parse_utils.py 23.3 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import re
from copy import copy
17 18
from typing import Any, Dict, List, Tuple

C
Charles-hit 已提交
19
from tests_utils import is_attr, is_input, is_output, is_vec
20
from type_mapping import opmaker_attr_types_map
21 22


23
def to_named_dict(items: List[Dict], is_op=False) -> Dict[str, Dict]:
24
    named_dict = {}
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
    if is_op:
        for item in items:
            if "name" not in item:
                raise KeyError(f"name not in {item}")
            item["name"] = (
                item["name"] if item["name"][-1] != '_' else item["name"][:-1]
            )
            name = item["name"]
            named_dict[name] = item
    else:
        for item in items:
            if "name" not in item:
                raise KeyError(f"name not in {item}")
            name = item["name"]
            named_dict[name] = item
40 41 42
    return named_dict


43
def parse_arg(op_name: str, s: str) -> Dict[str, str]:
44 45 46 47
    """parse an argument in following formats:
    1. typename name
    2. typename name = default_value
    """
48
    typename, rest = (item.strip() for item in s.split(" ", 1))
49 50
    assert (
        len(typename) > 0
51
    ), f"The arg typename should not be empty. Please check the args of {op_name} in yaml."
52

53 54
    assert (
        rest.count("=") <= 1
55
    ), f"There is more than 1 = in an arg in {op_name}"
56
    if rest.count("=") == 1:
57
        name, default_value = (item.strip() for item in rest.split("=", 1))
58 59
        assert (
            len(name) > 0
60
        ), f"The arg name should not be empty. Please check the args of {op_name} in yaml."
61 62
        assert (
            len(default_value) > 0
63
        ), f"The default value should not be empty. Please check the args of {op_name} in yaml."
64 65 66
        return {
            "typename": typename,
            "name": name,
67
            "default_value": default_value,
68 69 70
        }
    else:
        name = rest.strip()
71 72
        assert (
            len(name) > 0
73
        ), f"The arg name should not be empty. Please check the args of {op_name} in yaml."
74 75 76
        return {"typename": typename, "name": name}


77
def parse_input_and_attr(
78
    op_name: str, arguments: str
79
) -> Tuple[List, List, Dict, Dict]:
80
    args_str = arguments.strip()
81 82
    assert args_str.startswith('(') and args_str.endswith(')'), (
        f"Args declaration should start with '(' and end with ')', "
83
        f"please check the args of {op_name} in yaml."
84
    )
85 86 87 88 89 90 91 92 93
    args_str = args_str[1:-1]
    args = parse_plain_list(args_str)

    inputs = []
    attrs = []

    met_attr_with_default_value = False

    for arg in args:
94
        item = parse_arg(op_name, arg)
95 96 97
        typename = item["typename"]
        name = item["name"]
        if is_input(typename):
98 99
            assert len(attrs) == 0, (
                f"The input Tensor should appear before attributes. "
100
                f"please check the position of {op_name}:input({name}) "
101 102
                f"in yaml."
            )
103 104 105
            inputs.append(item)
        elif is_attr(typename):
            if met_attr_with_default_value:
106 107
                assert (
                    "default_value" in item
108
                ), f"{op_name}: Arguments with default value should not precede those without default value"
109 110
            elif "default_value" in item:
                met_attr_with_default_value = True
111 112
            if typename.startswith('Scalar') or typename == 'IntArray':
                item['data_type'] = opmaker_attr_types_map[typename]
113 114
            attrs.append(item)
        else:
115
            raise KeyError(f"{op_name}: Invalid argument type {typename}.")
116 117 118
    return inputs, attrs


119
def parse_output(op_name: str, s: str) -> Dict[str, str]:
120 121 122
    """parse an output, typename or typename(name)."""
    match = re.search(
        r"(?P<out_type>[a-zA-Z0-9_[\]]+)\s*(?P<name>\([a-zA-Z0-9_@]+\))?\s*(?P<expr>\{[^\}]+\})?",
123 124
        s,
    )
125 126 127 128 129 130 131
    typename = match.group("out_type")
    name = match.group("name")
    size_expr = match.group("expr")

    name = name[1:-1] if name is not None else 'out'
    size_expr = size_expr[1:-1] if size_expr is not None else None

132
    assert is_output(typename), (
133
        f"Invalid output type: {typename} in op : {op_name}."
134 135
        f"Supported types are Tensor and Tensor[]"
    )
136
    if size_expr is not None:
137
        assert is_vec(typename), (
138
            f"Invalid output size: output {name} in op : {op_name} is "
139 140
            f"not a vector but has size expr"
        )
141 142 143 144 145
        return {"typename": typename, "name": name, "size": size_expr}
    else:
        return {"typename": typename, "name": name}


146
def parse_outputs(op_name: str, outputs: str) -> List[Dict]:
147 148 149
    outputs = parse_plain_list(outputs, sep=",")
    output_items = []
    for output in outputs:
150
        output_items.append(parse_output(op_name, output))
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    return output_items


def parse_infer_meta(infer_meta: Dict[str, Any]) -> Dict[str, Any]:
    infer_meta = copy(infer_meta)  # to prevent mutating the input
    if "param" not in infer_meta:
        infer_meta["param"] = None
    return infer_meta


def parse_candidates(s: str) -> Dict[str, Any]:
    "parse candidates joined by either '>'(ordered) or ','(unordered)"
    delimiter = ">" if ">" in s else ","
    ordered = delimiter == ">"
    candidates = parse_plain_list(s, delimiter)
    return {"ordered": ordered, "candidates": candidates}


def parse_plain_list(s: str, sep=",") -> List[str]:
170 171 172 173 174 175 176
    if sep == ",":
        patten = re.compile(r',(?![^{]*\})')  # support "int[] a={1,2}"
        items = re.split(patten, s.strip())
        items = [x.strip() for x in items]
        return items
    else:
        return [item.strip() for item in s.strip().split(sep)]
177 178


179
def parse_kernel(op_name: str, kernel_config: Dict[str, Any]) -> Dict[str, Any]:
180 181 182 183 184 185
    # kernel :
    #    func : [], Kernel functions (example: scale, scale_sr)
    #    param : [], Input params of kernel
    #    backend : str, the names of param to choose the kernel backend, default is None
    #    layout : str, the names of param to choose the kernel layout, default is None
    #    data_type : str, the names of param to choose the kernel data_type, default is None
186
    #    dispatch : {}, the key is kernel_func, the value is type of inputs and outputs for kernel (example: {kernel_name : (['dense','sparse_coo']#input,['sparse_coo']#output)})
187
    kernel = {
188
        'func': [],  # up to 2 function names
189 190 191
        'param': None,
        'backend': None,
        'layout': None,
192
        'data_type': None,
193
        'dispatch': {},
194
        'force_backend': None,
195 196 197 198
    }
    if 'param' in kernel_config:
        kernel['param'] = kernel_config['param']

199 200 201
    if 'force_backend' in kernel_config:
        kernel['force_backend'] = kernel_config["force_backend"]

202 203 204 205 206 207 208
    if 'backend' in kernel_config:
        kernel['backend'] = parse_candidates(kernel_config["backend"])

    if 'layout' in kernel_config:
        kernel['layout'] = parse_candidates(kernel_config["layout"])

    if 'data_type' in kernel_config:
209 210 211 212 213 214 215 216 217 218 219 220 221 222
        data_type_item = parse_candidates(kernel_config["data_type"])
        params_num = len(data_type_item['candidates'])
        data_type_item['to_complex_flag'] = [False] * params_num
        for i in range(params_num):
            complex_match_result = re.match(
                r"complex\((?P<param_name>\w+)\)",
                data_type_item['candidates'][i],
            )
            if complex_match_result:
                data_type_item['candidates'][i] = complex_match_result.group(
                    'param_name'
                )
                data_type_item['to_complex_flag'][i] = True
        kernel['data_type'] = data_type_item
223 224

    kernel_funcs = re.compile(r'([a-zA-Z0-9_]+)\s*({[^}]+})?').findall(
225 226
        kernel_config['func']
    )
227 228 229 230 231 232 233 234 235 236 237

    def parse_kernel_in_out_type(in_out_str):
        if len(in_out_str) == 0:
            return None
        tmp_in_out_list = in_out_str[1:-1].split('->')
        inputs = [item.strip() for item in tmp_in_out_list[0].split(',')]
        outputs = [item.strip() for item in tmp_in_out_list[1].split(',')]

        # check the tensor type
        for item in inputs:
            assert item in [
238 239 240 241
                'dense',
                'selected_rows',
                'sparse_coo',
                'sparse_csr',
242
            ], f"{op_name} : Invalid input tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'."
243 244
        for item in outputs:
            assert item in [
245 246 247 248
                'dense',
                'selected_rows',
                'sparse_coo',
                'sparse_csr',
249
            ], f"{op_name} : Invalid output tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'."
250 251 252 253 254 255

        return (inputs, outputs)

    for func_item in kernel_funcs:
        kernel['func'].append(func_item[0])
        kernel['dispatch'][func_item[0]] = parse_kernel_in_out_type(
256 257
            func_item[1]
        )
258

259 260 261
    return kernel


262 263 264 265 266 267 268 269
def delete_bracket(name: str):
    if name[0] == "(":
        name = name.lstrip("(")
    if name[-1] == ")":
        name = name.rstrip(")")
    return name


270
def parse_inplace(op_name: str, inplace_cfg: str) -> Dict[str, str]:
271 272 273 274 275
    inplace_map = {}
    inplace_cfg = inplace_cfg.lstrip("(").rstrip(")")
    pairs = parse_plain_list(inplace_cfg)
    for pair in pairs:
        in_name, out_name = parse_plain_list(pair, sep="->")
276 277
        in_name = delete_bracket(in_name)
        out_name = delete_bracket(out_name)
278 279 280 281
        inplace_map[out_name] = in_name
    return inplace_map


282
def parse_invoke(op_name: str, invoke_config: str) -> Dict[str, Any]:
283 284 285 286 287 288 289 290 291
    invoke_config = invoke_config.strip()
    func, rest = invoke_config.split("(", 1)
    func = func.strip()
    args = rest.rstrip(")").strip()
    invocation = {"func": func, "args": args}
    return invocation


def extract_type_and_name(records: List[Dict]) -> List[Dict]:
292
    """extract type and name from forward call, it is simpler than forward op ."""
293 294 295
    extracted = [
        {"name": item["name"], "typename": item["typename"]} for item in records
    ]
296 297 298
    return extracted


299 300
def parse_forward(op_name: str, forward_config: str) -> Dict[str, Any]:
    # op_name (const Tensor& input, ... , int attr, ...) -> Tensor(out)
301
    result = re.search(
302
        r"(?P<op>[a-z][a-z0-9_]+)\s*(?P<args>\([^\)]+\))\s*->\s*(?P<outputs>.+)",
303 304
        forward_config,
    )
305 306
    op = result.group("op")
    outputs = parse_outputs(op_name, result.group("outputs"))
307 308
    outputs = extract_type_and_name(outputs)

309
    inputs, attrs = parse_input_and_attr(op_name, result.group("args"))
310 311 312
    inputs = extract_type_and_name(inputs)
    attrs = extract_type_and_name(attrs)
    forward_cfg = {
313
        "name": op,
314 315
        "inputs": inputs,
        "attrs": attrs,
316
        "outputs": outputs,
317 318 319 320
    }
    return forward_cfg


J
Jiabin Yang 已提交
321 322 323 324 325
def parse_composite(
    op_name: str,
    composite_config: str,
) -> Dict[str, Any]:
    # composite_config: func(args1, args2,.....)
326 327 328 329 330 331 332
    result = re.search(
        r"(?P<func_name>[a-z][a-z0-9_]+)\s*\((?P<func_args>[^\)]+)\)",
        composite_config,
    )

    func_name = result.group("func_name")
    func_args = result.group("func_args")
J
Jiabin Yang 已提交
333 334 335 336 337 338 339

    composite_dict = {}
    composite_dict["func_name"] = func_name
    composite_dict["func_args"] = func_args
    return composite_dict


340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
def check_op_config(op_entry, op_name):
    base_key_set = (
        'op',
        'backward_op',
        'forward',
        'args',
        'output',
        'infer_meta',
        'kernel',
        'backward',
        'invoke',
        'inplace',
        'view',
        'optional',
        'intermediate',
        'no_need_buffer',
        'data_transform',
J
Jiabin Yang 已提交
357
        'composite',
358
        'support_dygraph_mode',
359 360
    )
    infer_meta_key_set = ('func', 'param')
361 362 363 364 365 366 367 368
    kernel_key_set = (
        'func',
        'param',
        'data_type',
        'layout',
        'backend',
        'force_backend',
    )
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
    for key in op_entry.keys():
        assert (
            key in base_key_set
        ), f"Op ({op_name}) : invalid key ({key}) in Yaml."

    if 'infer_meta' in op_entry:
        for infer_meta_key in op_entry['infer_meta'].keys():
            assert (
                infer_meta_key in infer_meta_key_set
            ), f"Op ({op_name}) : invalid key (infer_meta.{infer_meta_key}) in Yaml."

    if 'kernel' in op_entry:
        for kernel_key in op_entry['kernel'].keys():
            assert (
                kernel_key in kernel_key_set
            ), f"Op ({op_name}) : invalid key (kernel.{kernel_key}) in Yaml."


387 388 389 390
def parse_op_entry(op_entry: Dict[str, Any], name_field="op"):
    op_name = op_entry[name_field]
    inputs, attrs = parse_input_and_attr(op_name, op_entry["args"])
    outputs = parse_outputs(op_name, op_entry["output"])
J
Jiabin Yang 已提交
391 392
    if "composite" in op_entry:
        composite_dict = parse_composite(op_name, op_entry["composite"])
393
    check_op_config(op_entry, op_name)
394 395 396 397 398 399
    # validate default value of DataType and DataLayout
    for attr in attrs:
        if "default_value" in attr:
            typename = attr["typename"]
            default_value = attr["default_value"]
            if typename == "DataType":
400 401
                assert (
                    "DataType" in default_value
402
                ), f"invalid DataType default value in {op_name}"
403
                # remove namespace
404
                default_value = default_value[default_value.find("DataType") :]
405 406
                attr["default_value"] = default_value
            elif typename == "DataLayout":
407 408
                assert (
                    "DataLayout" in default_value
409
                ), f"invalid DataLayout default value in {op_name}"
410 411 412
                default_value = default_value[
                    default_value.find("DataLayout") :
                ]
413 414 415 416 417 418 419 420 421
                attr["default_value"] = default_value

    input_names = [item["name"] for item in inputs]
    attr_names = [item["name"] for item in attrs]
    output_names = [item["name"] for item in outputs]

    # add optional tag for every input
    for input in inputs:
        input["optional"] = False
422 423 424
    for output in outputs:
        output["optional"] = False

425 426
    if "optional" in op_entry:
        optional_args = parse_plain_list(op_entry["optional"])
427
        for name in optional_args:
428
            assert (
429 430
                name in input_names or name in output_names
            ), f"{op_name} has an optional tensor: '{name}' which is not in input or output."
431 432 433
        for input in inputs:
            if input["name"] in optional_args:
                input["optional"] = True
434 435 436
        for output in outputs:
            if output["name"] in optional_args:
                output["optional"] = True
437 438 439 440

    # add intermediate tag for every output
    for output in outputs:
        output["intermediate"] = False
441 442
    if "intermediate" in op_entry:
        intermediate_outs = parse_plain_list(op_entry["intermediate"])
443
        for name in intermediate_outs:
444 445
            assert (
                name in output_names
446
            ), f"{op_name} has an intermediate output: '{name}' which is not an output."
447 448 449 450 451 452 453
        for output in outputs:
            if output["name"] in intermediate_outs:
                output["intermediate"] = True

    # add no_need_buffer for every input
    for input in inputs:
        input["no_need_buffer"] = False
454 455
    if "no_need_buffer" in op_entry:
        no_buffer_args = parse_plain_list(op_entry["no_need_buffer"])
456
        for name in no_buffer_args:
457 458
            assert (
                name in input_names
459
            ), f"{op_name} has an no buffer input: '{name}' which is not an input."
460 461 462 463 464 465
        for input in inputs:
            if input["name"] in no_buffer_args:
                input["no_need_buffer"] = True
    else:
        no_buffer_args = None

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
    # add data_transform tag for every input.
    # the format is {data_transform : {skip_transform : [x, z], support_trans_dtype : y}}
    for input in inputs:
        input["data_transform"] = {}
    if "data_transform" in op_entry:
        skip_trans_args = []
        support_trans_args = []
        data_trans = op_entry["data_transform"]
        if "skip_transform" in data_trans:
            skip_trans_args = parse_plain_list(data_trans["skip_transform"])
            for name in skip_trans_args:
                assert (
                    name in input_names
                ), f"{op_name} has an skip_transform input: '{name}' which is not an input."
            data_trans["skip_transform"] = skip_trans_args
        if "support_trans_dtype" in data_trans:
            support_trans_args = parse_plain_list(
                data_trans["support_trans_dtype"]
            )
            for name in support_trans_args:
                assert (
                    name in input_names
                ), f"{op_name} has an support_trans_dtype input: '{name}' which is not an input."
            data_trans["support_trans_dtype"] = support_trans_args
        for input in inputs:
            if input["name"] in skip_trans_args:
                input["data_transform"]["skip_trans_args"] = True
            else:
                input["data_transform"]["skip_trans_args"] = False
            if input["name"] in support_trans_args:
                input["data_transform"]["support_trans_dtype"] = True
            else:
                input["data_transform"]["support_trans_dtype"] = False
    else:
        data_trans = None
501

502 503
    op = {
        "name": op_name,
504 505 506
        "inputs": inputs,
        "attrs": attrs,
        "outputs": outputs,
507
        "no_need_buffer": no_buffer_args,
508
        "data_transform": data_trans,
509 510
    }

X
xiaoguoguo626807 已提交
511 512 513 514 515 516
    # op should be is_base_op or is_invoke_op or is_only_composite_op
    is_base_op = True
    if "invoke" in op_entry:
        is_base_op = False
    if "composite" in op_entry and "kernel" not in op_entry:
        is_base_op = False
517

518
    if is_base_op:
519
        # kernel
520
        kernel = parse_kernel(op_name, op_entry["kernel"])
521 522 523 524
        if kernel["param"] is None:
            kernel["param"] = input_names + attr_names

        # infer meta
525
        infer_meta = parse_infer_meta(op_entry["infer_meta"])
526 527 528 529
        if infer_meta["param"] is None:
            infer_meta["param"] = copy(kernel["param"])

        # inplace
530 531
        if "inplace" in op_entry:
            inplace_pairs = parse_inplace(op_name, op_entry["inplace"])
532 533
        else:
            inplace_pairs = None
534 535 536 537 538
        # view
        if "view" in op_entry:
            view_pairs = parse_inplace(op_name, op_entry["view"])
        else:
            view_pairs = None
539
        op.update(
540 541 542 543
            {
                "infer_meta": infer_meta,
                "kernel": kernel,
                "inplace": inplace_pairs,
544
                "view": view_pairs,
545 546
            }
        )
X
xiaoguoguo626807 已提交
547 548 549 550 551

    # has invoke ?
    if "invoke" in op_entry:
        invoke_dict = parse_invoke(op_name, op_entry["invoke"])
        op.update({"invoke": invoke_dict})
552

J
Jiabin Yang 已提交
553 554 555 556
    # has composite ?
    if "composite" in op_entry:
        op.update({"composite": composite_dict})

557
    # backward
558 559
    if "backward" in op_entry:
        backward = op_entry["backward"]
560 561
    else:
        backward = None
562
    op["backward"] = backward
563

564 565 566 567 568
    # forward for backward_ops
    is_backward_op = name_field == "backward_op"
    if is_backward_op:
        if "forward" in op_entry:
            forward = parse_forward(op_name, op_entry["forward"])
569
            # validate_fb
570
            validate_backward_inputs(
571
                op_name, forward["inputs"], forward["outputs"], inputs
572
            )
573 574
            validate_backward_attrs(op_name, forward["attrs"], attrs)
            validate_backward_outputs(op_name, forward["inputs"], outputs)
575 576
        else:
            forward = None
577 578
        op["forward"] = forward
    return op
579 580


581
def validate_backward_attrs(op, forward_attrs, backward_attrs):
582 583 584
    if len(forward_attrs) >= len(backward_attrs):
        return
    num_exceptional_attrs = len(backward_attrs) - len(forward_attrs)
585 586
    # this is a not-that-clean trick to allow backward op to has more attrs
    # than the forward op , as long as they all have default value
587
    for i in range(-num_exceptional_attrs, 0):
588 589
        assert (
            "default_value" in backward_attrs[i]
590
        ), f"{op } has exceptional attr without default value"
591 592


593
def validate_backward_inputs(
594
    op, forward_inputs, forward_outputs, backward_inputs
595
):
596 597 598 599 600
    foward_input_names = [item["name"] for item in forward_inputs]
    forward_output_names = [item["name"] for item in forward_outputs]
    backward_input_names = [item["name"] for item in backward_inputs]

    assert len(backward_input_names) <= len(foward_input_names) + 2 * len(
601
        forward_output_names
602
    ), f"{op } has too many inputs."
603 604


605
def validate_backward_outputs(op, forward_inputs, backward_outputs):
606
    assert len(backward_outputs) <= len(
607
        forward_inputs
608
    ), f"{op } has too many outputs"
609 610


611 612 613 614
def cross_validate(ops):
    for name, op in ops.items():
        if "forward" in op:
            fw_call = op["forward"]
615
            fw_name = fw_call["name"]
616
            if fw_name not in ops:
617
                print(
618
                    f"Something Wrong here, this backward op ({name})'s forward op ({fw_name}) does not exist."
619 620
                )
            else:
621 622
                fw_op = ops[fw_name]
                if "backward" not in fw_op or fw_op["backward"] is None:
623
                    print(
624
                        f"Something Wrong here, {name}'s forward op ({fw_name}) does not claim {name} as its backward."
625 626
                    )
                else:
627
                    assert (
628
                        fw_op["backward"] == name
629
                    ), f"{name}: backward and forward name mismatch"
630 631

                assert len(fw_call["inputs"]) <= len(
632 633
                    fw_op["inputs"]
                ), f"{name}: forward call has more inputs than the op "
634
                for input, input_ in zip(fw_call["inputs"], fw_op["inputs"]):
635 636 637
                    assert (
                        input["typename"] == input_["typename"]
                    ), f"type mismatch in {name} and {fw_name}"
638 639

                assert len(fw_call["attrs"]) <= len(
640 641
                    fw_op["attrs"]
                ), f"{name}: forward call has more attrs than the op "
642
                for attr, attr_ in zip(fw_call["attrs"], fw_op["attrs"]):
643 644 645 646 647 648
                    if attr["typename"] == "Scalar":
                        # special case for Scalar, fw_call can omit the type
                        assert re.match(
                            r"Scalar(\(\w+\))*", attr_["typename"]
                        ), f"type mismatch in {name} and {fw_name}"
                    else:
649 650 651
                        assert (
                            attr["typename"] == attr_["typename"]
                        ), f"type mismatch in {name} and {fw_name}"
652 653

                assert len(fw_call["outputs"]) == len(
654 655
                    fw_op["outputs"]
                ), f"{name}: forward call has more outputs than the op "
656
                for output, output_ in zip(
657
                    fw_call["outputs"], fw_op["outputs"]
658 659 660 661
                ):
                    assert (
                        output["typename"] == output_["typename"]
                    ), f"type mismatch in {name} and {fw_name}"