adam_op_xpu.cc 7.3 KB
Newer Older
Y
yinhaofeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/optimizers/adam_op.h"
#include <gflags/gflags.h>

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

#ifdef PADDLE_WITH_XPU
template <typename DeviceContext, typename T>
class AdamOpXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const auto* param_var = ctx.InputVar("Param");
    PADDLE_ENFORCE_EQ(param_var->IsType<framework::LoDTensor>(), true,
                      platform::errors::InvalidArgument(
                          "Tensor holds the wrong type,Expected Var(%s)'s "
                          "type is LoDTensor, "
                          "but the received is %s",
                          ctx.InputNames("Param").front(),
                          framework::ToTypeName(param_var->Type())));
    using paddle::framework::LoDTensor;

    T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));

    auto& param = GET_DATA_SAFELY(ctx.Input<LoDTensor>("Param"), "Input",
                                  "Param", "Adam");
    // auto& grad = Ref(ctx.Input<LoDTensor>("Grad"), "Must set Grad");
    auto* grad_var = ctx.InputVar("Grad");
    auto& mom1 = GET_DATA_SAFELY(ctx.Input<LoDTensor>("Moment1"), "Input",
                                 "Moment1", "Adam");
    auto& mom2 = GET_DATA_SAFELY(ctx.Input<LoDTensor>("Moment2"), "Input",
                                 "Moment2", "Adam");
    auto& lr = GET_DATA_SAFELY(ctx.Input<LoDTensor>("LearningRate"), "Input",
                               "LearningRate", "Adam");
    auto& beta1_pow = GET_DATA_SAFELY(ctx.Input<LoDTensor>("Beta1Pow"), "Input",
                                      "Beta1Pow", "Adam");
    auto& beta2_pow = GET_DATA_SAFELY(ctx.Input<LoDTensor>("Beta2Pow"), "Input",
                                      "Beta2Pow", "Adam");

    auto& param_out = GET_DATA_SAFELY(ctx.Output<LoDTensor>("ParamOut"),
                                      "Output", "ParamOut", "Adam");
    auto& mom1_out = GET_DATA_SAFELY(ctx.Output<LoDTensor>("Moment1Out"),
                                     "Output", "Moment1Out", "Adam");
    auto& mom2_out = GET_DATA_SAFELY(ctx.Output<LoDTensor>("Moment2Out"),
                                     "Output", "Moment2Out", "Adam");

    auto* beta1_pow_out = ctx.Output<LoDTensor>("Beta1PowOut");
    auto* beta2_pow_out = ctx.Output<LoDTensor>("Beta2PowOut");
    PADDLE_ENFORCE_EQ(beta1_pow_out->numel(), 1,
                      platform::errors::InvalidArgument(
                          "Tensor holds the wrong size, Expected beta1 pow "
                          "output size is 1, but received "
                          "value is:%d.",
                          beta1_pow_out->numel()));

    PADDLE_ENFORCE_EQ(beta2_pow_out->numel(), 1,
                      platform::errors::InvalidArgument(
                          "Tensor holds the wrong size, Expected beta2 pow "
                          "output size is 1, but received "
                          "value is:%d.",
                          beta2_pow_out->numel()));
77
                          
Y
yinhaofeng 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91
    T beta1 = static_cast<T>(ctx.Attr<float>("beta1"));
    if (ctx.HasInput("Beta1Tensor")) {
      auto* beta1_tensor = ctx.Input<framework::Tensor>("Beta1Tensor");
      beta1 = static_cast<T>(GetAttrFromTensor(beta1_tensor));
    }
    T beta2 = static_cast<T>(ctx.Attr<float>("beta2"));
    if (ctx.HasInput("Beta2Tensor")) {
      auto* beta2_tensor = ctx.Input<framework::Tensor>("Beta2Tensor");
      beta2 = static_cast<T>(GetAttrFromTensor(beta2_tensor));
    }
    if (grad_var->IsType<framework::LoDTensor>()) {
      auto& grad = GET_DATA_SAFELY(ctx.Input<LoDTensor>("Grad"), "Input",
                                   "Grad", "Adam");
      auto& dev_ctx = ctx.template device_context<DeviceContext>();
92 93 94 95 96 97 98 99 100 101 102 103
      const T* beta1_pow_ptr = beta1_pow.template data<T>();
      const T* beta2_pow_ptr = beta2_pow.template data<T>();
      Tensor xpu_beta1_pow;
      Tensor xpu_beta2_pow;
      if (beta1_pow.place() == platform::CPUPlace() &&
          beta2_pow.place() == platform::CPUPlace()) {
        TensorCopy(beta1_pow, ctx.GetPlace(), dev_ctx, &xpu_beta1_pow);
        TensorCopy(beta2_pow, ctx.GetPlace(), dev_ctx, &xpu_beta2_pow);
        dev_ctx.Wait();
        beta1_pow_ptr = xpu_beta1_pow.template data<T>();
        beta2_pow_ptr = xpu_beta2_pow.template data<T>();
      }
Y
yinhaofeng 已提交
104 105
      int r = xpu::adam(
          dev_ctx.x_context(), grad.template data<T>(), mom1.template data<T>(),
106 107
          mom2.template data<T>(), param.template data<T>(), beta1_pow_ptr,
          beta2_pow_ptr, beta1, beta2, epsilon, lr.template data<T>(),
Y
yinhaofeng 已提交
108 109 110 111
          mom1_out.template mutable_data<T>(ctx.GetPlace()),
          mom2_out.template mutable_data<T>(ctx.GetPlace()),
          param_out.template mutable_data<T>(ctx.GetPlace()), param.numel());

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
      //update in cpu and then copy to xpu
      if (beta1_pow.place() == platform::CPUPlace() &&
          beta2_pow.place() == platform::CPUPlace()) {
        const T* beta1_pow_p = beta1_pow.template data<T>();
        beta1_pow_out->mutable_data<T>(platform::CPUPlace())[0] =
            beta1 * beta1_pow_p[0];
        const T* beta2_pow_p = beta2_pow.template data<T>();
        beta2_pow_out->mutable_data<T>(platform::CPUPlace())[0] =
            beta2 * beta2_pow_p[0];
      } else {
        T cpu_beta1_pow_out_data;
        T cpu_beta2_pow_out_data;
        xpu_memcpy(&cpu_beta1_pow_out_data, beta1_pow_ptr, sizeof(T),
                   XPU_DEVICE_TO_HOST);
        cpu_beta1_pow_out_data = cpu_beta1_pow_out_data * beta1;
        xpu_memcpy(&cpu_beta2_pow_out_data, beta2_pow_ptr, sizeof(T),
                   XPU_DEVICE_TO_HOST);
        cpu_beta2_pow_out_data = cpu_beta2_pow_out_data * beta2;

        T* beta1_pow_out_p = beta1_pow_out->mutable_data<T>(ctx.GetPlace());
        T* beta2_pow_out_p = beta2_pow_out->mutable_data<T>(ctx.GetPlace());
        xpu_memcpy(beta1_pow_out_p, &cpu_beta1_pow_out_data, sizeof(T),
                   XPU_HOST_TO_DEVICE);
        xpu_memcpy(beta2_pow_out_p, &cpu_beta2_pow_out_data, sizeof(T),
                   XPU_HOST_TO_DEVICE);
      }
Y
yinhaofeng 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

      PADDLE_ENFORCE_EQ(r == xpu::Error_t::SUCCESS, true,
                        platform::errors::External(
                            "XPU API return wrong value[%d], please check "
                            "where Baidu Kunlun Card is properly installed.",
                            r));
    } else {
      PADDLE_ENFORCE_EQ(1, 2, platform::errors::InvalidArgument(
                                  "Variable type not supported by adam_op"));
    }
  }
};
#endif

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
#ifdef PADDLE_WITH_XPU
REGISTER_OP_XPU_KERNEL(
    adam, ops::AdamOpXPUKernel<paddle::platform::XPUDeviceContext, float>);
#endif