (post == 1) {
    broadcastfunctor f;
    f(place, x, y, out, dx, dy, dout, pre, n);
    return;
  } else {
    broadcast2functor f;
    f(place, x, y, out, dx, dy, dout, pre, n, post);
    return;
  }
}
}  // namespace operators
}  // namespace paddle