op_function_generator.h 12.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <map>
#include <set>
#include <string>

// NOTE(zhiqiu): Commonly, the inputs in auto-generated OP function are
// determined by the OP`s proto automatically, i.e., all the inputs registered
// in OpMaker.
// However, some OPs have dispensable inputs, which means the input can
// be none for some conditions. It is discovered that most dispensable inputs
// is not used in imperative mode, so we drop those inputs when generating OP
// functions. While, for very few OPs, the dispensable inputs are used, we
// need to manually specify them in this map.
std::map<std::string, std::set<std::string>> op_ins_map = {
    {"layer_norm", {"X", "Scale", "Bias"}},
    {"bincount", {"X", "Weights"}},
    {"fused_attention",
33 34
     {"X", "LnScale", "LnBias", "QKVW", "QKVBias", "CacheKV", "SrcMask",
      "OutLinearW", "OutLinearBias", "Ln2Scale", "Ln2Bias"}},
35 36 37 38
    {"instance_norm", {"X", "Scale", "Bias"}},
    {"gru_unit", {"Input", "HiddenPrev", "Weight", "Bias"}},
    {"label_smooth", {"X", "PriorDist"}},
    {"assign", {"X"}},
39 40
    {"crop", {"X", "Y", "Offsets"}},
    {"crop_tensor", {"X", "Shape", "Offsets"}},
41 42
    {"reshape2", {"X", "Shape"}},
    {"expand", {"X", "ExpandTimes"}},
W
wanghuancoder 已提交
43 44 45 46 47 48 49 50 51
    {"slice",
     {"Input", "StartsTensor", "EndsTensor", "StartsTensorList",
      "EndsTensorList"}},
    {"strided_slice",
     {"Input", "StartsTensor", "EndsTensor", "StridesTensor",
      "StartsTensorList", "EndsTensorList", "StridesTensorList"}},
    {"set_value",
     {"Input", "ValueTensor", "StartsTensorList", "EndsTensorList",
      "StepsTensorList"}},
52 53 54
    {"fake_quantize_dequantize_moving_average_abs_max",
     {"X", "InScale", "InAccum", "InState"}},
    {"nll_loss", {"X", "Label", "Weight"}},
55
    {"smooth_l1_loss", {"X", "Y", "InsideWeight", "OutsideWeight"}},
56 57
    {"bilinear_tensor_product", {"X", "Y", "Weight", "Bias"}},
    {"gather", {"X", "Index", "Axis"}},
K
kuizhiqing 已提交
58
    {"repeat_interleave", {"X", "RepeatsTensor"}},
59 60
    {"roi_pool", {"X", "ROIs", "RoisNum"}},
    {"roi_align", {"X", "ROIs", "RoisNum"}},
61
    {"prroi_pool", {"X", "ROIs", "BatchRoINums"}},
62 63 64 65 66 67 68 69 70 71 72
    {"psroi_pool", {"X", "ROIs", "RoisNum"}},
    {"collect_fpn_proposals",
     {"MultiLevelRois", "MultiLevelScores", "MultiLevelRoIsNum"}},
    {"distribute_fpn_proposals", {"FpnRois", "RoisNum"}},
    {"warpctc", {"Logits", "Label", "LogitsLength", "LabelLength"}},
    {"hierarchical_sigmoid",
     {"X", "W", "Label", "PathTable", "PathCode", "Bias"}},
    {"moving_average_abs_max_scale", {"X", "InAccum", "InState"}},
    {"multiclass_nms3", {"BBoxes", "Scores", "RoisNum"}},
    {"box_coder", {"PriorBox", "PriorBoxVar", "TargetBox"}},
    {"momentum", {"Param", "Grad", "Velocity", "LearningRate", "MasterParam"}},
73 74
    {"merged_momentum",
     {"Param", "Grad", "Velocity", "LearningRate", "MasterParam"}},
75 76
    {"sparse_momentum",
     {"Param", "Grad", "Velocity", "Index", "LearningRate", "MasterParam"}},
77 78 79 80 81 82 83 84 85 86
    {"rnn", {"Input", "PreState", "WeightList", "SequenceLength"}},
    {"run_program", {"X", "Params"}},
    {"fused_feedforward",
     {"Dropout1Seed", "Dropout2Seed", "Linear1Bias", "Linear2Bias", "Ln1Scale",
      "Ln1Bias", "Ln2Scale", "Ln2Bias"}},
    {"faster_tokenizer", {"Text", "Vocab", "TextPair"}},
    {"matrix_rank", {"X", "TolTensor"}},
    {"adam",
     {"Param", "Grad", "LearningRate", "Moment1", "Moment2", "Beta1Pow",
      "Beta2Pow", "MasterParam"}},
Z
zhangbo9674 已提交
87 88 89
    {"merged_adam",
     {"Param", "Grad", "LearningRate", "Moment1", "Moment2", "Beta1Pow",
      "Beta2Pow", "MasterParam"}},
90 91 92
    {"adamw",
     {"Param", "Grad", "LearningRate", "Moment1", "Moment2", "Beta1Pow",
      "Beta2Pow", "MasterParam"}},
93 94 95
    {"lamb",
     {"Param", "Grad", "LearningRate", "Moment1", "Moment2", "Beta1Pow",
      "Beta2Pow", "MasterParam"}},
96 97
    {"sparse_attention",
     {"Q", "K", "V", "Offset", "Columns", "KeyPaddingMask", "AttnMask"}},
98
    {"sgd", {"Param", "LearningRate", "Grad", "MasterParam"}},
S
Siming Dai 已提交
99
    {"graph_khop_sampler", {"Row", "Eids", "Col_Ptr", "X"}},
W
Weilong Wu 已提交
100 101 102
    {"nce",
     {"Input", "Label", "Weight", "Bias", "SampleWeight", "CustomDistProbs",
      "CustomDistAlias", "CustomDistAliasProbs"}},
103
    {"yolov3_loss", {"X", "GTBox", "GTLabel", "GTScore"}},
F
furnace 已提交
104
    {"check_finite_and_unscale", {"X", "Scale", "FloatStatus"}},
105
    {"group_norm", {"X", "Scale", "Bias"}},
106 107 108
    {"linear_chain_crf", {"Emission", "Transition", "Label", "Length"}},
    {"crf_decoding", {"Emission", "Transition", "Label", "Length"}},
    {"chunk_eval", {"Inference", "Label", "SeqLength"}},
109
    {"sequence_mask", {"X", "MaxLenTensor"}},
S
Siming Dai 已提交
110 111 112
    {"graph_reindex",
     {"X", "Neighbors", "Count", "HashTable_Value", "HashTable_Index"}},
    {"graph_sample_neighbors", {"Row", "Col_Ptr", "X", "Eids", "Perm_Buffer"}},
113 114 115 116 117
    {"crop", {"X", "Y", "Offsets"}},
    {"batch_norm",
     {"X", "Scale", "Bias", "Mean", "Variance", "MomentumTensor"}},
    {"inplace_abn",
     {"X", "Scale", "Bias", "Mean", "Variance", "MomentumTensor"}},
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
};

// NOTE(zhiqiu): Like op_ins_map.
// Commonly, the outputs in auto-generated OP function are determined by the
// OP`s proto automatically, i.e., all the outputs registered in OpMaker.
// However, some OPs have dispensable outputs, which means the output can
// be none for some conditions. It is discovered that most dispensable outputs
// is not used in imperative mode, so we drop those outputs when generating OP
// functions. While, for very few OPs, the dispensable outputs are used, we
// need to manually specify them in this map.
std::map<std::string, std::set<std::string>> op_outs_map = {
    {"fake_quantize_dequantize_moving_average_abs_max",
     {"Out", "OutScale", "OutAccum", "OutState"}},
    {"batch_norm",
     {"Y", "MeanOut", "VarianceOut", "SavedMean", "SavedVariance",
      "ReserveSpace"}},
134 135 136
    {"inplace_abn",
     {"Y", "MeanOut", "VarianceOut", "SavedMean", "SavedVariance",
      "ReserveSpace"}},
137 138 139 140 141 142 143 144 145 146
    {"fused_attention", {"LnMean",         "LnVariance",
                         "LnOut",          "QKVOut",
                         "QKVBiasOut",     "TransposeOut2",
                         "QKOut",          "QKTVOut",
                         "SoftmaxOut",     "AttnDropoutMaskOut",
                         "AttnDropoutOut", "SrcMaskOut",
                         "FMHAOut",        "OutLinearOut",
                         "DropoutMaskOut", "Ln2Mean",
                         "Ln2Variance",    "BiasDropoutResidualOut",
                         "CacheKVOut",     "Y"}},
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    {"sync_batch_norm",
     {"Y", "MeanOut", "VarianceOut", "SavedMean", "SavedVariance",
      "ReserveSpace"}},
    {"unique", {"Out", "Index", "Indices", "Counts"}},
    {"unique_consecutive", {"Out", "Index", "Counts"}},
    {"generate_proposals", {"RpnRois", "RpnRoiProbs", "RpnRoisNum"}},
    {"collect_fpn_proposals", {"FpnRois", "RoisNum"}},
    {"matrix_nms", {"Out", "Index", "RoisNum"}},
    {"distribute_fpn_proposals",
     {"MultiFpnRois", "RestoreIndex", "MultiLevelRoIsNum"}},
    {"moving_average_abs_max_scale",
     {"Out", "OutScale", "OutAccum", "OutState"}},
    {"multiclass_nms3", {"Out", "NmsRoisNum"}},
    {"generate_proposals_v2", {"RpnRois", "RpnRoiProbs", "RpnRoisNum"}},
    {"momentum", {"ParamOut", "VelocityOut", "MasterParamOut"}},
162
    {"merged_momentum", {"ParamOut", "VelocityOut", "MasterParamOut"}},
163
    {"sparse_momentum", {"ParamOut", "VelocityOut", "MasterParamOut"}},
164 165 166 167 168
    {"rnn", {"DropoutState", "Reserve", "Out", "State"}},
    {"run_program", {"DOut"}},
    {"adam",
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut",
      "MasterParamOut"}},
Z
zhangbo9674 已提交
169 170 171
    {"merged_adam",
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut",
      "MasterParamOut"}},
172 173 174
    {"adamw",
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut",
      "MasterParamOut"}},
175
    {"sgd", {"ParamOut", "MasterParamOut"}},
176 177 178
    {"lamb",
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut",
      "MasterParamOut"}},
179
};
180 181 182 183 184 185 186 187 188 189 190 191 192

// NOTE(zhiqiu): Commonly, the outputs in auto-generated OP function are
// generated in C++ automatically.
// However, some OPs need to pass the outputs from Python instead of generating
// them in C++. There are mainly 2 reasons for that,
// (1) Optimizer OPs need to update the input param in-place, like sgd.
//     So they need to pass the output which is same as input param.
// (2) Very few python APIs has out in their arguments, like fill_constant.
//     So they need to pass the python output to C++.
//     Actually, this is not a good design, since it may break the SSA graph,
//     especially in declarative mode.
// For those OPs, we need to manually specify the outs need to pass in this map.
std::map<std::string, std::set<std::string>> op_passing_outs_map = {
193
    {"sgd", {"ParamOut", "MasterParamOut"}},
194 195 196 197 198 199 200 201 202
    {"rmsprop", {"ParamOut", "MomentOut", "MeanSquareOut", "MeanGradOut"}},
    {"ftrl", {"ParamOut", "SquaredAccumOut", "LinearAccumOut"}},
    {"adadelta", {"ParamOut", "AvgSquaredGradOut", "AvgSquaredUpdateOut"}},
    {"adagrad", {"ParamOut", "MomentOut"}},
    {"adamax", {"ParamOut", "MomentOut", "InfNormOut"}},
    {"dpsgd", {"ParamOut"}},
    {"decayed_adagrad", {"ParamOut", "MomentOut"}},
    {"lars_momentum", {"ParamOut", "VelocityOut"}},
    {"coalesce_tensor", {"Output", "FusedOutput"}},
203 204 205
    {"adam",
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut",
      "MasterParamOut"}},
Z
zhangbo9674 已提交
206 207 208
    {"merged_adam",
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut",
      "MasterParamOut"}},
209 210 211
    {"adamw",
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut",
      "MasterParamOut"}},
212 213 214
    {"lamb",
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut",
      "MasterParamOut"}},
215 216 217 218
    {"average_accumulates",
     {"out_sum_1", "out_sum_2", "out_sum_3", "out_num_accumulates",
      "out_old_num_accumulates", "out_num_updates"}},
    {"momentum", {"ParamOut", "VelocityOut", "MasterParamOut"}},
219
    {"merged_momentum", {"ParamOut", "VelocityOut", "MasterParamOut"}},
220
    {"sparse_momentum", {"ParamOut", "VelocityOut", "MasterParamOut"}},
221
    {"batch_norm", {"MeanOut", "VarianceOut"}},
222
    {"inplace_abn", {"MeanOut", "VarianceOut"}},
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
    {"sync_batch_norm", {"MeanOut", "VarianceOut"}},
    {"accuracy", {"Correct", "Total"}},
    {"fill_constant", {"Out"}},
    {"recv_v2", {"Out"}},
    {"partial_recv", {"Out"}},
    {"matmul", {"Out"}},
    {"c_broadcast", {"Out"}},
    {"c_sync_calc_stream", {"Out"}},
    {"c_sync_comm_stream", {"Out"}},
    {"c_reduce_sum", {"Out"}},
    {"c_reduce_max", {"Out"}},
    {"c_reduce_min", {"Out"}},
    {"c_reduce_prod", {"Out"}},
    {"c_reduce", {"Out"}},
    {"c_scatter", {"Out"}},
    {"barrier", {"Out"}},
    {"fake_quantize_dequantize_moving_average_abs_max",
     {"Out", "OutScale", "OutAccum", "OutState"}},
    {"fake_quantize_dequantize_abs_max", {"Out", "OutScale"}},
    {"fake_channel_wise_quantize_dequantize_abs_max", {"Out", "OutScale"}},
    {"check_finite_and_unscale", {"Out", "FoundInfinite"}},
    {"update_loss_scaling",
     {"Out", "LossScaling", "OutGoodSteps", "OutBadSteps"}},
    {"moving_average_abs_max_scale",
     {"Out", "OutScale", "OutAccum", "OutState"}},
    {"rnn", {"DropoutState"}},
    {"run_program", {"Out", "DOut", "OutScope"}},
    {"clear_float_status", {"FloatStatusOut"}},
    {"get_float_status", {"FloatStatusOut"}},
W
wanghuancoder 已提交
252 253
    {"assign", {"Out"}},
    {"assign_value", {"Out"}},
254 255
    {"split", {"Out"}},
    {"concat", {"Out"}},
256 257 258 259 260 261 262 263 264 265 266 267 268 269
};

// NOTE(pangyoki): Tensor View Strategy.
// In this case, a new output varbase will be created, and this varbase will
// reuse the input varbase's allocation.
// It's a map. The key of outer map is the view op name, the value is
// a pair which implies the mapping relationship between the input and
// output varbase.
std::map<std::string, std::pair<std::string, std::string>> view_op_map = {
    {"squeeze2", {"X", "Out"}},  // "X" -> "Out"
    {"unsqueeze2", {"X", "Out"}},
    {"reshape2", {"X", "Out"}},
    {"flatten_contiguous_range", {"X", "Out"}},
};
270 271 272 273 274 275 276 277 278

// NOTE(pangyoki): Special inplace ops that are not supported in temporary.
// The input and output of some inplace ops are special, such as
// duplicate input. These inplace ops have no usage scenarios and
// are not supported in temporary.
std::set<std::string> special_inplace_op_set = {
    "sum",     // `sum` op has duplicate input
    "assign",  // output of `assign` op is in `op_passing_outs_map`
};