test_dist_train.py 5.4 KB
Newer Older
T
typhoonzero 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import os
import time
T
typhoonzero 已提交
19
import unittest
20
from multiprocessing import Process
Y
yi.wu 已提交
21
import signal
22 23

import numpy
T
typhoonzero 已提交
24 25 26

import paddle.fluid as fluid
import paddle.fluid.layers as layers
X
Xin Pan 已提交
27 28 29
from paddle.fluid.layers.io import ListenAndServ
from paddle.fluid.layers.io import Recv
from paddle.fluid.layers.io import Send
S
sneaxiy 已提交
30
import paddle.fluid.layers.ops as ops
31
from dist_test_utils import *
T
typhoonzero 已提交
32

G
gongweibao 已提交
33 34 35 36 37 38
from paddle.fluid import core

RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC

T
typhoonzero 已提交
39 40 41

class TestSendOp(unittest.TestCase):
    def test_send(self):
42
        remove_ps_flag(os.getpid())
T
typhoonzero 已提交
43 44 45 46 47 48 49
        # Run init_serv in a thread
        place = fluid.CPUPlace()
        # NOTE: python thread will not work here due to GIL.
        p = Process(target=self.init_serv, args=(place, ))
        p.daemon = True
        p.start()

Y
yi.wu 已提交
50 51 52
        self.ps_timeout = 5
        self._wait_ps_ready(p.pid)

Y
yi.wu 已提交
53
        with open("/tmp/paddle.%d.port" % p.pid, "r") as fn:
T
typhoonzero 已提交
54 55 56 57 58 59
            selected_port = int(fn.readlines()[0])
        self.init_client(place, selected_port)

        self.run_local(place)
        self.assertTrue(numpy.allclose(self.local_out, self.dist_out))

60
        os.kill(p.pid, signal.SIGINT)
T
update  
typhoonzero 已提交
61 62
        p.join()

Y
yi.wu 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76
    def _wait_ps_ready(self, pid):
        start_left_time = self.ps_timeout
        sleep_time = 0.5
        while True:
            assert start_left_time >= 0, "wait ps ready failed"
            time.sleep(sleep_time)
            try:
                # the listen_and_serv_op would touch a file which contains the listen port
                # on the /tmp directory until it was ready to process all the RPC call.
                os.stat("/tmp/paddle.%d.port" % pid)
                return
            except os.error:
                start_left_time -= sleep_time

T
typhoonzero 已提交
77 78 79 80
    def init_serv(self, place):
        main = fluid.Program()

        with fluid.program_guard(main):
X
Xin Pan 已提交
81
            serv = ListenAndServ("127.0.0.1:0", ["X"], optimizer_mode=False)
T
typhoonzero 已提交
82
            with serv.do():
W
Wu Yi 已提交
83 84 85 86 87
                out_var = main.global_block().create_var(
                    name="scale_0.tmp_0",
                    psersistable=True,
                    dtype="float32",
                    shape=[32, 32])
T
typhoonzero 已提交
88 89 90 91 92 93
                x = layers.data(
                    shape=[32, 32],
                    dtype='float32',
                    name="X",
                    append_batch_size=False)
                fluid.initializer.Constant(value=1.0)(x, main.global_block())
S
sneaxiy 已提交
94
                ops._scale(x=x, scale=10.0, out=out_var)
T
typhoonzero 已提交
95 96 97 98 99 100 101

        self.server_exe = fluid.Executor(place)
        self.server_exe.run(main)

    def init_client(self, place, port):
        main = fluid.Program()
        with fluid.program_guard(main):
G
gongweibao 已提交
102 103 104
            main.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
105
                outputs={"Out": []},
G
gongweibao 已提交
106 107 108 109 110
                attrs={
                    "endpoints": ["127.0.0.1:{0}".format(port)],
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

T
typhoonzero 已提交
111 112 113 114 115
            x = layers.data(
                shape=[32, 32],
                dtype='float32',
                name='X',
                append_batch_size=False)
Z
Zeng Jinle 已提交
116
            x.persistable = True
T
typhoonzero 已提交
117
            fluid.initializer.Constant(value=2.3)(x, main.global_block())
G
gongweibao 已提交
118

T
typhoonzero 已提交
119 120 121 122 123
            get_var = main.global_block().create_var(
                name="scale_0.tmp_0",  # server side var
                dtype="float32",
                persistable=False,
                shape=[32, 32])
Y
yi.wu 已提交
124
            fluid.initializer.Constant(value=2.3)(get_var, main.global_block())
G
gongweibao 已提交
125

Z
Zeng Jinle 已提交
126 127 128 129 130 131 132
            # NOTE(zjl): `Send` is async send, which means that the sent 
            # variable would be needed even though `Send` op runs. 
            # Is it a right design? If I do not set `x.persistable = True`,
            # this unittest would hang in rpc client after x is deleted. 
            #
            # BTW, `Send` is not a public API to users. So I set 
            # `x.persistable = True` to be a hot fix of this unittest. 
X
Xin Pan 已提交
133 134
            Send("127.0.0.1:%d" % port, [x])
            o = Recv("127.0.0.1:%d" % port, [get_var])
Y
yi.wu 已提交
135

T
typhoonzero 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
        exe = fluid.Executor(place)
        self.dist_out = exe.run(main, fetch_list=o)  # o is a list

    def run_local(self, place):
        main = fluid.Program()
        with fluid.program_guard(main):
            x = layers.data(
                shape=[32, 32],
                dtype='float32',
                name='X',
                append_batch_size=False)
            fluid.initializer.Constant(value=2.3)(x, main.global_block())
            o = layers.scale(x=x, scale=10.0)
        exe = fluid.Executor(place)
        self.local_out = exe.run(main, fetch_list=[o])


if __name__ == "__main__":
    unittest.main()