the_one_ps.py 63.2 KB
Newer Older
Z
ziyoujiyi 已提交
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Z
ziyoujiyi 已提交
2
#
Z
ziyoujiyi 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Z
ziyoujiyi 已提交
6
#
Z
ziyoujiyi 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
Z
ziyoujiyi 已提交
8
#
Z
ziyoujiyi 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Z
ziyoujiyi 已提交
14 15 16 17 18

import warnings

import os
import paddle.fluid as fluid
Z
ziyoujiyi 已提交
19
from paddle.distributed import fleet
Z
ziyoujiyi 已提交
20
from paddle.fluid import core
Z
ziyoujiyi 已提交
21
from paddle.distributed.ps.utils.public import *
Z
ziyoujiyi 已提交
22 23 24 25 26
from paddle.fluid.framework import Program
from paddle.fluid.compiler import CompiledProgram
from paddle.fluid.executor import Executor
from paddle.fluid.parallel_executor import ParallelExecutor
from paddle.fluid.framework import Variable, Parameter
W
wangguanqun 已提交
27 28
from paddle.distributed.fleet.runtime.runtime_base import RuntimeBase
from paddle.distributed.fleet.base.private_helper_function import wait_server_ready
Z
ziyoujiyi 已提交
29
from paddle.distributed.fleet.proto import the_one_ps_pb2
Z
ziyoujiyi 已提交
30 31
from paddle.fluid.communicator import Communicator, HeterClient
from google.protobuf import text_format
32
from paddle.distributed.ps.coordinator import Coordinator
Z
ziyoujiyi 已提交
33

Z
ziyoujiyi 已提交
34 35 36 37
__all__ = [
    'Table', 'SparseTable', 'GeoSparseTable', 'BarrierTable', 'TensorTable',
    'DenseTable'
]
Z
ziyoujiyi 已提交
38 39


W
wangguanqun 已提交
40 41 42 43
def get_program_by_id(context, program_id):
    programs = context["origin_main_programs"]
    for i, program in enumerate(programs):
        if id(program) == program_id:
44 45
            return program, context["origin_startup_programs"][i], i
    return None, None, None
W
wangguanqun 已提交
46 47 48


def parse_table_class(varname, program_id, context):
49
    main_program, startup_program, idx = get_program_by_id(context, program_id)
W
wangguanqun 已提交
50
    for op in main_program.global_block().ops:
Z
ziyoujiyi 已提交
51 52 53 54 55 56 57 58 59 60 61 62
        if not is_distributed_sparse_op(op) and not is_sparse_op(op):
            continue

        param_name = op.input("W")[0]

        if param_name == varname and op.type == "lookup_table" or op.type == "lookup_table_v2":
            if op.has_attr('table_class') and op.attr("table_class") != "none":
                return op.attr('table_class')
            else:
                return "MemorySparseTable"


Z
ziyoujiyi 已提交
63
def check_embedding_dim(accessor_proto, varname, program_id, context):
64
    main_program, startup_program, idx = get_program_by_id(context, program_id)
Z
ziyoujiyi 已提交
65
    embedding_dim = 0
W
wangguanqun 已提交
66
    for var in main_program.list_vars():
Z
ziyoujiyi 已提交
67 68
        if var.name == varname:
            embedding_dim = var.shape[1]
Z
ziyoujiyi 已提交
69 70
            print('new var: {}, {}, {}'.format(var, embedding_dim,
                                               accessor_proto.fea_dim))
Z
ziyoujiyi 已提交
71
            break
72

Z
ziyoujiyi 已提交
73
    fea_dim = accessor_proto.fea_dim
74 75 76
    if accessor_proto.accessor_class == "SparseAccessor":
        if fea_dim != embedding_dim + 2:
            raise ValueError(
77 78
                "The fea_dim is wrong, it will be sparse_embedding_dim + 2: {}, but got {}"
                .format(embedding_dim + 2, fea_dim))
79 80 81
    else:
        if fea_dim != embedding_dim:
            raise ValueError(
82 83
                "The fea_dim is wrong, it will be sparse_embedding_dim: {}, but got {}"
                .format(embedding_dim, fea_dim))
84

Z
ziyoujiyi 已提交
85
    embedx_dim = accessor_proto.embedx_dim
86 87 88
    if accessor_proto.accessor_class == "SparseAccessor":
        if embedx_dim != embedding_dim - 1:
            raise ValueError(
89 90
                "The embedx_dim is wrong, it will be sparse_embedding_dim - 1: {}, but got {}"
                .format(embedding_dim - 1, embedx_dim))
91 92 93
    else:
        if embedx_dim != embedding_dim - 3:
            raise ValueError(
94 95
                "The embedx_dim is wrong, it will be sparse_embedding_dim - 3: {}, but got {}"
                .format(embedding_dim - 3, embedx_dim))
Z
ziyoujiyi 已提交
96 97


Z
ziyoujiyi 已提交
98
class Service:
99

Z
ziyoujiyi 已提交
100 101 102 103 104 105 106 107 108 109 110 111
    def __init__(self):
        pass

    def _set(self, service_proto):
        service_proto.server_class = "BrpcPsServer"
        service_proto.client_class = "BrpcPsClient"
        service_proto.service_class = "BrpcPsService"
        service_proto.start_server_port = 0
        service_proto.server_thread_num = 12


class GpuService(Service):
112

Z
ziyoujiyi 已提交
113
    def __init__(self):
114
        super(GpuService, self).__init__()
Z
ziyoujiyi 已提交
115 116 117 118 119 120

    def _set(self, service_proto):
        service_proto.server_class = 'PsLocalServer'
        service_proto.client_class = 'PsLocalClient'


Z
ziyoujiyi 已提交
121
class Accessor:
122

Z
ziyoujiyi 已提交
123 124 125
    def __init__(self):
        self.accessor_class = ""
        self.optimizer = None
Z
ziyoujiyi 已提交
126 127
        self.feature_dim = 0
        self.embedding_dim = 0
Z
ziyoujiyi 已提交
128

Z
ziyoujiyi 已提交
129
    # TableAccessorParameter accessor
130 131
    def _set(self, accessor_proto, varname, program_id, context,
             common_accessor):
132 133
        main_program, startup_program, idx = get_program_by_id(
            context, program_id)
Z
ziyoujiyi 已提交
134 135 136 137 138
        embedding_dim = 0
        for var in main_program.list_vars():
            if var.name == varname:
                embedding_dim = var.shape[1]
                break
Z
ziyoujiyi 已提交
139

Z
ziyoujiyi 已提交
140
        if not accessor_proto.HasField("accessor_class"):
141
            # DownpourSparseValueAccessor
142
            if context['use_ps_gpu']:
143
                accessor_proto.accessor_class = "CtrDymfAccessor"
144 145
            else:
                accessor_proto.accessor_class = "SparseAccessor"
Z
ziyoujiyi 已提交
146
        if not accessor_proto.HasField("fea_dim"):
147 148 149 150
            if accessor_proto.accessor_class == "SparseAccessor":
                accessor_proto.fea_dim = embedding_dim + 2
            else:
                accessor_proto.fea_dim = embedding_dim
Z
ziyoujiyi 已提交
151
        if not accessor_proto.HasField("embedx_dim"):
152 153 154 155
            if accessor_proto.accessor_class == "SparseAccessor":
                accessor_proto.embedx_dim = embedding_dim - 1
            else:
                accessor_proto.embedx_dim = embedding_dim - 3
Z
ziyoujiyi 已提交
156 157 158
        if not accessor_proto.HasField("embedx_threshold"):
            accessor_proto.embedx_threshold = 0

D
danleifeng 已提交
159 160 161 162 163 164
        graph_sgd_param = accessor_proto.graph_sgd_param
        if not graph_sgd_param.HasField("nodeid_slot"):
            graph_sgd_param.nodeid_slot = 9008
        if not graph_sgd_param.HasField("feature_learning_rate"):
            graph_sgd_param.feature_learning_rate = 0.05

Z
ziyoujiyi 已提交
165
        ctr_accessor_param = accessor_proto.ctr_accessor_param
166 167
        if accessor_proto.embedx_dim == 0:
            ctr_accessor_param.zero_init = False
Z
ziyoujiyi 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
        if not ctr_accessor_param.HasField("nonclk_coeff"):
            ctr_accessor_param.nonclk_coeff = 0.1
        if not ctr_accessor_param.HasField("click_coeff"):
            ctr_accessor_param.click_coeff = 1.0
        if not ctr_accessor_param.HasField("base_threshold"):
            ctr_accessor_param.base_threshold = 0
        if not ctr_accessor_param.HasField("delta_threshold"):
            ctr_accessor_param.delta_threshold = 0
        if not ctr_accessor_param.HasField("delta_keep_days"):
            ctr_accessor_param.delta_keep_days = 16
        if not ctr_accessor_param.HasField("show_click_decay_rate"):
            ctr_accessor_param.show_click_decay_rate = 1
        if not ctr_accessor_param.HasField("delete_threshold"):
            ctr_accessor_param.delete_threshold = 0
        if not ctr_accessor_param.HasField("delete_after_unseen_days"):
            ctr_accessor_param.delete_after_unseen_days = 30
        if not ctr_accessor_param.HasField("ssd_unseenday_threshold"):
            ctr_accessor_param.ssd_unseenday_threshold = 1

        for sgd_param in [
                accessor_proto.embed_sgd_param, accessor_proto.embedx_sgd_param
        ]:
            if not sgd_param.HasField("name"):
191 192 193 194
                if common_accessor.accessor_class == "sgd":
                    sgd_param.name = "SparseNaiveSGDRule"
                if common_accessor.accessor_class == "adam":
                    sgd_param.name = "SparseAdamSGDRule"
Z
ziyoujiyi 已提交
195 196
                else:  # for fl-ps, because geo accessor is 'sum'
                    sgd_param.name = "SparseAdamSGDRule"
197

Z
ziyoujiyi 已提交
198 199 200 201 202 203 204 205 206
            if sgd_param.name == "SparseAdaGradSGDRule" or sgd_param.name == "StdAdaGradSGDRule":
                if not sgd_param.adagrad.HasField("learning_rate"):
                    sgd_param.adagrad.learning_rate = 0.05
                if not sgd_param.adagrad.HasField("initial_g2sum"):
                    sgd_param.adagrad.initial_g2sum = 3.0
                if not sgd_param.adagrad.HasField("initial_range"):
                    sgd_param.adagrad.initial_range = 0.0001
                if len(sgd_param.adagrad.weight_bounds) == 0:
                    sgd_param.adagrad.weight_bounds.extend([-10.0, 10.0])
207

Z
ziyoujiyi 已提交
208 209
            if sgd_param.name == "SparseNaiveSGDRule":
                if not sgd_param.naive.HasField("learning_rate"):
210 211 212
                    learning_rate = common_accessor.initializers[-1].split(
                        "&")[1]
                    sgd_param.naive.learning_rate = float(learning_rate)
Z
ziyoujiyi 已提交
213
                if not sgd_param.naive.HasField("initial_range"):
214 215 216
                    initial_range = common_accessor.initializers[0].split(
                        "&")[-1]
                    sgd_param.naive.initial_range = float(initial_range)
Z
ziyoujiyi 已提交
217 218
                if len(sgd_param.naive.weight_bounds) == 0:
                    sgd_param.naive.weight_bounds.extend([-10.0, 10.0])
219

D
danleifeng 已提交
220
            if sgd_param.name == "SparseAdamSGDRule" or sgd_param.name == "SparseSharedAdamSGDRule":
Z
ziyoujiyi 已提交
221
                if not sgd_param.adam.HasField("learning_rate"):
222 223 224
                    learning_rate = common_accessor.initializers[-1].split(
                        "&")[1]
                    sgd_param.adam.learning_rate = float(learning_rate)
Z
ziyoujiyi 已提交
225
                if not sgd_param.adam.HasField("initial_range"):
226 227 228 229 230 231 232 233 234 235
                    initial_range = common_accessor.initializers[0].split(
                        "&")[-1]
                    sgd_param.adam.initial_range = float(initial_range)

                attr_list = [x.split("&") for x in common_accessor.attrs]
                if not sgd_param.adam.HasField(
                        "beta1_decay_rate"
                ) and common_accessor.accessor_class == "adam":
                    sgd_param.adam.beta1_decay_rate = float(attr_list[0][1])
                else:
Z
ziyoujiyi 已提交
236
                    sgd_param.adam.beta1_decay_rate = 0.9
237 238 239 240 241
                if not sgd_param.adam.HasField(
                        "beta2_decay_rate"
                ) and common_accessor.accessor_class == "adam":
                    sgd_param.adam.beta2_decay_rate = float(attr_list[1][1])
                else:
Z
ziyoujiyi 已提交
242
                    sgd_param.adam.beta2_decay_rate = 0.999
243 244 245 246 247
                if not sgd_param.adam.HasField(
                        "ada_epsilon"
                ) and common_accessor.accessor_class == "adam":
                    sgd_param.adam.ada_epsilon = float(attr_list[2][1])
                else:
Z
ziyoujiyi 已提交
248 249 250 251 252 253
                    sgd_param.adam.ada_epsilon = 1e-08
                if len(sgd_param.adam.weight_bounds) == 0:
                    sgd_param.adam.weight_bounds.extend([-10.0, 10.0])


class CommonAccessor(Accessor):
254

Z
ziyoujiyi 已提交
255
    def __init__(self):
Z
ziyoujiyi 已提交
256 257 258
        super(CommonAccessor, self).__init__()
        self.table_name = ''
        self.entry = 'none'
Z
ziyoujiyi 已提交
259 260 261 262
        self.attrs = []
        self.params = []
        self.dims = []
        self.trainer_num = 0
Z
ziyoujiyi 已提交
263
        self.sync = False
Z
ziyoujiyi 已提交
264 265 266 267 268 269 270 271 272 273 274 275
        self.initializers = []
        self.opt_input_map = {}
        self.opt_attr_map = {}
        self.opt_init_map = {}
        self.define_optimize_map()

    def define_optimize_map(self):
        opt_input_map = {}
        opt_input_map["sgd"] = [("Param", None), ("LearningRate", 1)]
        opt_input_map["adam"] = [("Param", None), ("Moment1", None),
                                 ("Moment2", None), ("Beta1Pow", 1),
                                 ("Beta2Pow", 1), ("LearningRate", 1)]
276 277 278 279 280
        opt_input_map["adam_d2sum"] = [("Param", None), ("D2Sum", None),
                                       ("G2Sum", None), ("Moment", None),
                                       ("MomentDecayRate", 1),
                                       ("AdaDecayRate", 1), ("AdaEpsilon", 1),
                                       ("LearningRate", 1)]
Z
ziyoujiyi 已提交
281 282 283
        opt_input_map["sum"] = [("Param", None)]
        opt_input_map["naive_adagrad"] = [("Param", None), ("G2Sum", 1),
                                          ("LearningRate", 1)]
W
wangguanqun 已提交
284
        opt_input_map["summary"] = [("Param", None), ("SummaryDecayRate", 1)]
Z
ziyoujiyi 已提交
285 286 287 288 289 290 291 292 293

        opt_attr_map = {}
        opt_attr_map["sgd"] = []
        opt_attr_map["sum"] = []
        opt_attr_map["naive_adagrad"] = []
        opt_attr_map["adam"] = [("beta1", "f"), ("beta2", "f"),
                                ("epsilon", "f")]
        opt_attr_map["adam_d2sum"] = [("beta1", "f"), ("beta2", "f"),
                                      ("epsilon", "f")]
294
        opt_attr_map["summary"] = [("summary_decay_rate", "f")]
Z
ziyoujiyi 已提交
295 296 297 298 299 300 301 302 303 304 305

        opt_init_map = {}
        opt_init_map["gaussian_random"] = ["seed", "mean", "std"]
        opt_init_map["fill_constant"] = ["value"]
        opt_init_map["uniform_random"] = ["seed", "min", "max"]
        opt_init_map["truncated_gaussian_random"] = ["seed", "mean", "std"]

        self.opt_attr_map = opt_attr_map
        self.opt_input_map = opt_input_map
        self.opt_init_map = opt_init_map

W
wangguanqun 已提交
306
    def parse_entry(self, varname, program_id, context):
307 308
        main_program, startup_program, idx = get_program_by_id(
            context, program_id)
W
wangguanqun 已提交
309
        for op in main_program.global_block().ops:
Z
ziyoujiyi 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
            if not is_distributed_sparse_op(op) and not is_sparse_op(op):
                continue

            param_name = op.input("W")[0]

            if param_name == varname and op.type == "lookup_table":
                self.entry = op.attr('entry')
                break

            if param_name == varname and op.type == "lookup_table_v2":
                self.entry = "none"
                break

    def get_shard(self, total_dim, shard_num, pserver_id):
        blocksize = int(total_dim / shard_num + 1)

        if blocksize * (pserver_id + 1) <= total_dim:
            return blocksize
        else:
            if blocksize * pserver_id < total_dim:
                return total_dim - blocksize * pserver_id
            else:
                return 0

    def get_initializer_attr(self, value_name, o_startup_program):
        l_in = "&"
        attr_str = ""

        origin_var_name = value_name
339
        # print("get_initializer_attr param name:", value_name)
Z
ziyoujiyi 已提交
340 341 342 343
        for op in o_startup_program.global_block().ops:
            if op.type in self.opt_init_map.keys(
            ) and origin_var_name == op.output("Out")[0]:
                init_attr = [op.type]
344
                # print("get_initializer_attr op type:", op.type)
Z
ziyoujiyi 已提交
345
                for attr in self.opt_init_map[op.type]:
346
                    # print("get_initializer_attr opt_init_map attr:", attr)
Z
ziyoujiyi 已提交
347
                    init_attr.append(str(op.attr(attr)))
348
                    # print("get_initializer_attr op attr:", str(op.attr(attr)))
Z
ziyoujiyi 已提交
349 350 351 352
                attr_str = l_in.join(init_attr)
                break
        return attr_str

W
wangguanqun 已提交
353 354 355 356 357 358
    def parse_by_optimizer(self, ctx, context):
        grad_name = ctx.origin_varnames()[0]
        is_sparse = ctx.is_sparse()
        size = ctx.sections()[0]
        single_dim = ctx.sections()[1] if ctx.is_sparse() else 1
        adam_d2sum = context["user_defined_strategy"].adam_d2sum
359 360
        # print("parse_by_optimizer table_id:{} is_datanorm:{}".format(
        #     ctx.table_id(), ctx.is_datanorm_table()))
W
wangguanqun 已提交
361

362 363
        main_program, startup_program, idx = get_program_by_id(
            context, ctx.program_id())
Z
ziyoujiyi 已提交
364 365 366
        pserver_id = get_role_id(context['role_maker'])
        pserver_num = len(get_ps_endpoints(context['role_maker']))
        optimizer_ops = get_optimize_ops(main_program)
367 368
        # print("the one ps optimizer_ops:", optimizer_ops)
        # print("the one ps parse_by_optimizer grad_name:", grad_name)
Z
ziyoujiyi 已提交
369 370 371 372
        oop = None

        for op in optimizer_ops:
            if ("Param" in op.input_names) and (
373 374
                    op.input("Param")[0]
                    == context['grad_name_to_param_name'][grad_name]):
Z
ziyoujiyi 已提交
375 376 377 378 379 380 381 382 383 384 385 386
                oop = op
                break

        if oop is None:
            raise ValueError("can not find optimizer for {}".format(grad_name))

        params = []
        dims = []
        attrs = []
        initializers = []

        self.trainer_num = get_trainers(context['role_maker'])
W
wangguanqun 已提交
387 388
        self.table_num = size
        self.table_dim = single_dim
Z
ziyoujiyi 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401

        if oop.type != 'adam' and adam_d2sum == True:
            print('optimization algorithm is not adam, set adam_d2sum False')
            adam_d2sum = False
        print("adam_d2sum:", adam_d2sum)
        if context['ps_mode'] == DistributedMode.GEO:
            param_varnames = self.opt_input_map["sum"]
            attr_varnames = self.opt_attr_map["sum"]
            self.accessor_class = "sum"
        elif context['use_ps_gpu'] and is_sparse:
            param_varnames = self.opt_input_map["naive_adagrad"]
            attr_varnames = self.opt_attr_map["naive_adagrad"]
            self.accessor_class = "sgd"
W
wangguanqun 已提交
402 403 404 405 406
        elif ctx.is_datanorm_table():
            param_varnames = self.opt_input_map["summary"]
            attr_varnames = self.opt_attr_map["summary"]
            self.accessor_class = "summary"
        elif adam_d2sum and not is_sparse:
Z
ziyoujiyi 已提交
407 408 409 410
            param_varnames = self.opt_input_map["adam_d2sum"]
            attr_varnames = self.opt_attr_map["adam_d2sum"]
            self.accessor_class = "adam_d2sum"
        else:
411 412 413
            if oop.type != 'sgd' and oop.type != 'adam':
                raise ValueError(
                    "The dense optimizer in PS is only supported SGD or Adam!")
Z
ziyoujiyi 已提交
414 415 416 417 418 419 420 421 422 423
            param_varnames = self.opt_input_map[oop.type]
            attr_varnames = self.opt_attr_map[oop.type]
            self.accessor_class = oop.type

        for (formal_name, shape) in param_varnames:
            params.append(formal_name)
            if self.accessor_class == "adam_d2sum":
                #for dims
                if shape is None:
                    if is_sparse:
W
wangguanqun 已提交
424
                        shape = single_dim
Z
ziyoujiyi 已提交
425
                    else:
W
wangguanqun 已提交
426
                        shape = self.get_shard(size, pserver_num, pserver_id)
Z
ziyoujiyi 已提交
427 428 429 430 431 432 433
                dims.append(shape)

                #for initializers
                if formal_name == "Param" or formal_name == "LearningRate":
                    param = main_program.global_block().vars[oop.input(
                        formal_name)[0]]
                    #TODO: for dense learning_rate, can be different from sparse lr
434 435
                    if formal_name == "LearningRate" and param.name != "learning_rate_" + str(
                            idx):
Z
ziyoujiyi 已提交
436 437
                        warnings.warn("will support decay soon")
                        param = main_program.global_block().vars[
438
                            "learning_rate_" + str(idx)]
Z
ziyoujiyi 已提交
439

440 441
                    initializer = self.get_initializer_attr(
                        param.name, startup_program)
Z
ziyoujiyi 已提交
442 443 444 445 446 447 448 449 450
                elif formal_name == "MomentDecayRate":
                    initializer = "fill_constant&0.99"
                elif formal_name == "AdaDecayRate":
                    initializer = "fill_constant&0.9999"
                elif formal_name == "AdaEpsilon":
                    initializer = "fill_constant&1.0e-8"
                else:
                    initializer = "fill_constant&0"
                initializers.append(initializer)
W
wangguanqun 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464
            elif self.accessor_class == "summary":
                #for dims
                if shape is None:
                    if is_sparse:
                        shape = single_dim
                    else:
                        shape = self.get_shard(size, pserver_num, pserver_id)
                dims.append(shape)

                #for initializers
                if formal_name == "Param":
                    param = main_program.global_block().vars[oop.input(
                        formal_name)[0]]

465 466
                    initializer = self.get_initializer_attr(
                        param.name, startup_program)
W
wangguanqun 已提交
467
                elif formal_name == "SummaryDecayRate":
468
                    initializer = "fill_constant&0.999999"
W
wangguanqun 已提交
469 470 471
                else:
                    initializer = "fill_constant&0"
                initializers.append(initializer)
Z
ziyoujiyi 已提交
472 473 474 475 476 477 478 479
            else:
                if formal_name == "G2Sum":
                    dims.append(1)
                    initializer = "fill_constant&0"
                    initializers.append(initializer)
                else:
                    param = main_program.global_block().vars[oop.input(
                        formal_name)[0]]
480 481
                    if formal_name == "LearningRate" and param.name != "learning_rate_" + str(
                            idx):
Z
ziyoujiyi 已提交
482 483
                        warnings.warn("will support decay soon")
                        param = main_program.global_block().vars[
484
                            "learning_rate_" + str(idx)]
Z
ziyoujiyi 已提交
485 486 487

                    if shape is None:
                        if is_sparse:
W
wangguanqun 已提交
488
                            shape = single_dim
Z
ziyoujiyi 已提交
489
                        else:
W
wangguanqun 已提交
490
                            shape = self.get_shard(size, pserver_num,
Z
ziyoujiyi 已提交
491 492 493
                                                   pserver_id)
                    dims.append(shape)

494 495
                    initializer = self.get_initializer_attr(
                        param.name, startup_program)
Z
ziyoujiyi 已提交
496 497
                    initializers.append(initializer)

498 499 500 501 502 503 504 505 506
        if self.accessor_class == 'summary':
            datanorm_ops = get_datanorm_ops(main_program)
            for op in datanorm_ops:
                if ("BatchSize" in op.input_names) and (
                        op.input("BatchSize")[0]
                        == context['grad_name_to_param_name'][grad_name]):
                    oop = op
                    break

Z
ziyoujiyi 已提交
507 508
        for (attr_varname, type_) in attr_varnames:
            value = oop.attr(attr_varname)
509
            attrs.append("&".join([attr_varname, str(value)]))
Z
ziyoujiyi 已提交
510 511 512 513 514 515

        self.params = params
        self.dims = dims
        self.initializers = initializers
        self.attrs = attrs

Z
ziyoujiyi 已提交
516 517 518 519 520 521 522 523 524 525 526 527
    # CommonAccessorParameter common
    def _set(self, proto):
        proto.name = self.accessor_class
        proto.table_name = self.table_name
        proto.params.extend(self.params)
        proto.dims.extend(self.dims)
        proto.initializers.extend(self.initializers)
        proto.entry = self.entry
        proto.trainer_num = self.trainer_num
        proto.sync = self.sync
        proto.table_num = self.table_num
        proto.table_dim = self.table_dim
528
        proto.attr = "#".join(self.attrs)
Z
ziyoujiyi 已提交
529 530 531


class Tensor:
532

Z
ziyoujiyi 已提交
533 534 535 536
    def __init__(self, tesnor_dcit):
        self.tensor_dict = tesnor_dcit

    def _set(self, tensor_proto):
537 538
        tensor_proto.main_program_id = self.tensor_dict.get(
            "main_program_id", 0)
Z
ziyoujiyi 已提交
539 540 541 542 543 544
        tensor_proto.startup_program_id = self.tensor_dict.get(
            "startup_program_id", 0)
        tensor_proto.feed_var_name = self.tensor_dict.get("feed_var_name", '')
        tensor_proto.fetch_var_name = self.tensor_dict.get("fetch_var_name", '')
        tensor_proto.tensor_table_class = self.tensor_dict.get(
            "tensor_table_class", '')
Z
ziyoujiyi 已提交
545 546 547


class Table:
548

Z
ziyoujiyi 已提交
549 550 551 552
    def __init__(self):
        self.table_class = None
        self.shard_num = -1
        self.type = None
Z
ziyoujiyi 已提交
553 554 555
        self.accessor = Accessor()
        self.shard_num = 256
        self.common = CommonAccessor()
Z
ziyoujiyi 已提交
556 557
        self.tensor = None

Z
ziyoujiyi 已提交
558 559
    def _set(self, table_proto):
        pass
Z
ziyoujiyi 已提交
560 561


Z
ziyoujiyi 已提交
562
class BarrierTable(Table):
563

Z
ziyoujiyi 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
    def __init__(self, context, idx):
        super(BarrierTable, self).__init__()
        self.type = None
        self.shard_num = 256
        self.accessor.accessor_class = 'CommMergeAccessor'
        self.common.attrs = ""
        self.common.dims = []
        self.common.params = []
        self.is_heter_ps_mode = context['is_heter_ps_mode']
        self.role_maker = context['role_maker']
        self.idx = idx
        self.is_sync = context['is_sync']

    def _set(self, table_proto):
        table_proto.table_id = self.idx
        table_proto.table_class = 'BarrierTable'
        table_proto.shard_num = 256
Z
ziyoujiyi 已提交
581
        table_proto.type = the_one_ps_pb2.PS_OTHER_TABLE
Z
ziyoujiyi 已提交
582 583 584 585 586 587 588 589 590 591 592 593 594 595

        table_proto.accessor.accessor_class = "CommMergeAccessor"
        table_proto.accessor.fea_dim = 0
        table_proto.accessor.embedx_dim = 0

        table_proto.common.name = ""
        table_proto.common.table_name = "barrier_table"
        table_proto.common.sync = self.is_sync
        table_proto.common.entry = 'none'

        trainer_num = get_trainers(self.role_maker)
        if self.is_heter_ps_mode:
            trainer_num += len(self.role_maker._get_heter_worker_endpoints())
        table_proto.common.trainer_num = trainer_num
Z
ziyoujiyi 已提交
596 597


Z
ziyoujiyi 已提交
598
class TensorTable(Table):
599

Z
ziyoujiyi 已提交
600 601 602 603 604
    def __init__(self, idx, tensor_dict, role_maker):
        super(TensorTable, self).__init__()
        self.idx = idx
        self.tensor_dict = tensor_dict
        self.role_maker = role_maker
Z
ziyoujiyi 已提交
605

Z
ziyoujiyi 已提交
606 607
    def _set(self, table_proto):
        table_proto.table_id = self.idx
Z
ziyoujiyi 已提交
608
        table_proto.type = the_one_ps_pb2.PS_OTHER_TABLE
Z
ziyoujiyi 已提交
609
        table_proto.table_class = self.tensor_dict.get("tensor_table_class", '')
Z
ziyoujiyi 已提交
610

Z
ziyoujiyi 已提交
611
        table_proto.accessor.accessor_class = "CommMergeAccessor"
Z
ziyoujiyi 已提交
612

613 614
        table_proto.common.table_name = self.tensor_dict.get(
            "feed_var_name", '')
Z
ziyoujiyi 已提交
615
        table_proto.common.trainer_num = get_trainers(self.role_maker)
Z
ziyoujiyi 已提交
616

Z
ziyoujiyi 已提交
617 618
        tensor = Tensor(self.tensor_dict)
        tensor._set(table_proto.tensor)
Z
ziyoujiyi 已提交
619 620


Z
ziyoujiyi 已提交
621
class SparseTable(Table):
622

Z
ziyoujiyi 已提交
623 624 625 626 627 628 629
    def __init__(self, context, send_ctx):
        super(SparseTable, self).__init__()
        self.context = context
        self.ctx = send_ctx
        self.type = None
        self.table_class = 'MemorySparseTable'
        self.accessor = Accessor()
Z
ziyoujiyi 已提交
630

Z
ziyoujiyi 已提交
631 632
    def _set(self, table_proto):
        ctx = self.ctx
633 634
        if ctx.is_tensor_table() or len(
                ctx.origin_varnames()) < 1 or (ctx.is_sparse() == False):
Z
ziyoujiyi 已提交
635 636 637
            return
        table_proto.table_id = ctx.table_id()
        table_proto.table_class = self.table_class
Z
ziyoujiyi 已提交
638
        table_proto.type = the_one_ps_pb2.PS_SPARSE_TABLE
Z
ziyoujiyi 已提交
639
        table_proto.shard_num = self.shard_num
640 641 642 643
        if table_proto.sparse_table_cache_file_num > len(
                get_ps_endpoints(self.context['role_maker'])):
            table_proto.sparse_table_cache_file_num = len(
                get_ps_endpoints(self.context['role_maker']))
Z
ziyoujiyi 已提交
644 645 646 647

        self.common.table_name = self.context['grad_name_to_param_name'][
            ctx.origin_varnames()[0]]

648 649 650 651 652 653 654
        self.common.parse_by_optimizer(ctx, self.context)
        self.common.parse_entry(self.common.table_name, ctx.program_id(),
                                self.context)
        self.common.sync = True if self.context['is_sync'] else False

        self.common._set(table_proto.common)

Z
ziyoujiyi 已提交
655 656 657 658 659 660 661 662
        print('new table_name: {}'.format(self.common.table_name))
        all_table_proto = self.context[
            "user_defined_strategy"].sparse_table_configs
        usr_table_proto = all_table_proto.add()
        for proto in all_table_proto:
            if proto.table_name == self.common.table_name:
                usr_table_proto = proto
                break
663 664 665 666 667
        if usr_table_proto.HasField("table_class"):
            table_proto.table_class = usr_table_proto.table_class
        else:
            table_proto.table_class = 'MemorySparseTable'
            warnings.warn("The PS mode must use MemorySparseTable.")
Z
ziyoujiyi 已提交
668 669 670
        if usr_table_proto.HasField("shard_num"):
            table_proto.shard_num = usr_table_proto.shard_num
        else:
671 672 673 674 675 676 677 678 679 680
            if self.context['use_ps_gpu']:
                table_proto.shard_num = 37
                warnings.warn(
                    "The shard_num of sparse table is not set, use default value 37 in gpups."
                )
            else:
                table_proto.shard_num = 1000
                warnings.warn(
                    "The shard_num of sparse table is not set, use default value 1000 in cpups."
                )
Z
ziyoujiyi 已提交
681

682 683 684 685 686 687 688 689 690 691 692
        if usr_table_proto.HasField("enable_sparse_table_cache"):
            table_proto.enable_sparse_table_cache = usr_table_proto.enable_sparse_table_cache
        if usr_table_proto.HasField("sparse_table_cache_rate"):
            table_proto.sparse_table_cache_rate = usr_table_proto.sparse_table_cache_rate
        if usr_table_proto.HasField("sparse_table_cache_file_num"):
            table_proto.sparse_table_cache_file_num = usr_table_proto.sparse_table_cache_file_num
        if usr_table_proto.HasField("enable_revert"):
            table_proto.enable_revert = usr_table_proto.enable_revert
        if usr_table_proto.HasField("shard_merge_rate"):
            table_proto.shard_merge_rate = usr_table_proto.shard_merge_rate

Z
ziyoujiyi 已提交
693 694 695
        if usr_table_proto.accessor.ByteSize() == 0:
            warnings.warn(
                "The accessor of sparse table is not set, use default value.")
Z
ziyoujiyi 已提交
696

Z
ziyoujiyi 已提交
697 698 699
        table_proto.accessor.ParseFromString(
            usr_table_proto.accessor.SerializeToString())
        self.accessor._set(table_proto.accessor, self.common.table_name,
700
                           ctx.program_id(), self.context, self.common)
Z
ziyoujiyi 已提交
701

Z
ziyoujiyi 已提交
702 703
        check_embedding_dim(table_proto.accessor, self.common.table_name,
                            ctx.program_id(), self.context)
Z
ziyoujiyi 已提交
704 705


Z
ziyoujiyi 已提交
706
class GeoSparseTable(SparseTable):
707

Z
ziyoujiyi 已提交
708 709
    def __init__(self, context, send_ctx):
        super(GeoSparseTable, self).__init__(context, send_ctx)
710
        self.table_class = "MemorySparseGeoTable"
Z
ziyoujiyi 已提交
711 712 713 714 715
        if self.context['ps_mode'] != DistributedMode.GEO:
            raise ValueError("not geo sparse table!")

    def _set(self, table_proto):
        ctx = self.ctx
716 717
        if ctx.is_tensor_table() or len(
                ctx.origin_varnames()) < 1 or (ctx.is_sparse() == False):
Z
ziyoujiyi 已提交
718 719 720
            return
        table_proto.table_id = ctx.table_id()
        table_proto.table_class = self.table_class
Z
ziyoujiyi 已提交
721
        table_proto.type = the_one_ps_pb2.PS_SPARSE_TABLE
Z
ziyoujiyi 已提交
722 723 724 725 726 727 728 729 730
        table_proto.shard_num = self.shard_num

        table_proto.accessor.accessor_class = 'CommMergeAccessor'
        table_proto.accessor.fea_dim = ctx.sections()[0]
        table_proto.accessor.embedx_dim = ctx.sections()[1]

        self.common.table_name = self.context['grad_name_to_param_name'][
            ctx.origin_varnames()[0]]
        self.common.parse_by_optimizer(ctx, self.context)
731 732
        self.common.parse_entry(self.common.table_name, ctx.program_id(),
                                self.context)
Z
ziyoujiyi 已提交
733 734 735 736 737
        self.common.sync = False
        self.common._set(table_proto.common)


class DenseTable(Table):
738

Z
ziyoujiyi 已提交
739 740 741 742 743
    def __init__(self, context, send_ctx):
        super(DenseTable, self).__init__()
        self.context = context
        self.ctx = send_ctx
        self.accessor = Accessor()
Z
ziyoujiyi 已提交
744

Z
ziyoujiyi 已提交
745 746
    def _set(self, table_proto):
        ctx = self.ctx
747 748
        if ctx.is_tensor_table() or len(
                ctx.origin_varnames()) < 1 or (ctx.is_sparse() == True):
Z
ziyoujiyi 已提交
749 750 751 752
            return

        table_proto.table_id = ctx.table_id()

Z
ziyoujiyi 已提交
753
        table_proto.type = the_one_ps_pb2.PS_DENSE_TABLE
754
        table_proto.table_class = "MemoryDenseTable"
Z
ziyoujiyi 已提交
755 756 757 758 759 760 761 762
        table_proto.shard_num = 256

        table_proto.accessor.accessor_class = 'CommMergeAccessor'
        table_proto.accessor.fea_dim = ctx.sections()[0]
        table_proto.accessor.embedx_dim = 1

        self.common.table_name = "MergedDense"
        self.common.parse_by_optimizer(ctx, self.context)
763 764
        self.common.parse_entry(self.common.table_name, ctx.program_id(),
                                self.context)
Z
ziyoujiyi 已提交
765 766 767 768 769 770
        self.common.sync = True if self.context['is_sync'] else False

        self.common._set(table_proto.common)


class Server:
771

Z
ziyoujiyi 已提交
772
    def __init__(self):
Z
ziyoujiyi 已提交
773
        pass
Z
ziyoujiyi 已提交
774

Z
ziyoujiyi 已提交
775 776
    def _set(self):
        pass
Z
ziyoujiyi 已提交
777 778


Z
ziyoujiyi 已提交
779
class DownpourServer(Server):
780

Z
ziyoujiyi 已提交
781 782 783 784 785
    def __init__(self):
        super(DownpourServer, self).__init__()

    def _set(self):
        pass
Z
ziyoujiyi 已提交
786 787 788


class Worker:
789

Z
ziyoujiyi 已提交
790
    def __init__(self):
Z
ziyoujiyi 已提交
791
        pass
Z
ziyoujiyi 已提交
792

Z
ziyoujiyi 已提交
793 794
    def _set(self):
        pass
Z
ziyoujiyi 已提交
795 796


Z
ziyoujiyi 已提交
797
class DownpourWorker(Worker):
798

Z
ziyoujiyi 已提交
799 800 801 802 803
    def __init__(self):
        super(DownpourWorker, self).__init__()

    def _set(self):
        pass
Z
ziyoujiyi 已提交
804 805 806


class fsClient:
807

Z
ziyoujiyi 已提交
808 809 810 811 812 813 814 815 816 817 818 819 820
    def __init__(self, fs_client_param):
        self.fs_client_param = fs_client_param

    def _set(self, proto):
        if not text_format.MessageToString(self.fs_client_param):
            return
        proto.uri = self.fs_client_param.uri
        proto.user = self.fs_client_param.user
        proto.passwd = self.fs_client_param.passwd
        proto.hadoop_bin = self.fs_client_param.hadoop_bin


class PsDescBuilder(object):
821

Z
ziyoujiyi 已提交
822 823 824 825 826 827
    def __init__(self, context):
        self.context = context
        self.is_sync = context['is_sync']
        self.ps_mode = context['ps_mode']
        self.is_heter_ps_mode = context['is_heter_ps_mode']
        self.use_ps_gpu = context['use_ps_gpu']
828
        self.barrier_table_id = None
829

Z
ziyoujiyi 已提交
830
        self.send_ctx = get_the_one_send_context(
831
            self.context, split_dense_table=self.is_heter_ps_mode)
Z
ziyoujiyi 已提交
832 833 834 835 836 837 838 839 840

        self.tensor_table_dict = {}  # TODO
        self._server_sub_program = []

        self.tables = self._get_tables()

        self.service = self._get_service()
        self.fs_client = self._get_fs_client()

Z
ziyoujiyi 已提交
841
        self.ps_desc = the_one_ps_pb2.PSParameter()
842
        self.fl_desc = the_one_ps_pb2.FLParameter()
Z
ziyoujiyi 已提交
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857

    def _get_tensor_tables(self):
        program_idx = 0
        if not self.tensor_table_dict:
            self._server_sub_program.append(Program().desc)
        tables = []
        for table_name in self.tensor_table_dict:
            tables.append(globals()['TensorTable'](len(tables), tensor_dict,
                                                   self.context['role_maker']))
            program_idx += 1
        return tables

    def _get_tables(self):
        tables = []
        for idx, (name, ctx) in enumerate(self.send_ctx.items()):
858
            print("idx, name, ctx:", idx, name, ctx)
Z
ziyoujiyi 已提交
859 860
            if ctx.is_sparse():
                if self.ps_mode == DistributedMode.GEO:
861 862 863 864 865
                    if (self.context['local_sparse']
                            and name[:-5] in self.context['local_sparse']) or (
                                not self.context['local_sparse']):
                        tables.append(globals()['GeoSparseTable'](self.context,
                                                                  ctx))
Z
ziyoujiyi 已提交
866 867 868
                    else:
                        tables.append(globals()['SparseTable'](self.context,
                                                               ctx))
Z
ziyoujiyi 已提交
869 870 871 872 873 874 875 876 877 878 879 880
                else:
                    tables.append(globals()['SparseTable'](self.context, ctx))
            else:
                tables.append(globals()['DenseTable'](self.context, ctx))
        self.tensor_tables = self._get_tensor_tables()
        tables.extend(self.tensor_tables)
        tables.append(globals()['BarrierTable'](self.context, len(tables)))
        return tables

    def _get_service(self):
        if self.use_ps_gpu:
            return GpuService()
Z
ziyoujiyi 已提交
881
        else:
Z
ziyoujiyi 已提交
882 883 884 885 886
            return Service()

    def _get_fs_client(self):
        return fsClient(self.context["user_defined_strategy"].fs_client_param)

887 888 889
    def build_fl_client_desc(self, client_info):
        pass

Z
ziyoujiyi 已提交
890 891 892 893 894 895 896 897
    def build_worker_desc(self):
        for table in self.tables:
            table_proto = self.ps_desc.worker_param.downpour_worker_param.downpour_table_param.add(
            )
            table._set(table_proto)
            table_proto = self.ps_desc.server_param.downpour_server_param.downpour_table_param.add(
            )
            table._set(table_proto)
898 899
            if type(table) == BarrierTable and self.barrier_table_id is None:
                self.barrier_table_id = table.idx
Z
ziyoujiyi 已提交
900 901
        self.service._set(
            self.ps_desc.server_param.downpour_server_param.service_param)
902
        self.fs_client._set(self.ps_desc.fs_client_param)
Z
ziyoujiyi 已提交
903 904 905
        return text_format.MessageToString(self.ps_desc)

    def build_server_desc(self):
906
        self.sparse_table_maps = {}
Z
ziyoujiyi 已提交
907 908 909 910
        for table in self.tables:
            table_proto = self.ps_desc.server_param.downpour_server_param.downpour_table_param.add(
            )
            table._set(table_proto)
Z
ziyoujiyi 已提交
911
            if table_proto.type == the_one_ps_pb2.PS_SPARSE_TABLE and table_proto.common is not None:
Z
ziyoujiyi 已提交
912 913 914 915 916 917 918
                self.sparse_table_maps[
                    table_proto.common.table_name] = table_proto.table_id

        self.service._set(
            self.ps_desc.server_param.downpour_server_param.service_param)
        self.fs_client._set(self.ps_desc.fs_client_param)
        return text_format.MessageToString(self.ps_desc)
Z
ziyoujiyi 已提交
919 920 921


class TheOnePSRuntime(RuntimeBase):
922

Z
ziyoujiyi 已提交
923 924 925 926 927
    def __init__(self):
        super(TheOnePSRuntime, self).__init__()
        self._communicator = None
        self._server = None
        self._worker = fluid.core.DistFleetWrapper()
928
        self._coordinator = None
Z
ziyoujiyi 已提交
929 930
        self._server_sub_program = []
        self._heter_client = None
931
        self._send_ctx = None
Z
ziyoujiyi 已提交
932 933 934 935

    def _set_basic_info(self, context):
        self.context = context
        self.role_maker = context["role_maker"]
936 937
        self.role_id = get_role_id(self.role_maker)
        self.debug = bool(int(os.getenv("PSERVER_DEBUG", "0")))
W
wangguanqun 已提交
938

Z
ziyoujiyi 已提交
939
        self.origin_main_program = context["origin_main_program"]
Z
ziyoujiyi 已提交
940 941 942 943 944
        self.origin_main_programs = context.get("origin_main_programs",
                                                [self.origin_main_program])
        self.context["origin_main_programs"] = self.origin_main_programs
        self.context["origin_startup_programs"] = context.get(
            'origin_startup_programs', [context['origin_startup_program']])
Z
ziyoujiyi 已提交
945 946 947
        self.context[
            'is_heter_ps_mode'] = self.role_maker._is_heter_parameter_server_mode
        self.is_heter_ps_mode = self.context['is_heter_ps_mode']
948 949
        self.context['trainer'] = TrainerRuntimeConfig(
            context['valid_strategy'])
Z
ziyoujiyi 已提交
950
        self.context['ps_mode'] = self.context['trainer'].mode
W
wangguanqun 已提交
951 952
        self.context['use_ps_gpu'] = context['valid_strategy'].a_sync_configs[
            'use_ps_gpu']
Z
ziyoujiyi 已提交
953
        self.context['is_sync'] = True if self.context[
Z
ziyoujiyi 已提交
954 955
            'ps_mode'] == DistributedMode.SYNC else False
        self.context['grad_name_to_param_name'] = {}
W
wangguanqun 已提交
956
        self.context['tensor_table'] = {}
957 958 959 960 961 962 963 964
        # FL
        self.context['local_sparse'] = context[
            "user_defined_strategy"].trainer_desc_configs["local_sparse"]
        self.context['remote_sparse'] = context[
            "user_defined_strategy"].trainer_desc_configs["remote_sparse"]
        print("fl-ps > local_sparse: {}, remote_sparse: {}".format(
            self.context['local_sparse'], self.context['remote_sparse']))

W
wangguanqun 已提交
965
        build_var_distributed(self.context)
Z
ziyoujiyi 已提交
966

967 968
        self.trainer_endpoints = get_trainer_endpoints(self.role_maker)

969
        self.endpoints = get_ps_endpoints(self.role_maker)
Z
ziyoujiyi 已提交
970
        self.string_hosts = []
971
        for idx, ep in enumerate(self.endpoints):
Z
ziyoujiyi 已提交
972 973 974 975
            host, port = ep.split(":")
            pshost = fluid.core.PSHost(host, int(port), idx)
            self.string_hosts.append(pshost.serialize_to_string())

976 977 978 979 980 981 982 983 984 985
        self.with_coordinator = self.role_maker._with_coordinator
        self.coordinator_hosts = []
        if self.with_coordinator:
            print("fl-ps > all ps addrs: {}".format(self.string_hosts))
            coordinator_endpoints = self.role_maker._get_coordinator_endpoints()
            for idx, ep in enumerate(coordinator_endpoints):
                ip, port = ep.split(":")
                pshost = fluid.core.PSHost(ip, int(port), idx)
                self.coordinator_hosts.append(pshost.serialize_to_string())

Z
ziyoujiyi 已提交
986 987
        self.ps_desc_builder = PsDescBuilder(self.context)

988
    def _init_all_params(self, scopes, send_ctx, recv_map):
989
        all_var_names = []
990 991 992 993 994 995 996
        for name, ctx in send_ctx.items():
            if ctx.is_sparse():
                continue
            _, _, idx = get_program_by_id(self.context, ctx.program_id())
            scope = scopes[idx]
            table_id = ctx.table_id()
            var_names = recv_map[table_id]
997
            #print("init params:", idx, table_id, var_names)
998
            self._worker.push_dense_params(scope, table_id, var_names)
999 1000
            all_var_names.extend(var_names)
        return all_var_names
1001 1002

    def _pull_all_dense(self, scopes, send_ctx, recv_map):
1003
        all_var_names = []
1004 1005 1006 1007 1008 1009 1010
        for name, ctx in send_ctx.items():
            if ctx.is_sparse():
                continue
            _, _, idx = get_program_by_id(self.context, ctx.program_id())
            scope = scopes[idx]
            table_id = ctx.table_id()
            var_names = recv_map[table_id]
1011
            #print("pull all dense:", idx, table_id, var_names)
1012
            self._worker.pull_dense_params(scope, table_id, var_names)
1013 1014
            all_var_names.extend(var_names)
        return all_var_names
1015

1016
    def _init_params(self, program, scope, send_ctx, recv_map):
1017
        all_var_names = []
1018 1019 1020 1021 1022 1023 1024 1025 1026
        for name, ctx in send_ctx.items():
            if ctx.is_sparse():
                continue
            if ctx.program_id() != id(program):
                continue
            table_id = ctx.table_id()
            var_names = recv_map[table_id]
            # print("init params:", table_id, var_names)
            self._worker.push_dense_params(scope, table_id, var_names)
1027 1028
            all_var_names.extend(var_names)
        return all_var_names
1029

1030
    def _pull_dense(self, program, scope, send_ctx, recv_map):
1031
        all_var_names = []
1032 1033 1034 1035 1036 1037 1038 1039 1040
        for name, ctx in send_ctx.items():
            if ctx.is_sparse():
                continue
            if ctx.program_id() != id(program):
                continue
            table_id = ctx.table_id()
            var_names = recv_map[table_id]
            # print("pull dense:", table_id, var_names)
            self._worker.pull_dense_params(scope, table_id, var_names)
1041 1042
            all_var_names.extend(var_names)
        return all_var_names
1043 1044

    def _init_worker(self, scopes=None):
Z
ziyoujiyi 已提交
1045
        worker_desc = self.ps_desc_builder.build_worker_desc()
Z
ziyoujiyi 已提交
1046 1047 1048 1049 1050 1051
        if self.context['use_ps_gpu']:
            main_program = self.context['loss'].block.program
            if not main_program._fleet_opt:
                main_program._fleet_opt = {}
            main_program._fleet_opt["use_ps_gpu"] = True
            gpus_env = os.getenv("FLAGS_selected_gpus")
1052 1053 1054 1055
            gpus_env = [int(s) for s in gpus_env.split(",")]
            main_program._fleet_opt["worker_places"] = gpus_env
            PSGPU = fluid.core.PSGPU()
            PSGPU.init_gpu_ps(gpus_env)
Z
ziyoujiyi 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068

        def sync_strategy_envs():
            kwargs = {}
            kwargs[
                "pserver_endpoints"] = self.role_maker._get_pserver_endpoints()
            kwargs["trainer_id"] = self.role_maker._worker_index()
            return kwargs

        dense_map = get_the_one_recv_context(
            self.context, split_dense_table=self.is_heter_ps_mode)
        send_ctx = get_the_one_send_context(
            self.context,
            split_dense_table=self.is_heter_ps_mode,
1069
            ep_list=self.endpoints)
1070
        self._send_ctx = send_ctx
Z
ziyoujiyi 已提交
1071 1072
        trainer_config = self.context['trainer']

1073 1074
        if self.debug:
            print("worker_desc: \n{}".format(worker_desc))
Z
ziyoujiyi 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
            print("communicator send_ctx:")
            for key in send_ctx:
                print("{}: {}".format(key, send_ctx[key]))
            for key in dense_map:
                print("{}: {}".format(key, dense_map[key]))

        kwargs = {}
        kwargs['need_global_step'] = "0"
        kwargs["trainer_id"] = self.role_maker._role_id()
        kwargs["trainers"] = self.role_maker._worker_num()

1086
        kwargs["barrier_table_id"] = self.ps_desc_builder.barrier_table_id
Z
ziyoujiyi 已提交
1087 1088 1089 1090 1091

        if self.context['ps_mode'] == DistributedMode.SYNC:
            sync_kwargs = sync_strategy_envs()
            kwargs.update(sync_kwargs)

W
wangguanqun 已提交
1092
        print("communicator config:", trainer_config.get_communicator_flags())
Z
ziyoujiyi 已提交
1093

1094
        self._worker.init_worker(worker_desc, self.string_hosts, self.role_id)
Z
ziyoujiyi 已提交
1095 1096 1097
        if not self.is_heter_ps_mode:
            self.trainer_endpoint = get_trainer_endpoint(self.role_maker)
            print("fl-ps > trainer_endpoint: {}".format(self.trainer_endpoint))
1098 1099 1100 1101 1102
        print("fl-ps > with_coordinator? {}".format(self.with_coordinator))
        print("fl-ps > coordinator addr: {}".format(self.coordinator_hosts))
        if self.with_coordinator:
            self._worker.init_fl_worker(self.coordinator_hosts, self.role_id,
                                        self.trainer_endpoint)
1103

1104 1105
        if self.context[
                'ps_mode'] == DistributedMode.GEO or self.is_heter_ps_mode:
1106 1107 1108
            self._communicator = Communicator(
                trainer_config.mode, kwargs,
                trainer_config.get_communicator_flags())
1109
            self._communicator.init_with_ctx(send_ctx, dense_map, worker_desc,
1110 1111
                                             self.string_hosts,
                                             fluid.global_scope())
Z
ziyoujiyi 已提交
1112
        fleet.util.barrier()
1113 1114 1115

        # info = self._communicator.get_client_info()
        info = self._worker.get_client_info()
Z
ziyoujiyi 已提交
1116
        if isinstance(info, list) and len(info) > 0:
1117 1118
            all_info = self.role_maker._all_gather(
                info[0])  # 收集其他 client 的 service 地址
Z
ziyoujiyi 已提交
1119 1120 1121 1122
            # for unittest
            if not isinstance(all_info, list):
                warnings.warn("gloo may not initialize correctly")
                all_info = [all_info]
1123 1124 1125 1126 1127

            # self._communicator.set_clients(all_info)
            # self._communicator.create_client_to_client_connection()
            self._worker.set_clients(all_info)
            self._worker.create_client2client_connection()
Z
ziyoujiyi 已提交
1128 1129 1130 1131 1132 1133 1134 1135
            print('create c2c connection done')
        else:
            print('cannot create c2c connection')

        dist_strategy = self.context["valid_strategy"]

        is_test = bool(int(os.getenv("TEST_MODE", "0")))

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
        if scopes is None:
            if len(self.origin_main_programs) > 1:
                raise ValueError(
                    "You must set the scope list when you have Multiple programs"
                )
            scopes = [fluid.global_scope()]
        if len(self.origin_main_programs) != len(scopes):
            raise VauleError("len(programs) != len(scopes)")

        self.scopes = scopes
Z
ziyoujiyi 已提交
1146
        if not is_test:
1147 1148
            if self.context[
                    'ps_mode'] == DistributedMode.GEO or self.is_heter_ps_mode == True:
1149
                self._communicator.init_params(dense_map)
1150
            else:
D
danleifeng 已提交
1151
                if not self.context['use_ps_gpu']:
1152
                    if self.role_id == 0:
1153
                        print("entering self._init_all_params()")
D
danleifeng 已提交
1154
                        self._init_all_params(scopes, send_ctx, dense_map)
1155

1156 1157
            fleet.util.barrier()  # 保证 0 号 worker 参数 push_dense_param over

D
danleifeng 已提交
1158
        if not self.context['use_ps_gpu']:
Z
ziyoujiyi 已提交
1159
            self._pull_all_dense(scopes, send_ctx, dense_map)
Z
ziyoujiyi 已提交
1160 1161
        fleet.util.barrier()

1162 1163
        if self.context[
                'ps_mode'] == DistributedMode.GEO or self.is_heter_ps_mode == True:
1164 1165 1166 1167
            if not self._communicator.is_running():
                self._communicator.start()
            else:
                warnings.warn("communicator has been initialized, skip")
Z
ziyoujiyi 已提交
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

        launch_barrier = dist_strategy.a_sync_configs["launch_barrier"]
        launch_barrier_flag = int(os.getenv("FLAGS_LAUNCH_BARRIER", "1"))
        if launch_barrier and launch_barrier_flag:
            wait_server_ready(self.role_maker._get_pserver_endpoints())
            if self.is_heter_ps_mode and self.role_maker._get_next_trainers(
            ) != []:
                wait_server_ready(self.role_maker._get_next_trainers())
            if self.is_heter_ps_mode:
                previous_trainers = []
                if self.role_maker._get_previous_trainers() != []:
                    previous_trainers = self.role_maker._get_previous_trainers()
                next_trainers = []
                if self.role_maker._get_next_trainers() != []:
                    next_trainers = self.role_maker._get_next_trainers()
1183 1184 1185
                self._heter_client = HeterClient(
                    next_trainers, previous_trainers,
                    self.role_maker._role_id())  # --> HeterClient::GetInstance
Z
ziyoujiyi 已提交
1186

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
    def _init_coordinator(self, scopes=None):
        if self._coordinator == None:
            self._coordinator = Coordinator(self.string_hosts)

        print(">>> curr node ip: {}".format(self.coordinator_hosts[0]))
        print(">>> all trainer endpoints: {}".format(self.trainer_endpoints))
        self._coordinator.start_coordinator(self.coordinator_hosts[0],
                                            self.trainer_endpoints)

    def _make_fl_strategy(self):
        if self._coordinator == None:
            assert ("Coordinator py object is null!")
        else:
            self._coordinator.make_fl_strategy()

Z
ziyoujiyi 已提交
1202
    def _init_server(self, dirname=None, var_names=None, **kwargs):
Z
ziyoujiyi 已提交
1203
        server_desc = self.ps_desc_builder.build_server_desc()
Z
ziyoujiyi 已提交
1204 1205 1206 1207
        trainers = get_trainers(self.role_maker)
        if self.is_heter_ps_mode:
            trainers += len(self.role_maker._get_heter_worker_endpoints())

1208 1209
        if self.debug:
            print("server_desc: \n{}".format(server_desc))
W
wangguanqun 已提交
1210

Z
ziyoujiyi 已提交
1211
        self._server = fluid.core.DistFleetWrapper()
1212
        self._server.init_server(server_desc, self.string_hosts, self.role_id,
Z
ziyoujiyi 已提交
1213
                                 trainers, self._server_sub_program)
Z
ziyoujiyi 已提交
1214

W
wangguanqun 已提交
1215 1216 1217
        dist_varnames = get_sparse_tablenames(self.origin_main_programs, True)
        sparse_varnames = get_sparse_tablenames(self.origin_main_programs,
                                                False)
Z
ziyoujiyi 已提交
1218 1219 1220 1221 1222 1223 1224 1225 1226

        distributed_varnames = dist_varnames + sparse_varnames

        if var_names is None:
            load_varnames = distributed_varnames
        else:
            for var_name in var_names:
                if var_name not in distributed_varnames:
                    raise ValueError(
1227 1228
                        "fleet.init server can only load sparse variables in {}"
                        .format(distributed_varnames))
Z
ziyoujiyi 已提交
1229 1230 1231 1232 1233
            load_varnames = var_names

        if dirname is None or not load_varnames:
            return

Z
ziyoujiyi 已提交
1234
        sparse_table_maps = self.ps_desc_builder.sparse_table_maps
Z
ziyoujiyi 已提交
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248

        dirname = os.path.normpath(dirname)
        pserver_id = self.role_maker._role_id()

        for var_name in load_varnames:
            table_id = sparse_table_maps[var_name]
            self._server.load_sparse(dirname, "0", table_id)

    def _run_server(self):
        ep = get_ps_endpoint(self.role_maker)
        host, port = ep.split(":")
        self._server.run_server(host, int(port))

    def _stop_worker(self):
1249 1250 1251
        if self.context['ps_mode'] == DistributedMode.GEO:
            self._communicator.stop()
        self._worker.stop_worker()
Z
ziyoujiyi 已提交
1252 1253 1254 1255 1256 1257
        if self.is_heter_ps_mode:
            assert self._heter_client != None, "heter client should not be None in heterps mode"
            self._heter_client.stop()

    @staticmethod
    def __exclude_vars(exclude_var_names=[]):
1258

Z
ziyoujiyi 已提交
1259 1260 1261 1262
        def is_valid(var):
            if var.name in exclude_var_names:
                return False

W
wangguanqun 已提交
1263
            from .utils.public import _get_varname_parts
Z
ziyoujiyi 已提交
1264 1265 1266 1267
            origin_varname, _, _ = _get_varname_parts(var.name)
            if origin_varname.endswith("@GRAD"):
                return False

1268
            if origin_varname.startswith("learning_rate_"):
Z
ziyoujiyi 已提交
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
                return False

            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                    var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                    var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        return is_valid

W
wangguanqun 已提交
1279 1280 1281 1282 1283 1284 1285
    def _get_inference_model_path(self, dirname):
        if dirname.startswith("afs:") or dirname.startswith("hdfs:"):
            model_path = "./dnn_plugin"
        else:
            model_path = os.path.join(dirname, "dnn_plugin")
        return model_path

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
    def _ps_save_dense_params(self,
                              executor,
                              dirname,
                              scope,
                              program,
                              var_names=None):
        dense_map = get_the_one_recv_context(
            self.context, split_dense_table=self.is_heter_ps_mode)
        send_ctx = get_the_one_send_context(
            self.context,
            split_dense_table=self.is_heter_ps_mode,
            ep_list=self.endpoints)
        if program is None or len(self.origin_main_programs) == 1:
            program = self.origin_main_programs[0]
        dense_var_names = self._pull_dense(program, scope, send_ctx, dense_map)
        save_var_names = dense_var_names if var_names is None else var_names
        vars = [program.global_block().var(i) for i in save_var_names]
        import paddle
        with paddle.static.scope_guard(scope):
            paddle.static.save_vars(executor,
                                    "./",
                                    program,
                                    vars=vars,
                                    filename=dirname)

Z
ziyoujiyi 已提交
1311 1312
    def _save_sparse_params(self, executor, dirname, context, main_program,
                            mode):
W
wangguanqun 已提交
1313 1314
        distributed_varnames = get_sparse_tablenames(self.origin_main_programs,
                                                     True)
Z
ziyoujiyi 已提交
1315
        values = []
W
wangguanqun 已提交
1316
        model_path = self._get_inference_model_path(dirname)
Z
ziyoujiyi 已提交
1317 1318 1319 1320
        for id, names in context.items():
            if names[0] not in distributed_varnames:
                # only save sparse param to local
                try:
W
wangguanqun 已提交
1321
                    self._worker.recv_and_save_model(id, model_path)
Z
ziyoujiyi 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
                except:
                    pass
            # save sparse & distributed param on server
            self._worker.save_one_model(id, dirname, mode)
            values.extend(names)
        # self._worker.save_all_model(dirname, mode)
        return values

    def _save_distributed_persistables(self,
                                       executor,
                                       dirname,
1333 1334 1335
                                       main_program=None,
                                       mode=0,
                                       **kwargs):
Z
ziyoujiyi 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
        """
        This function filters out all variables with `persistable==True` from the
        give `main_program` and then saves these variables to the folder `dirname`
        or file `filename`.

        The `dirname` is used to specify the folder where persistable variables
        are going to be saved. If you would like to save variables in separate
        files, set `filename` None; if you would like to save all variables in a
        single file, use `filename` to specify the file name.
        """

        if isinstance(executor, ParallelExecutor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type, ParallelExecutor is not allowed"
            )

        if not isinstance(executor, Executor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type")

        if main_program is None:
1357
            main_program = self.context['origin_main_program']
Z
ziyoujiyi 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388

        if isinstance(main_program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

        self._worker.save_all_model(dirname, mode)

    def _ps_inference_save_inference_model(self,
                                           executor,
                                           dirname,
                                           feeded_var_names,
                                           target_vars,
                                           main_program=None,
                                           export_for_deployment=True,
                                           mode=0):
        """
        Prune the given `main_program` to build a new program especially for inference,
        and then save it and all related parameters to given `dirname` by the `executor`.
        """

        if isinstance(executor, ParallelExecutor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type, ParallelExecutor is not allowed"
            )

        if not isinstance(executor, Executor):
            raise TypeError(
                "in fleet.save() function, executor must be as Executor type")

        import paddle
1389 1390 1391 1392 1393
        program = self.origin_main_programs[
            0] if main_program is None else main_program
        _, _, idx = get_program_by_id(self.context, id(program))
        scope = self.scopes[idx]
        print("save inference model scope idx:", idx)
Z
ziyoujiyi 已提交
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

        if isinstance(program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

        feed_vars = [
            program.global_block().var(name) for name in feeded_var_names
        ]

        infer_program = paddle.static.normalize_program(program, feed_vars,
                                                        target_vars)

        infer_program._copy_dist_param_info_from(program)

W
wangguanqun 已提交
1409
        model_path = self._get_inference_model_path(dirname)
Z
ziyoujiyi 已提交
1410 1411 1412 1413 1414 1415 1416
        model_basename = "__model__"
        model_basename = os.path.join(model_path, model_basename)
        paddle.save(infer_program, model_basename)

        sparses = get_the_one_recv_context(
            self.context,
            is_dense=False,
1417
            split_dense_table=self.is_heter_ps_mode)
Z
ziyoujiyi 已提交
1418 1419 1420
        sparse_names = self._save_sparse_params(executor, dirname, sparses,
                                                main_program, mode)

1421 1422 1423
        dense_map = get_the_one_recv_context(
            self.context, split_dense_table=self.is_heter_ps_mode)
        send_ctx = get_the_one_send_context(
Z
ziyoujiyi 已提交
1424 1425
            self.context,
            split_dense_table=self.is_heter_ps_mode,
1426 1427
            ep_list=self.endpoints)
        self._pull_dense(program, scope, send_ctx, dense_map)
Z
ziyoujiyi 已提交
1428 1429 1430 1431 1432

        generate_vars = self.context[
            "user_defined_strategy"].trainer_desc_configs["stat_var_names"]
        generate_vars = [var for var in generate_vars]
        remaining_vars = list(
1433 1434
            filter(TheOnePSRuntime.__exclude_vars(sparse_names),
                   infer_program.list_vars()))
Z
ziyoujiyi 已提交
1435 1436

        for var in remaining_vars:
1437
            tensor = var.get_value(scope)
1438 1439 1440
            paddle.save(tensor,
                        os.path.join(model_path, var.name),
                        use_binary_format=True)
Z
ziyoujiyi 已提交
1441

Z
zhaocaibei123 已提交
1442
    def _save_cache_model(self, dirname, **kwargs):
1443
        mode = kwargs.get("mode", 1)
Z
zhaocaibei123 已提交
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
        table_id = kwargs.get("table_id", 0)
        self._worker.client_flush()
        fleet.util.barrier()
        cache_threshold = 0.0

        if self.role_maker._is_first_worker():
            cache_threshold = self._worker.get_cache_threshold(table_id)
        #check cache threshold right or not
        fleet.util.barrier()

        if self.role_maker._is_first_worker():
            self._worker.cache_shuffle(table_id, dirname, mode, cache_threshold)

        fleet.util.barrier()

        feasign_num = -1
        if self.role_maker._is_first_worker():
            feasign_num = self._worker.save_cache(table_id, dirname, mode)

        fleet.util.barrier()
        return feasign_num

1466 1467 1468 1469 1470 1471
    def _check_save_pre_patch_done(self):
        fleet.util.barrier()
        if self.role_maker._is_first_worker():
            self._worker.check_save_pre_patch_done()
        fleet.util.barrier()

Z
ziyoujiyi 已提交
1472
    def _load_sparse_params(self, dirname, context, main_program, mode):
W
wangguanqun 已提交
1473
        distributed_varnames = get_sparse_tablenames(self.origin_main_programs,
Z
ziyoujiyi 已提交
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
                                                     True)
        values = []
        for id, names in context.items():
            if names[0] not in distributed_varnames:
                # TODO: only load sparse param from local
                warnings.warn("varname is not in distributed_varnames, pass")
            # load sparse & distributed param on server
            self._worker.load_one_table(id, dirname, mode)
            values.extend(names)
        return values

    def _ps_inference_load_inference_model(self,
                                           dirname,
                                           mode=0,
                                           main_program=None):
1489 1490 1491 1492 1493
        main_program = self.origin_main_programs[
            0] if main_program is None else main_program
        _, _, idx = get_program_by_id(self.context, id(main_program))
        scope = self.scopes[idx]
        print("load inference model scope idx:", idx)
Z
ziyoujiyi 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502

        if isinstance(main_program, CompiledProgram):
            raise TypeError(
                "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed"
            )

        sparses = get_the_one_recv_context(
            self.context,
            is_dense=False,
1503
            split_dense_table=self.is_heter_ps_mode)
Z
ziyoujiyi 已提交
1504 1505 1506 1507

        sparse_varnames = self._load_sparse_params(dirname, sparses,
                                                   main_program, mode)

1508 1509 1510 1511 1512 1513 1514
        dense_map = get_the_one_recv_context(
            self.context, split_dense_table=self.is_heter_ps_mode)
        send_ctx = get_the_one_send_context(
            self.context,
            split_dense_table=self.is_heter_ps_mode,
            ep_list=self.endpoints)

Z
ziyoujiyi 已提交
1515
        recv_dense_varnames = []
1516
        for _, names in dense_map.items():
Z
ziyoujiyi 已提交
1517 1518 1519 1520 1521
            recv_dense_varnames.extend(names)

        loaded_varnames = sparse_varnames

        remaining_vars = list(
1522 1523
            filter(TheOnePSRuntime.__exclude_vars(loaded_varnames),
                   main_program.list_vars()))
Z
ziyoujiyi 已提交
1524

1525
        model_path = self._get_inference_model_path(dirname)
Z
ziyoujiyi 已提交
1526 1527 1528 1529 1530
        import paddle
        for var in remaining_vars:
            if var.name not in recv_dense_varnames:
                continue
            tensor = paddle.load(os.path.join(model_path, var.name))
1531
            var.set_value(tensor, scope)
Z
ziyoujiyi 已提交
1532

1533
        self._init_params(main_program, scope, send_ctx, dense_map)
Z
ziyoujiyi 已提交
1534

1535
    def _save_one_table(self, table_id, path, mode):
1536
        fleet.util.barrier()
1537 1538 1539
        if self.role_maker._is_first_worker():
            self._worker.save_one_model(table_id, path, mode)
        fleet.util.barrier()
Z
ziyoujiyi 已提交
1540

1541
    def _save_dense_params(self, *args, **kwargs):
1542
        fleet.util.barrier()
1543 1544 1545 1546 1547
        if self.role_maker._is_first_worker():
            self._ps_save_dense_params(*args, **kwargs)
        fleet.util.barrier()

    def _save_persistables(self, *args, **kwargs):
1548
        fleet.util.barrier()
1549 1550 1551 1552 1553
        if self.role_maker._is_first_worker():
            self._save_distributed_persistables(*args, **kwargs)
        fleet.util.barrier()

    def _save_inference_model(self, *args, **kwargs):
1554
        fleet.util.barrier()
1555 1556 1557 1558 1559
        if self.role_maker._is_first_worker():
            self._ps_inference_save_inference_model(*args, **kwargs)
        fleet.util.barrier()

    def _load_one_table(self, table_id, path, mode):
1560
        fleet.util.barrier()
1561 1562 1563 1564 1565
        if self.role_maker._is_first_worker():
            self._worker.load_one_table(table_id, path, mode)
        fleet.util.barrier()

    def _load_persistables(self, path, mode):
1566
        fleet.util.barrier()
1567 1568 1569 1570 1571
        if self.role_maker._is_first_worker():
            self._worker.load_model(path, mode)
        fleet.util.barrier()

    def _load_inference_model(self, path, mode):
1572
        fleet.util.barrier()
1573
        if self.role_maker._is_first_worker():
Z
ziyoujiyi 已提交
1574
            self._ps_inference_load_inference_model(path, mode)
1575
        fleet.util.barrier()
Z
ziyoujiyi 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586

    def _shrink(self, threshold=None):
        if threshold is not None:
            warnings.warn(
                "The param threshold is not used in MemorySparseTable, if you need to shrink, please set the config of accessor"
            )
        else:
            threshold = 0

        fleet.util.barrier()
        if self.role_maker._is_first_worker():
Z
ziyoujiyi 已提交
1587
            sparses = get_the_one_recv_context(
Z
ziyoujiyi 已提交
1588 1589 1590
                self.context,
                is_dense=False,
                split_dense_table=self.role_maker.
1591
                _is_heter_parameter_server_mode)
Z
ziyoujiyi 已提交
1592 1593 1594 1595

            for id, names in sparses.items():
                self._worker.shrink_sparse_table(id, threshold)
        fleet.util.barrier()