composite_rules.py 21.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# This file contains composite rules of nonbasic operations. There are some notes:
# 1. When define composite rule of some op, you can only use primitive ops defined in primitives.py.
# 2. The name and args of target op must be corresponding with standard description of op in
#    ops.yaml or legacy_ops.yaml.

Z
zqw_1997 已提交
20 21
import functools
import operator
22

23 24
from paddle.fluid import core

25 26 27 28 29 30 31 32 33 34 35 36
from .primitives import *  # noqa: F403
from .primreg import REGISTER_COMPOSITE, lookup_composite


def _composite(op, *args):
    _lowerrule = lookup_composite(op.type)
    return _lowerrule(op, *args)


@REGISTER_COMPOSITE('softmax')
def softmax_composite(x, axis):
    """define composite rule of op softmax"""
37 38 39 40 41 42 43
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

    # Softmax need fp32 compute since it has sum op in
    if convert_dtype(x.dtype) == "float16":
        is_amp = True
        x = cast(x, "float32")
C
cyber-pioneer 已提交
44 45
    if not x.shape:
        # do not return 1, to ensure gradients
46
        res = exp(x - x)
47 48
        if is_amp:
            res = cast(res, "float16")
C
cyber-pioneer 已提交
49
        return res
50 51 52 53
    max_temp = max(x, axis, keepdim=True)
    max_temp.stop_gradient = True
    molecular = exp(x - max_temp)
    denominator = sum(molecular, axis=axis, keepdim=True)
54
    res = divide(molecular, denominator)
55 56
    if is_amp:
        res = cast(res, "float16")
57
    return res
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73


@REGISTER_COMPOSITE('batch_norm')
def composite_batchnorm(
    x,
    run_mean,
    run_var,
    scale,
    bias,
    is_test,
    momentum,
    epsilon,
    data_layout,
    use_global_stats,
    trainable_statistics,
):
74 75 76 77 78
    """
    define composite rule of op batch_norm
    As the same with op kernel, the position of savedvariance indeed return inverse std.
    """

J
Jiabin Yang 已提交
79 80 81
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

82 83
    dtype = convert_dtype(x.dtype)
    if dtype in ["float16", "uint16"]:
J
Jiabin Yang 已提交
84 85
        is_amp = True
        x = cast(x, "float32")
86 87
        scale = cast(scale, "float32") if scale else scale
        bias = cast(bias, "float32") if bias else bias
88 89 90 91 92 93 94 95 96 97 98

    feature_axis = (
        1 if data_layout in ('NC', 'NCL', 'NCHW', 'NCHWD') else len(x.shape) - 1
    )

    use_run_stat = (is_test and (not trainable_statistics)) or use_global_stats
    reduce_axes = tuple(i for i in range(len(x.shape)) if i != feature_axis)
    stats_shape = tuple(
        1 if i in reduce_axes else s for i, s in enumerate(x.shape)
    )

99
    half = full([1], -0.5, x.dtype)
J
Jiabin Yang 已提交
100

101 102 103
    if not use_run_stat:
        batch_mean = mean(x, reduce_axes)
        temp = mean(x * x, reduce_axes)
104
        batch_var = temp - batch_mean * batch_mean
105 106 107 108 109 110 111 112 113 114
        inv_std = pow((batch_var + epsilon), half)
        if data_layout == "NHWC":
            x_hat = (x - batch_mean) * inv_std
        else:
            x_hat = (x - reshape(batch_mean, stats_shape)) * reshape(
                inv_std, stats_shape
            )

        run_mean = momentum * run_mean + (1 - momentum) * batch_mean
        run_var = momentum * run_var + (1 - momentum) * batch_var
115
    else:
116 117 118 119 120 121 122 123 124 125 126 127 128
        batch_mean = zeros(run_mean.shape, run_mean.dtype)
        batch_var = zeros(run_var.shape, run_var.dtype)
        inv_std = pow((batch_var + epsilon), half)
        if data_layout == "NHWC":
            x_hat = (x - run_mean) * pow((run_var + epsilon), half)
        else:
            x_hat = (x - reshape(run_mean, stats_shape)) * pow(
                (reshape(run_var, stats_shape) + epsilon), half
            )
    if data_layout == "NHWC":
        y = scale * x_hat + bias
    else:
        y = reshape(scale, stats_shape) * x_hat + reshape(bias, stats_shape)
J
Jiabin Yang 已提交
129
    if is_amp:
130
        y = cast(y, dtype)
131 132

    # add op assign to detach tensor in void unsafe change outside the rule.
133 134
    batch_mean_ = assign(batch_mean)
    inv_std_ = assign(inv_std)
C
cyber-pioneer 已提交
135 136
    run_mean_ = assign(run_mean)
    run_var_ = assign(run_var)
137

I
iLeGend 已提交
138
    # reserve_space is not needed in composite rule, but still ruturn None to keep same as phi op definition.
C
cyber-pioneer 已提交
139
    reserve_space = None
140 141 142 143
    if not use_run_stat:
        return y, run_mean_, run_var_, batch_mean_, inv_std_, reserve_space
    else:
        return y, run_mean_, run_var_, None, None, reserve_space
G
GGBond8488 已提交
144 145


X
xiaoguoguo626807 已提交
146 147 148 149 150 151 152
@REGISTER_COMPOSITE('layer_norm')
def layernorm_composite(x, scale, bias, epsilon, begin_norm_axis):
    """
    define composite rule of op layer_norm
    out = (x - mean(x)) / sqrt(var + epsilon))
    var = mean((x-mean(x))^2)
    """
153 154 155
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

156 157
    dtype = convert_dtype(x.dtype)
    if dtype in ["float16", "uint16"]:
158 159
        is_amp = True
        x = cast(x, "float32")
160 161
        scale = cast(scale, "float32") if scale else scale
        bias = cast(bias, "float32") if bias else bias
X
xiaoguoguo626807 已提交
162 163 164 165 166 167 168

    axis = tuple(range(begin_norm_axis, len(x.shape)))
    mean_ = mean(x, axis=axis, keepdim=True)
    difference = x - mean_
    var_tmp1 = difference * difference
    variance = mean(var_tmp1, axis=axis, keepdim=True)
    var_tmp3 = variance + epsilon
169 170
    rsqrt_var = rsqrt(var_tmp3)
    out = difference * rsqrt_var
X
xiaoguoguo626807 已提交
171 172

    if scale is not None:
173 174
        if x.shape[begin_norm_axis:] is not scale.shape:
            scale = reshape(scale, x.shape[begin_norm_axis:])
X
xiaoguoguo626807 已提交
175 176
        out = out * scale
    if bias is not None:
177 178
        if x.shape[begin_norm_axis:] is not bias.shape:
            bias = reshape(bias, x.shape[begin_norm_axis:])
X
xiaoguoguo626807 已提交
179 180 181 182
        out = out + bias

    mean_ = reshape(mean_, [-1])
    variance = reshape(variance, [-1])
183
    if is_amp:
184
        out = cast(out, dtype)
X
xiaoguoguo626807 已提交
185 186 187
    return out, mean_, variance


188 189 190 191 192 193 194 195 196 197 198 199 200 201
@REGISTER_COMPOSITE('instance_norm')
def instancenorm_composite(x, scale, bias, epsilon):
    """
    define composite rule of op instance_norm
    out = (x - mean(x)) / sqrt(var + epsilon))
    var = mean((x-mean(x))^2)
    """
    n, c, h, w = x.shape
    axis = tuple(range(2, len(x.shape)))
    mean_ = mean(x, axis=axis, keepdim=True)
    difference = x - mean_
    var_tmp1 = difference * difference
    variance = mean(var_tmp1, axis=axis, keepdim=True)
    var_tmp3 = variance + epsilon
Z
zyfncg 已提交
202
    sqrt_var = pow(var_tmp3, full([1], 0.5, dtype=var_tmp3.dtype))
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
    out = difference / sqrt_var

    if scale is not None:
        scale_tile = reshape(scale, [1, c, 1, 1])
        out = out * scale_tile
    if bias is not None:
        bias_tile = reshape(bias, [1, c, 1, 1])
        out = out + bias_tile

    mean_ = reshape(mean_, [-1])
    saved_variance = 1 / sqrt_var
    saved_variance = reshape(saved_variance, [-1])
    return out, mean_, saved_variance


G
GGBond8488 已提交
218 219 220 221 222 223 224
@REGISTER_COMPOSITE('gelu')
def gelu_composite(x, approximate):
    """define composite rule of op gelu"""
    M_SQRT1_2 = (
        0.70710678118654752440  # /* 1/sqrt(2) */ copy from gelu-kernel.cc
    )
    M_2_SQRTPI = 1.12837916709551257390  # /* 2/sqrt(pi) */
225 226 227
    full_shape = x.shape if len(x.shape) == 0 else [1]
    one = ones(full_shape, x.dtype)
    half = full(full_shape, 0.5, x.dtype)
G
GGBond8488 已提交
228 229
    if approximate:
        # gelu(x) = 0.5 * x * (1 + tanh(sqrt(2 / \pi) * (x + 0.044715 * x^{3})))
230 231
        kAlpha = full(full_shape, M_2_SQRTPI * M_SQRT1_2, x.dtype)
        GELU_CONSTANT = full(full_shape, 0.044715, x.dtype)
G
GGBond8488 已提交
232 233 234 235 236 237 238 239 240
        tanh_out = tanh(kAlpha * (x + GELU_CONSTANT * x * x * x))
        out = x * half * (one + tanh_out)
        return out

    else:
        # gelu(x) = 0.5 * x *  (1 + erf(x / sqrt(2)))
        cdf = half * (one + erf(x * full(x.shape, M_SQRT1_2, x.dtype)))
        out = x * cdf
        return out
Z
zqw_1997 已提交
241 242 243 244 245


@REGISTER_COMPOSITE('reduce_mean')
def mean_composite(x, axis, keepdim):
    """define composite rule of op mean"""
J
Jiabin Yang 已提交
246 247 248 249 250 251 252
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

    if convert_dtype(x.dtype) == "float16":
        is_amp = True
        x = cast(x, "float32")

Z
zqw_1997 已提交
253 254 255 256 257 258 259
    axes = axis or list(range(0, len(x.shape)))
    axes = [axes] if isinstance(axes, int) else axes
    sum_x = sum(x, axis=axes, keepdim=keepdim)
    value_to_fill = functools.reduce(
        operator.mul, [x.shape[axis] for axis in axes]
    )
    norm = fill_constant(
260
        shape=[],
Z
zqw_1997 已提交
261 262 263
        value=value_to_fill,
        dtype=sum_x.dtype,
    )
J
Jiabin Yang 已提交
264 265 266 267
    res = divide(sum_x, norm)
    if is_amp:
        res = cast(res, "float16")
    return res
268 269


270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
@REGISTER_COMPOSITE('expand_v2')
def expand_v2_composite(x, shape):
    """
    define composite rule of op expnad_v2, expand_v2->expand
    repeat_times = shape / x.shape
    out = tile(x, repeat_times = repeat_times)
    """
    shape_in = x.shape
    dim_out = len(shape)
    dim_in = len(shape_in)
    assert dim_in <= dim_out and dim_out >= 0
    repeat_times = []
    for i in range(dim_out):
        offset = dim_out - i
        dim = dim_in - offset
        size_in = shape_in[dim] if dim >= 0 else 1
        size_out = shape[i]
        if size_out == -1:
            assert dim >= 0
            repeat = 1
        else:
            assert size_out % size_in == 0
            repeat = int(size_out / size_in)
        repeat_times.append(repeat)
    if dim_in < dim_out:
        shape_in_expand = []
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
        for i in range(dim_out - dim_in):
            shape_in_expand.append(1)
        shape_in_expand.extend(shape_in)
        x_reshape = reshape(x, shape_in_expand)
        return tile(x_reshape, repeat_times=repeat_times)
    return tile(x, repeat_times=repeat_times)


@REGISTER_COMPOSITE('expand_as_v2')
def expand_as_v2_composite(x, y, target_shape):
    """
    define composite rule of op expnad_as_v2, expand_as_v2->expand_as
    repeat_times = target_shape / x.shape
    out = tile(x, repeat_times = repeat_times)
    """
    shape_in = x.shape
    if y is not None:
        target_shape = y.shape
    assert target_shape is not None
    dim_out = len(target_shape)
    dim_in = len(shape_in)
    assert dim_in <= dim_out and dim_out >= 0
    repeat_times = []
    for i in range(dim_out):
        offset = dim_out - i
        dim = dim_in - offset
        size_in = shape_in[dim] if dim >= 0 else 1
        size_out = target_shape[i]
        if size_out == -1:
            assert dim >= 0
            repeat = 1
        else:
            assert size_out % size_in == 0
            repeat = int(size_out / size_in)
        repeat_times.append(repeat)
    if dim_in < dim_out:
        shape_in_expand = []
333 334 335 336 337 338 339 340
        for i in range(dim_out - dim_in):
            shape_in_expand.append(1)
        shape_in_expand.extend(shape_in)
        x_reshape = reshape(x, shape_in_expand)
        return tile(x_reshape, repeat_times=repeat_times)
    return tile(x, repeat_times=repeat_times)


C
ccrrong 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353 354
@REGISTER_COMPOSITE('stack')
def stack_composite(x, axis):
    """
    define composite rule of op stack
    unsqueeze each dimension of the input (use reshape), and then concat
    """
    x_shape = x[0].shape
    if axis < 0:
        axis += len(x_shape) + 1
    out_shape = x_shape[:axis] + (1,) + x_shape[axis:]
    out = concat([reshape(item, out_shape) for item in x], axis)
    return out


355 356 357 358
@REGISTER_COMPOSITE('flatten_contiguous_range')
def flatten_contiguous_range_composite(x, start_axis, stop_axis):
    """
    define composite rule of op flatten, flatten_contiguous_range -> flatten.
359 360

    xshape is the dim with 0 added to the front of x, keep the shape information of x to calculate the grad.
361 362 363 364 365 366 367 368
    CINN doesn't need xshape for backward pass, return none instead of xshape.
    shape_out is the parameter of reshape, get from start_axis and stop_axis.
    out = reshape(x, shape=shape_out), xshape
    """
    shape_in = x.shape
    start_dim = start_axis if len(shape_in) != 0 else 0
    end_dim = stop_axis if len(shape_in) != 0 else 0
    assert start_dim <= end_dim
369 370 371
    if len(shape_in) == 0:
        return reshape(x, shape=[1]), None
    if start_dim == end_dim:
372 373 374 375 376 377 378 379 380 381 382 383 384
        return reshape(x, shape=shape_in), None
    slice_numel = 1
    for i in range(start_dim, end_dim + 1):
        slice_numel *= shape_in[i]
    shape_out = []
    for i in range(start_dim):
        shape_out.append(shape_in[i])
    shape_out.append(slice_numel)
    for i in range(end_dim + 1, len(shape_in)):
        shape_out.append(shape_in[i])
    return reshape(x, shape=shape_out), None


385 386 387 388 389 390 391 392 393 394 395 396 397
@REGISTER_COMPOSITE('dropout')
def dropout_composite(x, seed_tensor, p, is_test, mode, seed, fix_seed):
    """define composite rule of op dropout.
    upscale_in_train:
        train: out = input * mask / ( 1.0 - p )
        inference: out = input
    downscale_in_infer
        train: out = input * mask
        inference: out = input * (1.0 - p)
    """
    fix_seed = True if fix_seed is None else fix_seed
    seed = seed if fix_seed else 0
    upscale_in_train = mode == "upscale_in_train"
398

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
    mask = bernoulli(shape=x.shape, dtype=x.dtype, p=p, seed=seed)

    if upscale_in_train:
        if not is_test:
            # Process p=1.0 for avoid devide zero error (x*mask/(1.0-p))
            if p == 1.0:
                return 0.0 * x, zeros(x.shape, core.VarDesc.VarType.UINT8)
            else:
                return x * mask / (1.0 - p), cast(
                    mask, core.VarDesc.VarType.UINT8
                )
        else:
            return assign(x), cast(mask, core.VarDesc.VarType.UINT8)
    else:
        if not is_test:
            return x * mask, cast(mask, core.VarDesc.VarType.UINT8)
        else:
            return x * (1.0 - p), cast(mask, core.VarDesc.VarType.UINT8)


def bernoulli(shape, dtype, p, seed=0):
420 421 422 423
    from paddle.fluid.data_feeder import convert_dtype

    # TODO(jiabin) Fix uniform doesn't support float16 error in CINN
    new_dtype = "float32" if convert_dtype(dtype) == "float16" else dtype
424 425
    return cast(
        greater_equal(
426
            uniform(shape, new_dtype, min=0.0, max=1.0, seed=seed),
427
            fill_constant(shape if len(shape) == 0 else [1], new_dtype, p),
428 429 430
        ),
        dtype,
    )
Z
zxcd 已提交
431 432


R
Roc 已提交
433 434 435 436 437 438 439 440 441 442
@REGISTER_COMPOSITE('hard_swish')
def hard_swish_composite(x):
    """define composite rule of op hard_swish.
    offset=3, threshold=6, scale=6
    out = minimum(
        maxmum(x + offset, 0), threshold
    ) * x / scale
    """
    threshold = 6.0
    scale = 6.0
443
    offset = 3.0
444
    full_shape = x.shape if len(x.shape) == 0 else [1]
R
Roc 已提交
445 446 447
    res = (
        minimum(
            maximum(
448 449
                x + full(full_shape, offset, dtype=x.dtype),
                full(full_shape, 0.0, dtype=x.dtype),
R
Roc 已提交
450
            ),
451
            full(full_shape, threshold, dtype=x.dtype),
R
Roc 已提交
452 453
        )
        * x
454
        / full(full_shape, scale, dtype=x.dtype)
R
Roc 已提交
455 456 457 458
    )
    return res


R
Roc 已提交
459 460 461 462 463 464 465 466 467
@REGISTER_COMPOSITE('index_select')
def index_select_composite(x, index, axis):
    """define composite rule of op index_select."""
    if axis < 0:
        axis = len(x.shape) + axis
    res = gather(x, index, axis=axis)
    return res


Z
zxcd 已提交
468 469 470 471 472 473
@REGISTER_COMPOSITE('sigmoid')
def sigmoid_composite(x):
    """
    define composite rule of op sigmoid
    res = 1 / (1 + exp(-x))
    """
J
Jiabin Yang 已提交
474 475 476 477 478 479 480
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

    if convert_dtype(x.dtype) == "float16":
        is_amp = True
        x = cast(x, "float32")

Z
zxcd 已提交
481 482
    sum_temp = 1 + exp(-x)
    res = 1 / sum_temp
J
Jiabin Yang 已提交
483
    return res if not is_amp else cast(res, "float16")
Z
zxcd 已提交
484 485


Z
zxcd 已提交
486 487 488 489 490 491
@REGISTER_COMPOSITE('silu')
def silu_composite(x):
    """
    define composite rule of op silu
    res = x / (1 + exp(-x))
    """
J
Jiabin Yang 已提交
492 493 494 495 496 497 498
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

    if convert_dtype(x.dtype) == "float16":
        is_amp = True
        x = cast(x, "float32")

Z
zxcd 已提交
499 500
    sum_temp = 1 + exp(-x)
    res = x / sum_temp
J
Jiabin Yang 已提交
501
    return res if not is_amp else cast(res, "float16")
502 503


504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
@REGISTER_COMPOSITE('meshgrid')
def meshgrid_composite(inputs):
    """
    define composite rule of op meshgrid
    If the input has N tensors of size S_0, ... S_n-1, then the output will also have N tensors, where
    each tensor is of shape (S_0, ..., S_n-1).
    E.g. a1 is Tensor [1,2,3]
         b1 is Tensor [4,5]
         r1, r2 = paddle.meshgrid([a1, b1])
         r1 is Tensor [[1,1], [2,2], [3,3]]
         r2 is Tensor [[4,5], [4,5], [4,5]]
    """
    size = len(inputs)
    shape = [1] * size
    for i in range(size):
        dim = inputs[i].dim()
        assert dim == 0 or dim == 1
        if dim == 1:
            shape[i] = inputs[i].shape[0]
    outputs = []
    for i in range(size):
        view_shape = [1] * size
        view_shape[i] = shape[i]
        outputs.append(inputs[i].reshape(view_shape).broadcast_to(shape))
    return outputs


531 532 533 534 535 536 537
@REGISTER_COMPOSITE('fill_any_like')
def fill_any_like(x, fill_value, dtype, place=None):
    """define composite rule of op full_like."""
    """op name: full_like  op type name: fill_any_like."""
    """arg place is not used, add it here to keep same as python api."""
    val = full(x.shape, fill_value, dtype)
    return val
K
Kang Zhao 已提交
538 539


540 541 542 543 544 545 546 547 548 549 550 551 552 553
@REGISTER_COMPOSITE('squeeze2')
def squeeze2_composite(x, axis):
    """define composite rule of squeeze"""
    """
    canonicalize dim within range 0 to rank and
    determine new shape after squeeze op
    if axis not specified, remove all dims equal to 1
    otherwise, remove dims equal to 1 in axis
    axis can only be list, not int
    """
    rank = len(x.shape)
    if len(axis) == 0:
        dims = set(range(rank))
    else:
554
        dims = {ax % rank for ax in axis}
555 556 557 558 559 560 561 562
    new_shape = []
    for d, s in enumerate(x.shape):
        if not (s == 1 and (d in dims)):
            new_shape.append(s)
    out = reshape(x, new_shape)
    return [out, None]


M
mhy-666 已提交
563 564 565 566 567 568
@REGISTER_COMPOSITE('sqrt')
def sqrt_composite(x):
    """
    define composite rule of op sqrt
    res = pow(x, 0.5)
    """
J
Jiabin Yang 已提交
569 570 571 572 573 574 575
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

    if convert_dtype(x.dtype) == "float16":
        is_amp = True
        x = cast(x, "float32")

576
    y = full(x.shape if len(x.shape) == 0 else [1], 0.5, x.dtype)
M
mhy-666 已提交
577
    res = pow(x, y)
J
Jiabin Yang 已提交
578
    return res if not is_amp else cast(res, "float16")
M
mhy-666 已提交
579 580


581 582 583 584 585 586
@REGISTER_COMPOSITE('pow')
def pow_composite(x, y):
    """
    define composite rule of op pow
    res = x^y
    """
J
Jiabin Yang 已提交
587 588 589 590 591 592 593
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

    if convert_dtype(x.dtype) == "float16":
        is_amp = True
        x = cast(x, "float32")

594
    if isinstance(y, (int, float)):
595
        y = full(x.shape if len(x.shape) == 0 else [1], y, x.dtype)
596
    res = pow(x, y)
J
Jiabin Yang 已提交
597 598
    if is_amp:
        res = cast(res, "float16")
599 600 601
    return res


K
Kang Zhao 已提交
602 603 604 605
@REGISTER_COMPOSITE('relu')
def relu_composite(x):
    """define composite rule of op relu."""
    # relu(x) = max(x, 0)
606 607 608 609
    if len(x.shape) == 0:
        return maximum(x, full(x.shape, 0.0, x.dtype))
    else:
        return maximum(x, full([1], 0.0, x.dtype))
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629


@REGISTER_COMPOSITE('unsqueeze2')
def unsqueeze_composite(x, axis):
    """define composite rule of op unsqueeze"""
    """using reshape to implement unsqueeze op"""
    x_shape = list(x.shape)
    axis_list = list(axis)
    for i in axis_list:
        if i < 0:
            i += len(x_shape) + 1
        x_shape = (
            x_shape[:i]
            + [
                1,
            ]
            + x_shape[i:]
        )
    out = reshape(x, x_shape)
    return [out, None]
630 631 632 633 634 635


@REGISTER_COMPOSITE('rsqrt')
def rsqrt_composite(x):
    """define composite rule of op rsqrt."""
    # rsqrt(x) = x^(-0.5)
J
Jiabin Yang 已提交
636 637 638
    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

639
    dtype = convert_dtype(x.dtype)
640
    if dtype in ["float16", "uint16"]:
J
Jiabin Yang 已提交
641 642
        is_amp = True
        x = cast(x, "float32")
643
    y = full(x.shape if len(x.shape) == 0 else [1], -0.5, x.dtype)
J
Jiabin Yang 已提交
644
    res = pow(x, y)
645
    return res if not is_amp else cast(res, dtype)
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661


@REGISTER_COMPOSITE('group_norm')
def group_norm_composite(x, scale, bias, epsilon, groups, data_layout):
    """
    define composite rule of op group_norm.
    x = ((x - mean) / sqrt(var + epsilon)) * scale + bias
    mean and var are computed from groups
    """
    # original GroupNorm op cannot support NHWC format
    assert data_layout == 'NCHW'
    N, C, H, W = x.shape

    is_amp = False
    from paddle.fluid.data_feeder import convert_dtype

662 663 664
    dtype = convert_dtype(x.dtype)
    # when inputs are float16 or bfloat16, convert to float32 in computing
    if dtype in ["float16", "uint16"]:
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
        is_amp = True
        x = cast(x, "float32")
        scale = cast(scale, "float32")
        bias = cast(bias, "float32")

    x = reshape(x, (N * groups, -1))
    mean_ = mean(x, axis=1, keepdim=True)
    var_ = mean(x * x, axis=1, keepdim=True) - mean_ * mean_
    var_ = maximum(var_, zeros_like(var_))
    var_inv = 1 / sqrt(var_ + epsilon)
    out = (x - mean_) * var_inv
    out = reshape(out, (N, C, H, W))
    if scale is not None:
        out = out * reshape(scale, (-1, 1, 1))
    if bias is not None:
        out = out + reshape(bias, (-1, 1, 1))
    ret_mean_ = reshape(mean_, (N, groups))
    ret_var_ = reshape(var_, (N, groups))
683
    # return output in float16 or bfloat16, mean and var in float32
684
    if is_amp:
685
        out = cast(out, dtype)
686
    return out, ret_mean_, ret_var_
687 688


X
xiaoguoguo626807 已提交
689 690 691 692 693 694 695 696
@REGISTER_COMPOSITE('sum')
def sum_composite(x):
    ans = 0
    for xi in x:
        ans += xi
    return ans


697 698 699 700 701 702 703
@REGISTER_COMPOSITE('leaky_relu')
def leaky_relu_composite(x, negative_slope):
    """define composite rule of op leaky_relu."""
    if negative_slope < 1.0:
        return maximum(x, negative_slope * x)
    else:
        return minimum(x, negative_slope * x)