pad_op.cc 5.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14

S
sneaxiy 已提交
15
#include <memory>
16

17
#include "paddle/fluid/framework/infershape_utils.h"
18
#include "paddle/fluid/framework/op_registry.h"
19
#include "paddle/fluid/platform/complex.h"
20
#include "paddle/phi/infermeta/unary.h"
W
wanghaoshuang 已提交
21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

class PadOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

29
  void InferShape(framework::InferShapeContext* ctx) const override {
30 31
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Pad");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Pad");
W
wanghaoshuang 已提交
32
  }
33 34 35 36 37 38 39

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
  }
W
wanghaoshuang 已提交
40 41
};

W
wanghaoshuang 已提交
42
class PadOpMaker : public framework::OpProtoAndCheckerMaker {
W
wanghaoshuang 已提交
43
 public:
Y
Yu Yang 已提交
44
  void Make() override {
W
wanghaoshuang 已提交
45 46 47 48
    AddInput("X",
             "The input of pad op. "
             "The input should be a k-D tensor(k > 0 and k < 7)");
    AddOutput("Out",
K
kexinzhao 已提交
49
              "The output of pad op. "
50
              "A tensor with the same shape as X.");
K
kexinzhao 已提交
51 52 53 54 55 56 57 58 59 60 61
    AddAttr<std::vector<int>>(
        "paddings",
        "(vector<int>) "
        "A list<int> to describe the padding rules for each dimension. "
        "For 2-D image tensor, paddings=[0, 1, 2, 3] means "
        "padding 0 row to top, 1 row to bottom, 2 columns to left "
        "and 3 columns to right. Size of paddings should be equal to "
        "2 * dimension size of the input tensor.");
    AddAttr<float>("pad_value",
                   "(float, default 0.0) "
                   "The value to fill the padded areas.")
62 63
        .SetDefault(0.0f)
        .SupportTensor();
W
wanghaoshuang 已提交
64
    AddComment(R"DOC(
K
kexinzhao 已提交
65 66
Pad Operator.

67
Pad input into output, as specified by paddings and pad_value.
K
kexinzhao 已提交
68
The input should be a k-D tensor(k > 0 and k < 7). As an example:
W
wanghaoshuang 已提交
69 70 71 72

Given:

X = [[1, 2],
K
kexinzhao 已提交
73
     [3, 4]],
W
wanghaoshuang 已提交
74

K
kexinzhao 已提交
75
paddings = [0, 1, 1, 2],
W
wanghaoshuang 已提交
76 77 78

and

K
kexinzhao 已提交
79
pad_value = 0,
Q
Qiao Longfei 已提交
80

K
kexinzhao 已提交
81
we have:
W
wanghaoshuang 已提交
82 83 84 85

Out = [[0, 1, 2, 0, 0]
       [0, 3, 4, 0, 0]
       [0, 0, 0, 0, 0]]
K
kexinzhao 已提交
86

W
wanghaoshuang 已提交
87 88 89 90 91 92 93 94
)DOC");
  }
};

class PadOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

95
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
96 97
    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
S
sneaxiy 已提交
98 99 100
      auto dout_dims = ctx->GetInputDim(framework::GradVarName("Out"));
      auto& paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
      for (int i = 0; i < dout_dims.size(); ++i) {
101 102 103
        if (ctx->IsRuntime() || (dout_dims[i] != -1)) {
          dout_dims[i] -= (paddings[i * 2] + paddings[i * 2 + 1]);
        }
S
sneaxiy 已提交
104 105
      }
      ctx->SetOutputDim(x_grad_name, dout_dims);
W
wanghaoshuang 已提交
106
    }
W
wanghaoshuang 已提交
107
  }
108 109 110 111 112 113 114 115

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
  }
W
wanghaoshuang 已提交
116 117
};

H
hong 已提交
118 119
template <typename T>
class PadOpGradMaker : public framework::SingleGradOpMaker<T> {
120
 public:
H
hong 已提交
121
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yu Yang 已提交
122 123

 protected:
124
  void Apply(GradOpPtr<T> bind) const override {
H
hong 已提交
125 126 127
    bind->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    bind->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    bind->SetAttrMap(this->Attrs());
Y
Yu Yang 已提交
128
    bind->SetType("pad_grad");
Y
Yu Yang 已提交
129
  }
130 131
};

C
ceci3 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144
template <typename T>
class PadOpDoubleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("pad");
    grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetAttrMap(this->Attrs());
  }
};

W
wanghaoshuang 已提交
145 146 147 148
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
149 150
DECLARE_INFER_SHAPE_FUNCTOR(pad,
                            PadInferShapeFunctor,
151
                            PD_INFER_META(phi::PadInferMeta));
152

153 154 155
REGISTER_OPERATOR(pad,
                  ops::PadOp,
                  ops::PadOpMaker,
H
hong 已提交
156
                  ops::PadOpGradMaker<paddle::framework::OpDesc>,
157 158
                  ops::PadOpGradMaker<paddle::imperative::OpBase>,
                  PadInferShapeFunctor);
159 160
REGISTER_OPERATOR(pad_grad,
                  ops::PadOpGrad,
C
ceci3 已提交
161 162
                  ops::PadOpDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::PadOpDoubleGradMaker<paddle::imperative::OpBase>);