sparse_table_test.cc 7.6 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <ThreadPool.h>

#include <unistd.h>
#include <string>
#include <thread>  // NOLINT

#include "google/protobuf/text_format.h"
#include "gtest/gtest.h"
#include "paddle/fluid/distributed/ps.pb.h"
#include "paddle/fluid/distributed/table/common_dense_table.h"
#include "paddle/fluid/distributed/table/common_sparse_table.h"
#include "paddle/fluid/distributed/table/sparse_geo_table.h"
#include "paddle/fluid/distributed/table/table.h"

namespace paddle {
namespace distributed {

// CommonSparseTable + SSGD
TEST(CommonSparseTable, SGD) {
  int emb_dim = 10;
  int trainers = 2;

  TableParameter table_config;
  table_config.set_table_class("CommonSparseTable");
  FsClientParameter fs_config;
  Table *table = new CommonSparseTable();
  TableAccessorParameter *accessor_config = table_config.mutable_accessor();
  accessor_config->set_accessor_class("CommMergeAccessor");
  CommonAccessorParameter *common_config = table_config.mutable_common();
  common_config->set_name("sgd");
  common_config->set_table_name("sgd_test_table");
  common_config->set_trainer_num(trainers);
  common_config->add_params("Param");
  common_config->add_dims(emb_dim);
  common_config->add_initializers("uniform_random&0&-1.0&1.0");  // param
  common_config->add_params("LearningRate");
  common_config->add_dims(1);
  common_config->add_initializers("fill_constant&1.0");  // learning_rate
  auto ret = table->initialize(table_config, fs_config);
  ASSERT_EQ(ret, 0);

  // pull parameters for create and check
  std::vector<uint64_t> init_keys = {0, 1, 2, 3, 4};
  std::vector<float> init_values;
  init_values.resize(init_keys.size() * emb_dim);
  table->pull_sparse(init_values.data(), init_keys.data(), init_keys.size());

  // for check
  std::vector<float> total_gradients;
  total_gradients.resize(init_keys.size() * emb_dim);
  memset(total_gradients.data(), 0, sizeof(float) * total_gradients.size());

  // push gradient
  std::vector<std::vector<uint64_t>> trainer_keys;
  std::vector<std::vector<float>> trainer_gradient_values;
  trainer_keys.resize(trainers);
  trainer_gradient_values.resize(trainers);
  float start = 0.0;
  for (int i = 0; i < trainers; i++) {
    trainer_keys[i] = init_keys;
    for (size_t j = 0; j < trainer_keys[i].size(); j++) {
      auto id = trainer_keys[i][j];
      for (int k = 0; k < emb_dim; k++) {
        trainer_gradient_values[i].push_back(start);
        total_gradients[id * emb_dim + k] += start;
        start += 0.1;
      }
    }
  }

  std::shared_ptr<::ThreadPool> pool_ =
      std::make_shared<::ThreadPool>(trainers);
  std::vector<std::future<void>> task_status;
  for (int i = 0; i < trainers; i++) {
    auto &push_keys = trainer_keys[i];
    auto &push_values = trainer_gradient_values[i];
    auto task = [table, &push_keys, &push_values] {
      table->push_sparse(push_keys.data(), push_values.data(),
                         push_keys.size());
    };
    task_status.push_back(pool_->enqueue(std::move(task)));
  }
  for (auto &status : task_status) {
    status.wait();
  }

  std::vector<float> pull_values;
  pull_values.resize(init_keys.size() * emb_dim);
  table->pull_sparse(pull_values.data(), init_keys.data(), init_keys.size());
  for (size_t i = 0; i < init_values.size(); ++i) {
    auto update_val = init_values[i] - 1.0 * total_gradients[i];
    ASSERT_TRUE(abs(update_val - pull_values[i]) < 1e-5);
  }
}

// CommonSparseTable + Adam
TEST(CommonSparseTable, Adam) {
  int emb_dim = 10;
  int trainers = 2;
  float beta1 = 0.9;
  float beta2 = 0.999;
  float epsilon = 1.0e-8;

  TableParameter table_config;
  table_config.set_table_class("CommonSparseTable");
  FsClientParameter fs_config;
  Table *table = new CommonSparseTable();
  TableAccessorParameter *accessor_config = table_config.mutable_accessor();
  accessor_config->set_accessor_class("CommMergeAccessor");
  CommonAccessorParameter *common_config = table_config.mutable_common();
  common_config->set_name("adam");
  common_config->set_table_name("adam_test_table");
  common_config->set_trainer_num(trainers);
  common_config->add_params("Param");
  common_config->add_dims(emb_dim);
  common_config->add_initializers("uniform_random&0&-1.0&1.0");
  common_config->add_params("LearningRate");
  common_config->add_dims(1);
  common_config->add_initializers("fill_constant&1.0");
  common_config->add_params("Moment1");
  common_config->add_dims(emb_dim);
  common_config->add_initializers("fill_constant&0.0");
  common_config->add_params("Moment2");
  common_config->add_dims(emb_dim);
  common_config->add_initializers("fill_constant&0.0");
  common_config->add_params("Beta1Pow");
  common_config->add_dims(1);
  common_config->add_initializers("fill_constant&1.0");
  common_config->add_params("Beta2Pow");
  common_config->add_dims(1);
  common_config->add_initializers("fill_constant&1.0");
  auto ret = table->initialize(table_config, fs_config);
  ASSERT_EQ(ret, 0);

  // pull parameters for create and check
  std::vector<uint64_t> init_keys = {0, 1, 2, 3, 4};
  std::vector<float> init_values;
  init_values.resize(init_keys.size() * emb_dim);
  table->pull_sparse(init_values.data(), init_keys.data(), init_keys.size());

  // push gradient
  std::vector<std::vector<uint64_t>> trainer_keys;
  std::vector<std::vector<float>> trainer_gradient_values;
  trainer_keys.resize(trainers);
  trainer_gradient_values.resize(trainers);
  float start = 0.0;
  for (int i = 0; i < trainers; i++) {
    trainer_keys[i] = init_keys;
    for (size_t j = 0; j < trainer_keys[i].size(); j++) {
      for (int k = 0; k < emb_dim; k++) {
        trainer_gradient_values[i].push_back(start);
        start += 0.1;
      }
    }
  }

  for (int i = 0; i < trainers; i++) {
    auto &push_keys = trainer_keys[i];
    auto &push_values = trainer_gradient_values[i];
    table->push_sparse(push_keys.data(), push_values.data(), push_keys.size());
  }

  std::vector<float> pull_values;
  pull_values.resize(init_keys.size() * emb_dim);
  table->pull_sparse(pull_values.data(), init_keys.data(), init_keys.size());

  for (size_t idx = 0; idx < init_keys.size(); idx += emb_dim) {
    std::vector<float> beta1_pow, beta2_pow, lr, mom1, mom2, param;
    beta1_pow.push_back(beta1);
    beta2_pow.push_back(beta2);
    lr.push_back(1.0);
    for (int i = 0; i < emb_dim; i++) {
      mom1.push_back(0.0);
      mom2.push_back(0.0);
      param.push_back(init_values[idx + i]);
    }
    for (int i = 0; i < trainers; i++) {
      auto lr_ = lr[0] * sqrt(1 - beta2_pow[0]) / (1 - beta1_pow[0]);
      for (int j = 0; j < emb_dim; j++) {
        mom1[j] =
            beta1 * mom1[j] + (1 - beta1) * trainer_gradient_values[i][idx + j];
        mom2[j] = beta2 * mom2[j] +
                  (1 - beta2) * trainer_gradient_values[i][idx + j] *
                      trainer_gradient_values[i][idx + j];
        param[j] = param[j] -
                   lr_ * (mom1[j] /
                          (sqrt(mom2[j]) + epsilon * sqrt(1 - beta2_pow[0])));
      }
      beta1_pow[0] *= beta1;
      beta2_pow[0] *= beta2;
    }
    for (int i = 0; i < emb_dim; i++) {
      ASSERT_TRUE(abs(param[i] - pull_values[idx + i]) < 1e-5);
    }
  }
}

}  // namespace distributed
}  // namespace paddle