build_cinn_pass.cc 14.4 KB
Newer Older
J
jiangcheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/paddle2cinn/build_cinn_pass.h"

#include <memory>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>

#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/framework/ir/subgraph_detector.h"
// #include "cinn/frontend/op_mapper_registry.h"
// #include "cinn/frontend/op_mappers/use_op_mappers.h"

// TODO(jiangcheng05): just for local compile, remove after
// paddle and CINN have been binded
// The APIs are the same as CINN:
// https://github.com/PaddlePaddle/CINN/blob/develop/cinn/utils/registry.h
namespace cinn {
namespace frontend {
class OpMapperRegistry {
 public:
  static OpMapperRegistry* Global() {
    static OpMapperRegistry inst;
    return &inst;
  }

  inline const OpMapperRegistry* Find(const std::string& name) {
    std::unordered_set<std::string> fmap_ = {"mul", "add", "relu", "sigmoid",
                                             "softmax"};
    auto p = fmap_.find(name);
    if (p != fmap_.end()) {
      return this;
    } else {
      return nullptr;
    }
  }
};

}  // namespace frontend
}  // namespace cinn

namespace paddle {
namespace framework {
namespace paddle2cinn {

using framework::ir::Graph;
using framework::ir::Node;

using GraphNodeVec = std::vector<Node*>;
using GraphNodeSet = std::unordered_set<Node*>;

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
// Deal with subgraph's feed input var node:
// create a new input var node and it's feed op node
void AddFeedOpAndVar(const std::unordered_set<Node*>& feed_vars,
                     const GraphNodeSet& cluster,
                     const std::unordered_map<Node*, Node*>& old_op2new_op,
                     Graph* graph) {
  for (auto* old_var : feed_vars) {
    // create feed op
    OpDesc desc;
    desc.SetType("feed");
    desc.SetOutput("Out", {old_var->Name()});
    auto op = graph->CreateOpNode(&desc);

    // create new feed var node (SSAGraph)
    auto var = graph->CreateVarNode(old_var->Var());

    // link feed op and feed var
    op->outputs = {var};
    var->inputs = {op};

    // link feed var to cluster op
    for (auto* old_op : old_var->outputs) {
      if (cluster.count(old_op)) {
        var->outputs.emplace_back(old_op2new_op.at(old_op));
        old_op2new_op.at(old_op)->inputs.emplace_back(var);
      }
      // Do not need relink old op or old var here, they will be
      // fixed in RemoveLinkFromCluster, here we just deal with
      // new subgraph's node.
    }
  }
}

// Deal with subgraph's parameter var node:
// create a new input var node, it's data will get by scope,
// so it don't need feed op
void AddParamVar(const std::unordered_set<Node*>& param_vars,
                 const GraphNodeSet& cluster,
                 const std::unordered_map<Node*, Node*>& old_op2new_op,
                 Graph* graph) {
  for (auto* old_var : param_vars) {
    auto var = graph->CreateVarNode(old_var->Var());

    for (auto* old_op : old_var->outputs) {
      if (cluster.count(old_op)) {
        var->outputs.emplace_back(old_op2new_op.at(old_op));
        old_op2new_op.at(old_op)->inputs.emplace_back(var);
      }
    }
  }
}

// Deal with subgraph's outputs var node:
// create a new output var node and it's fetch op
void AddOutputVar(const std::unordered_set<Node*>& output_vars,
                  const GraphNodeSet& cluster,
                  const std::unordered_map<Node*, Node*>& old_op2new_op,
                  Graph* graph) {
  for (auto* old_var : output_vars) {
    auto var = graph->CreateVarNode(old_var->Var());

    for (auto* old_op : old_var->inputs) {
      if (cluster.count(old_op)) {
        var->inputs.emplace_back(old_op2new_op.at(old_op));
        old_op2new_op.at(old_op)->outputs.emplace_back(var);
      }
    }
  }
}

J
jiangcheng 已提交
137 138
// Create new subgraph with and op nodes are cluster nodes, and all
// var node are from internal nodes
139 140 141
std::unique_ptr<Graph> CreateNewSubGraph(const GraphNodeSet& cluster,
                                         const GraphNodeSet& cluster_internals,
                                         const GraphNodeSet& cluster_inputs) {
J
jiangcheng 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
  // Graph's constructor must has one parameter, and in our code,
  // the ProgramDesc is useless, so here we pass a temporary object.
  auto sub_graph = std::make_unique<Graph>(framework::ProgramDesc());

  std::unordered_map<Node*, Node*> old_op2new_op;
  for (auto* op : cluster) {
    auto sub_node = sub_graph->CreateOpNode(op->Op());
    old_op2new_op[op] = sub_node;
  }

  std::unordered_map<Node*, Node*> old_var2new_var;
  for (auto* var : cluster_internals) {
    auto sub_node = sub_graph->CreateVarNode(var->Var());
    old_var2new_var[var] = sub_node;
  }

158 159
  std::unordered_set<Node*> need_feed_vars;
  std::unordered_set<Node *> param_vars, output_vars;
J
jiangcheng 已提交
160 161 162 163 164 165 166
  // the subgraph is independently, so here we only need link
  // to the node in new subgraph, and discard the link to
  // out-graph.
  for (auto* op : cluster) {
    for (auto* var : op->inputs) {
      if (cluster_internals.count(var)) {
        old_op2new_op[op]->inputs.emplace_back(old_var2new_var[var]);
167 168 169 170 171 172 173 174 175 176 177 178
      } else if (cluster_inputs.count(var)) {
        if (var->Var()->IsParameter()) {
          // Parameters have been preserved in scope, compared to feed var,
          // param just need add new var and don't need add feed op.
          // The var is used for check whether we need preserve the tensor
          // when transform paddle scope to CINN scope.
          param_vars.insert(var);
        } else {
          // When the var is subgraph input and the var is not parameter,
          // we need add a new feed op to feed the var.
          need_feed_vars.insert(var);
        }
J
jiangcheng 已提交
179 180 181 182 183
      }
    }
    for (auto* var : op->outputs) {
      if (cluster_internals.count(var)) {
        old_op2new_op[op]->outputs.emplace_back(old_var2new_var[var]);
184 185 186 187 188
      } else {
        // Create new output var node to guarantee the independency of
        // subgraph. In other words, the subgraph has no connection with
        // other graph, even the input graph.
        output_vars.insert(var);
J
jiangcheng 已提交
189 190 191 192
      }
    }
  }

193 194 195 196
  AddFeedOpAndVar(need_feed_vars, cluster, old_op2new_op, sub_graph.get());
  AddParamVar(param_vars, cluster, old_op2new_op, sub_graph.get());
  AddOutputVar(output_vars, cluster, old_op2new_op, sub_graph.get());

J
jiangcheng 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
  for (auto* var : cluster_internals) {
    for (auto* op : var->inputs) {
      if (cluster.count(op)) {
        old_var2new_var[var]->inputs.emplace_back(old_op2new_op[op]);
      }
    }
    for (auto* op : var->outputs) {
      if (cluster.count(op)) {
        old_var2new_var[var]->outputs.emplace_back(old_op2new_op[op]);
      }
    }
  }

  return sub_graph;
}

// This interface is used to classify all variables involved in a cluster into
// three types: inputs, outputs, and internals.
215 216 217
// The input node is some subgraph op's input but not any subgraph op's output.
// The output node is some subgraph op's output and some out-graph op's input.
// Specially, the internal node is a node that only used by subgraph, and
J
jiangcheng 已提交
218
// out-graph should not using this node at all.
219 220
// cluster_inputs & cluster_outputs & cluster_internals == NULL
// cluster_outputs | cluster_internals == all graph op's outputs node
J
jiangcheng 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
void AnalyseClusterVariables(const GraphNodeSet& cluster,
                             GraphNodeSet* cluster_inputs,
                             GraphNodeSet* cluster_outputs,
                             GraphNodeSet* cluster_internals) {
  // collecting all input and output of op
  for (auto* op_node : cluster) {
    for (auto* input_var_node : op_node->inputs) {
      cluster_inputs->insert(input_var_node);
    }
    for (auto* output_var_node : op_node->outputs) {
      cluster_outputs->insert(output_var_node);
    }
  }
  // remove output node from cluster_inputs,
  // and add cluster_internals node
  for (auto* var_node : *cluster_outputs) {
    if (cluster_inputs->count(var_node) > 0) {
      // if a input node also exists in output list, remove
      cluster_inputs->erase(var_node);

      // the internal node is must an output node of sub-graph,
      // but not any input node of out-graph.
      bool is_only_used_internal = true;
      for (auto* next_op_node : var_node->outputs) {
        is_only_used_internal &= (cluster.count(next_op_node) > 0);
      }
      if (is_only_used_internal) {
        cluster_internals->insert(var_node);
      }
    }
  }

  // if a output node also exists in internal list, remove.
  for (auto* var_node : *cluster_internals) {
    cluster_outputs->erase(var_node);
  }
}

Node* AddSpecialOpToGraph(Graph* graph, const GraphNodeSet& cluster_inputs,
                          const GraphNodeSet& cluster_outputs) {
  // add special cinn op
  framework::OpDesc special_op_desc;
  special_op_desc.SetType(kCinnLaunchOp);
  auto* special_op_node = graph->CreateOpNode(&special_op_desc);
  special_op_node->inputs.assign(cluster_inputs.begin(), cluster_inputs.end());
  special_op_node->outputs.assign(cluster_outputs.begin(),
                                  cluster_outputs.end());
  return special_op_node;
}

void AddLinkToSpecialOp(Node* special_op_node,
                        const GraphNodeSet& cluster_inputs,
                        const GraphNodeSet& cluster_outputs) {
  // add new link from cluster_inputs to special_op_node
  for (auto* var_node : cluster_inputs) {
    var_node->outputs.push_back(special_op_node);
  }

  // add new link from special_op_node to cluster_outputs
  for (auto* var_node : cluster_outputs) {
    var_node->inputs.push_back(special_op_node);
  }
}

void RemoveLinkFromCluster(const GraphNodeSet& cluster,
                           const GraphNodeSet& cluster_inputs,
                           const GraphNodeSet& cluster_outputs) {
  // remove all nodes in cluster
  auto get_preserved_ops = [&cluster](const GraphNodeVec& ops) {
    GraphNodeVec nodes;
    for (auto* op_node : ops) {
      if (cluster.find(op_node) == cluster.end()) {
        nodes.emplace_back(op_node);
      }
    }
    return nodes;
  };

  // removing useless link from cluster_inputs to cluster
  for (auto* var_node : cluster_inputs) {
301 302 303 304 305 306
    auto preserved_ops = get_preserved_ops(var_node->outputs);
    var_node->outputs.assign(preserved_ops.begin(), preserved_ops.end());
    // According to SSA form, a var node must not be any two op's output,
    // and the cluster_inputs var nodes is defined as an out-graph op's
    // output, so the cluster_inputs var nodes are not any subgraph op's
    // output. Do not reassign input list here.
J
jiangcheng 已提交
307 308 309 310
  }

  // removing useless link from cluster to cluster_outputs
  for (auto* var_node : cluster_outputs) {
311 312 313 314 315 316 317
    auto preserved_ops = get_preserved_ops(var_node->inputs);
    var_node->inputs.assign(preserved_ops.begin(), preserved_ops.end());

    // Note that cluster_outputs var node maybe some subgraph op's input,
    // here we need remove them.
    preserved_ops = get_preserved_ops(var_node->outputs);
    var_node->outputs.assign(preserved_ops.begin(), preserved_ops.end());
J
jiangcheng 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
  }
}

// Removing cluster node and internals node from Graph
void RemoveSubGraphFromGraph(const GraphNodeSet& cluster,
                             const GraphNodeSet& cluster_internals,
                             Graph* graph) {
  for (auto* op_node : cluster) {
    graph->RemoveNode(op_node);
  }
  for (auto* var_node : cluster_internals) {
    graph->RemoveNode(var_node);
  }
}

// Replacing Cinn subgraph to a special op node, whose op_type is
// kCinnLaunchOp, and inputs ares cluster_inputs and outputs are
// cluster_outputs.
// Meanwhile, move all links of cluster to the special op.
void ReplaceSubGraphWithSpecialOpNode(const GraphNodeSet& cluster,
                                      const GraphNodeSet& cluster_inputs,
                                      const GraphNodeSet& cluster_outputs,
                                      const GraphNodeSet& cluster_internals,
                                      Graph* graph) {
  // First, add the special op node whose name is "kCinnLaunchOp" into graph
  auto special_op_node =
      AddSpecialOpToGraph(graph, cluster_inputs, cluster_outputs);
  // Second, remove all graph's links which are from or to cluster nodes
  RemoveLinkFromCluster(cluster, cluster_inputs, cluster_outputs);
  // Third, add new links from or to the the special op node
  AddLinkToSpecialOp(special_op_node, cluster_inputs, cluster_outputs);
  // Finally, remove the cinn sub graph from graph
  RemoveSubGraphFromGraph(cluster, cluster_internals, graph);
}

// Search all subgraphs which all op node supported by CINN,
// Here we using SubgraphDetector to detecte the subgraph that
// all of op node supported by CINN. We using OpMapperRegistry
// to check whether the op node supported by CINN.
void SearchAllSubgraphs(Graph* graph,
                        std::vector<std::unique_ptr<Graph>>* cinn_subgraphs) {
  auto teller = [](const Node* node) {
    return ::cinn::frontend::OpMapperRegistry::Global()->Find(node->Name()) !=
           nullptr;
  };
  std::vector<GraphNodeVec> clusters =
      framework::ir::SubgraphDetector(graph, teller)();

  cinn_subgraphs->clear();
  for (const auto& node_vec : clusters) {
    // classify var node to inputs, outputs, and internals.
    GraphNodeSet cluster_set(node_vec.begin(), node_vec.end());

    GraphNodeSet cluster_inputs, cluster_outputs, cluster_internals;
    AnalyseClusterVariables(cluster_set, &cluster_inputs, &cluster_outputs,
                            &cluster_internals);

    cinn_subgraphs->emplace_back(
376
        CreateNewSubGraph(cluster_set, cluster_internals, cluster_inputs));
J
jiangcheng 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394

    // replacing subgraph to a new special op node
    ReplaceSubGraphWithSpecialOpNode(cluster_set, cluster_inputs,
                                     cluster_outputs, cluster_internals, graph);
  }
}

void BuildCinnPass::ApplyImpl(Graph* graph) const {
  auto& cinn_subgraphs =
      Get<std::vector<std::unique_ptr<Graph>>>("cinn_subgraphs");
  SearchAllSubgraphs(graph, &cinn_subgraphs);
}

}  // namespace paddle2cinn
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(build_cinn_pass, paddle::framework::paddle2cinn::BuildCinnPass);