test_mean_op.py 15.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

L
liaogang 已提交
15 16
import unittest
import numpy as np
A
arlesniak 已提交
17
from op_test import OpTest, OpTestTool
18
import paddle
C
chengduo 已提交
19
import paddle.fluid.core as core
20 21
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
22
from test_sum_op import TestReduceOPTensorAxisBase
23 24 25
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
26

27 28
np.random.seed(10)

L
liaogang 已提交
29

30
def mean_wrapper(x, axis=None, keepdim=False, reduce_all=False):
31
    if reduce_all:
32 33 34 35 36
        return paddle.mean(x, range(len(x.shape)), keepdim)
    return paddle.mean(x, axis, keepdim)


def reduce_mean_wrapper(x, axis=0, keepdim=False, reduce_all=False):
37
    if reduce_all:
38 39 40 41
        return paddle.mean(x, range(len(x.shape)), keepdim)
    return paddle.mean(x, axis, keepdim)


Q
qijun 已提交
42
class TestMeanOp(OpTest):
L
liaogang 已提交
43
    def setUp(self):
Q
qijun 已提交
44
        self.op_type = "mean"
45
        self.python_api = paddle.mean
46
        self.dtype = np.float64
C
chengduo 已提交
47 48
        self.init_dtype_type()
        self.inputs = {'X': np.random.random((10, 10)).astype(self.dtype)}
Q
qijun 已提交
49
        self.outputs = {'Out': np.mean(self.inputs["X"])}
L
liaogang 已提交
50

C
chengduo 已提交
51 52 53
    def init_dtype_type(self):
        pass

Q
qijun 已提交
54
    def test_check_output(self):
55
        self.check_output(check_eager=True)
L
liaogang 已提交
56

Q
qijun 已提交
57
    def test_checkout_grad(self):
58
        self.check_grad(['X'], 'Out', check_eager=True)
59 60


61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
class TestMeanOp_ZeroDim(OpTest):
    def setUp(self):
        self.op_type = "mean"
        self.python_api = paddle.mean
        self.dtype = np.float64
        self.inputs = {'X': np.random.random([]).astype(self.dtype)}
        self.outputs = {'Out': np.mean(self.inputs["X"])}

    def test_check_output(self):
        self.check_output(check_eager=True)

    def test_checkout_grad(self):
        self.check_grad(['X'], 'Out', check_eager=True)


76
class TestMeanOpError(unittest.TestCase):
77 78 79 80
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of mean_op must be Variable.
            input1 = 12
81
            self.assertRaises(TypeError, paddle.mean, input1)
82
            # The input dtype of mean_op must be float16, float32, float64.
83 84 85
            input2 = fluid.layers.data(
                name='input2', shape=[12, 10], dtype="int32"
            )
86
            self.assertRaises(TypeError, paddle.mean, input2)
87 88 89
            input3 = fluid.layers.data(
                name='input3', shape=[4], dtype="float16"
            )
90 91 92
            fluid.layers.softmax(input3)


93 94 95
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
C
chengduo 已提交
96 97 98
class TestFP16MeanOp(TestMeanOp):
    def init_dtype_type(self):
        self.dtype = np.float16
S
sneaxiy 已提交
99
        self.__class__.no_need_check_grad = True
C
chengduo 已提交
100 101 102 103

    def test_check_output(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
104
            self.check_output_with_place(place, check_eager=True)
C
chengduo 已提交
105 106 107 108

    def test_checkout_grad(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
S
sneaxiy 已提交
109 110 111 112
            with fluid.dygraph.guard():
                x_np = np.random.random((10, 10)).astype(self.dtype)
                x = paddle.to_tensor(x_np)
                x.stop_gradient = False
113
                y = paddle.mean(x)
S
sneaxiy 已提交
114 115
                dx = paddle.grad(y, x)[0].numpy()
                dx_expected = self.dtype(1.0 / np.prod(x_np.shape)) * np.ones(
116 117
                    x_np.shape
                ).astype(self.dtype)
118
                np.testing.assert_array_equal(dx, dx_expected)
C
chengduo 已提交
119 120


A
arlesniak 已提交
121 122 123 124 125 126 127
@OpTestTool.skip_if_not_cpu_bf16()
class TestBF16MeanOp(TestMeanOp):
    def init_dtype_type(self):
        self.dtype = np.uint16

    def test_check_output(self):
        paddle.enable_static()
128
        self.check_output_with_place(core.CPUPlace(), check_eager=True)
A
arlesniak 已提交
129 130 131

    def test_checkout_grad(self):
        place = core.CPUPlace()
132
        self.check_grad_with_place(place, ['X'], 'Out', check_eager=True)
A
arlesniak 已提交
133 134


135 136 137 138 139 140 141 142
def ref_reduce_mean(x, axis=None, keepdim=False, reduce_all=False):
    if isinstance(axis, list):
        axis = tuple(axis)
    if reduce_all:
        axis = None
    return np.mean(x, axis=axis, keepdims=keepdim)


S
sneaxiy 已提交
143 144 145 146 147 148 149 150
def ref_reduce_mean_grad(x, axis, dtype):
    if reduce_all:
        axis = list(range(x.ndim))

    shape = [x.shape[i] for i in axis]
    return (1.0 / np.prod(shape) * np.ones(shape)).astype(dtype)


151 152 153
class TestReduceMeanOp(OpTest):
    def setUp(self):
        self.op_type = 'reduce_mean'
154
        self.python_api = reduce_mean_wrapper
155 156 157 158 159 160 161 162
        self.dtype = 'float64'
        self.shape = [2, 3, 4, 5]
        self.axis = [0]
        self.keepdim = False
        self.set_attrs()

        np.random.seed(10)
        x_np = np.random.uniform(-1, 1, self.shape).astype(self.dtype)
S
sneaxiy 已提交
163 164 165
        if not hasattr(self, "reduce_all"):
            self.reduce_all = (not self.axis) or len(self.axis) == len(x_np)

166 167 168 169 170 171
        out_np = ref_reduce_mean(x_np, self.axis, self.keepdim, self.reduce_all)
        self.inputs = {'X': x_np}
        self.outputs = {'Out': out_np}
        self.attrs = {
            'dim': self.axis,
            'keep_dim': self.keepdim,
172
            'reduce_all': self.reduce_all,
173 174
        }

S
sneaxiy 已提交
175 176 177
        if self.dtype == 'float16':
            self.__class__.no_need_check_grad = True

178 179 180 181
    def set_attrs(self):
        pass

    def test_check_output(self):
S
sneaxiy 已提交
182
        if self.dtype != 'float16':
183
            self.check_output(check_eager=True)
S
sneaxiy 已提交
184 185 186 187 188
        else:
            if not core.is_compiled_with_cuda():
                return
            place = paddle.CUDAPlace(0)
            self.check_output_with_place(place=place)
189 190

    def test_check_grad(self):
S
sneaxiy 已提交
191
        if self.dtype != 'float16':
192
            self.check_grad(['X'], ['Out'], check_eager=True)
S
sneaxiy 已提交
193 194 195 196 197 198 199 200 201
        else:
            return
            if not core.is_compiled_with_cuda():
                return
            place = paddle.CUDAPlace(0)
            if core.is_float16_supported(place):
                return
            with fluid.dygraph.guard(place=place):
                x = paddle.tensor(self.inputs['X'])
202 203 204
                y = paddle.mean(
                    x, axis=self.attrs['dim'], keepdim=self.attrs['keep_dim']
                )
S
sneaxiy 已提交
205
                dx = paddle.grad(y, x)[0].numpy()
206 207 208
                dx_expected = ref_reduce_mean_grad(
                    self.inputs['X'], self.attrs['dim'], self.dtype
                )
209
                np.testing.assert_array_equal(dx, dx_expected)
210 211 212 213 214


class TestReduceMeanOpDefaultAttrs(TestReduceMeanOp):
    def setUp(self):
        self.op_type = 'reduce_mean'
215
        self.python_api = reduce_mean_wrapper
216 217 218 219 220 221 222 223 224 225 226 227 228 229
        self.dtype = 'float64'
        self.shape = [2, 3, 4, 5]

        x_np = np.random.uniform(-1, 1, self.shape).astype(self.dtype)
        out_np = np.mean(x_np, axis=0)
        self.inputs = {'X': x_np}
        self.outputs = {'Out': out_np}


class TestReduceMeanOpFloat32(TestReduceMeanOp):
    def set_attrs(self):
        self.dtype = 'float32'


S
sneaxiy 已提交
230 231 232 233 234
class TestReduceMeanOpFloat16(TestReduceMeanOp):
    def set_attrs(self):
        self.dtype = 'float16'


235 236 237 238 239
class TestReduceMeanOpShape1D(TestReduceMeanOp):
    def set_attrs(self):
        self.shape = [100]


S
sneaxiy 已提交
240 241 242 243 244 245
class TestReduceMeanOpShape1DFP16(TestReduceMeanOp):
    def set_attrs(self):
        self.shape = [100]
        self.dtype = 'float16'


246 247 248 249 250
class TestReduceMeanOpShape6D(TestReduceMeanOp):
    def set_attrs(self):
        self.shape = [2, 3, 4, 5, 6, 7]


S
sneaxiy 已提交
251 252 253 254 255 256
class TestReduceMeanOpShape6DFP16(TestReduceMeanOp):
    def set_attrs(self):
        self.shape = [2, 3, 4, 5, 6, 7]
        self.dtype = 'float16'


257 258 259 260 261
class TestReduceMeanOpAxisAll(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = [0, 1, 2, 3]


S
sneaxiy 已提交
262 263 264 265 266 267
class TestReduceMeanOpAxisAllFP16(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = [0, 1, 2, 3]
        self.dtype = 'float16'


268 269 270 271 272
class TestReduceMeanOpAxisTuple(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = (0, 1, 2)


S
sneaxiy 已提交
273 274 275 276 277 278
class TestReduceMeanOpAxisTupleFP16(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = (0, 1, 2)
        self.dtype = 'float16'


279 280 281 282 283
class TestReduceMeanOpAxisNegative(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = [-2, -1]


S
sneaxiy 已提交
284 285 286 287 288 289
class TestReduceMeanOpAxisNegativeFP16(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = [-2, -1]
        self.dtype = 'float16'


290 291 292 293 294
class TestReduceMeanOpKeepdimTrue1(TestReduceMeanOp):
    def set_attrs(self):
        self.keepdim = True


S
sneaxiy 已提交
295 296 297 298 299 300
class TestReduceMeanOpKeepdimTrue1FP16(TestReduceMeanOp):
    def set_attrs(self):
        self.keepdim = True
        self.dtype = 'float16'


301 302 303 304 305 306
class TestReduceMeanOpKeepdimTrue2(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = [0, 1, 2, 3]
        self.keepdim = True


S
sneaxiy 已提交
307 308 309 310 311 312 313
class TestReduceMeanOpKeepdimTrue2FP16(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = [0, 1, 2, 3]
        self.keepdim = True
        self.dtype = 'float16'


314 315 316 317 318
class TestReduceMeanOpReduceAllTrue(TestReduceMeanOp):
    def set_attrs(self):
        self.reduce_all = True


S
sneaxiy 已提交
319 320 321 322 323 324
class TestReduceMeanOpReduceAllTrueFP16(TestReduceMeanOp):
    def set_attrs(self):
        self.reduce_all = True
        self.dtype = 'float16'


325
class TestMeanAPI(unittest.TestCase):
326
    # test paddle.tensor.stat.mean
327 328 329 330

    def setUp(self):
        self.x_shape = [2, 3, 4, 5]
        self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32)
331 332 333
        self.place = (
            paddle.CUDAPlace(0)
            if core.is_compiled_with_cuda()
334
            else paddle.CPUPlace()
335
        )
336 337

    def test_api_static(self):
Z
Fix  
zhupengyang 已提交
338
        paddle.enable_static()
339
        with paddle.static.program_guard(paddle.static.Program()):
340
            x = paddle.fluid.data('X', self.x_shape)
341 342 343 344 345 346 347 348
            out1 = paddle.mean(x)
            out2 = paddle.tensor.mean(x)
            out3 = paddle.tensor.stat.mean(x)
            axis = np.arange(len(self.x_shape)).tolist()
            out4 = paddle.mean(x, axis)
            out5 = paddle.mean(x, tuple(axis))

            exe = paddle.static.Executor(self.place)
349 350 351
            res = exe.run(
                feed={'X': self.x}, fetch_list=[out1, out2, out3, out4, out5]
            )
352 353
        out_ref = np.mean(self.x)
        for out in res:
354
            np.testing.assert_allclose(out, out_ref, rtol=0.0001)
355

Z
Fix  
zhupengyang 已提交
356 357 358
    def test_api_dygraph(self):
        paddle.disable_static(self.place)

359
        def test_case(x, axis=None, keepdim=False):
Z
Zhou Wei 已提交
360
            x_tensor = paddle.to_tensor(x)
361 362 363 364 365 366
            out = paddle.mean(x_tensor, axis, keepdim)
            if isinstance(axis, list):
                axis = tuple(axis)
                if len(axis) == 0:
                    axis = None
            out_ref = np.mean(x, axis, keepdims=keepdim)
367
            np.testing.assert_allclose(out.numpy(), out_ref, rtol=0.0001)
368 369 370 371 372 373 374 375 376 377 378

        test_case(self.x)
        test_case(self.x, [])
        test_case(self.x, -1)
        test_case(self.x, keepdim=True)
        test_case(self.x, 2, keepdim=True)
        test_case(self.x, [0, 2])
        test_case(self.x, (0, 2))
        test_case(self.x, [0, 1, 2, 3])
        paddle.enable_static()

379 380 381 382 383 384 385 386
    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            x = fluid.data("x", shape=[10, 10], dtype="float32")
            out = fluid.layers.reduce_mean(input=x, dim=1)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            x_np = np.random.rand(10, 10).astype(np.float32)
            res = exe.run(feed={"x": x_np}, fetch_list=[out])
387
        np.testing.assert_allclose(res[0], np.mean(x_np, axis=1), rtol=1e-05)
388 389 390 391 392

        with fluid.dygraph.guard():
            x_np = np.random.rand(10, 10).astype(np.float32)
            x = fluid.dygraph.to_variable(x_np)
            out = fluid.layers.reduce_mean(input=x, dim=1)
393 394 395
        np.testing.assert_allclose(
            out.numpy(), np.mean(x_np, axis=1), rtol=1e-05
        )
396

397
    def test_errors(self):
398 399 400 401 402
        paddle.disable_static()
        x = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        x = paddle.to_tensor(x)
        self.assertRaises(Exception, paddle.mean, x, -3)
        self.assertRaises(Exception, paddle.mean, x, 2)
Z
Fix  
zhupengyang 已提交
403
        paddle.enable_static()
404
        with paddle.static.program_guard(paddle.static.Program()):
405
            x = paddle.fluid.data('X', [10, 12], 'int32')
406 407 408
            self.assertRaises(TypeError, paddle.mean, x)


409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
class TestMeanWithTensorAxis1(TestReduceOPTensorAxisBase):
    def init_data(self):
        self.pd_api = paddle.mean
        self.np_api = np.mean
        self.x = paddle.randn([10, 5, 9, 9], dtype='float64')
        self.np_axis = np.array([1, 2], dtype='int64')
        self.tensor_axis = paddle.to_tensor([1, 2], dtype='int64')


class TestMeanWithTensorAxis2(TestReduceOPTensorAxisBase):
    def init_data(self):
        self.pd_api = paddle.mean
        self.np_api = np.mean
        self.x = paddle.randn([10, 10, 9, 9], dtype='float64')
        self.np_axis = np.array([0, 1, 2], dtype='int64')
        self.tensor_axis = [
            0,
            paddle.to_tensor([1], 'int64'),
427
            paddle.to_tensor([2], 'int64'),
428 429 430
        ]


431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
class TestMeanDoubleGradCheck(unittest.TestCase):
    def mean_wrapper(self, x):
        return paddle.mean(x[0])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [3, 4, 5], False, dtype)
        data.persistable = True
        out = paddle.mean(data)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

446 447 448
        gradient_checker.double_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
449
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
450 451 452
        gradient_checker.double_grad_check_for_dygraph(
            self.mean_wrapper, [data], out, x_init=[data_arr], place=place
        )
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestMeanTripleGradCheck(unittest.TestCase):
    def mean_wrapper(self, x):
        return paddle.mean(x[0])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [3, 4, 5], False, dtype)
        data.persistable = True
        out = paddle.mean(data)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

478 479 480
        gradient_checker.triple_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
481
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
482 483 484
        gradient_checker.triple_grad_check_for_dygraph(
            self.mean_wrapper, [data], out, x_init=[data_arr], place=place
        )
485 486 487 488 489 490 491 492 493 494

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


Q
qijun 已提交
495
if __name__ == "__main__":
496
    paddle.enable_static()
L
liaogang 已提交
497
    unittest.main()