test_layers.py 182.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
Qiao Longfei 已提交
15 16
import unittest

17 18
import contextlib
import numpy as np
19
from decorator_helper import prog_scope
20
import inspect
21 22 23

import paddle
import paddle.fluid as fluid
24
from paddle.fluid.layers.device import get_places
25 26 27
import paddle.fluid.nets as nets
from paddle.fluid.framework import Program, program_guard, default_main_program
from paddle.fluid.param_attr import ParamAttr
28
from paddle.fluid import core
J
jerrywgz 已提交
29
from paddle.fluid.initializer import Constant
30 31
import paddle.fluid.layers as layers
from test_imperative_base import new_program_scope
L
lujun 已提交
32 33
from paddle.fluid.dygraph import nn
from paddle.fluid.dygraph import base
34
from paddle.fluid.dygraph import to_variable
35
from paddle.fluid.framework import _test_eager_guard
36 37 38 39 40 41 42 43 44 45 46


class LayerTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.seed = 111

    @classmethod
    def tearDownClass(cls):
        pass

47 48 49 50 51 52 53 54
    def _get_place(self, force_to_use_cpu=False):
        # this option for ops that only have cpu kernel
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()
55 56 57 58

    @contextlib.contextmanager
    def static_graph(self):
        with new_program_scope():
C
cnn 已提交
59
            paddle.seed(self.seed)
L
Leo Chen 已提交
60
            paddle.framework.random._manual_program_seed(self.seed)
61 62
            yield

63 64 65
    def get_static_graph_result(
        self, feed, fetch_list, with_lod=False, force_to_use_cpu=False
    ):
66
        exe = fluid.Executor(self._get_place(force_to_use_cpu))
67
        exe.run(fluid.default_startup_program())
68 69 70 71 72 73
        return exe.run(
            fluid.default_main_program(),
            feed=feed,
            fetch_list=fetch_list,
            return_numpy=(not with_lod),
        )
74 75

    @contextlib.contextmanager
76
    def dynamic_graph(self, force_to_use_cpu=False):
L
lujun 已提交
77
        with fluid.dygraph.guard(
78 79
            self._get_place(force_to_use_cpu=force_to_use_cpu)
        ):
C
cnn 已提交
80
            paddle.seed(self.seed)
L
Leo Chen 已提交
81
            paddle.framework.random._manual_program_seed(self.seed)
82 83 84 85
            yield


class TestLayer(LayerTest):
86 87
    def test_custom_layer_with_kwargs(self):
        class CustomLayer(fluid.Layer):
88
            def __init__(self, input_size, linear1_size=4):
89
                super().__init__()
90 91 92
                self.linear1 = nn.Linear(
                    input_size, linear1_size, bias_attr=False
                )
93 94 95 96 97 98
                self.linear2 = nn.Linear(linear1_size, 1, bias_attr=False)

            def forward(self, x, do_linear2=False):
                ret = self.linear1(x)
                if do_linear2:
                    ret = self.linear2(ret)
99 100 101
                return ret

        with self.dynamic_graph():
102 103 104 105 106
            with _test_eager_guard():
                inp = np.ones([3, 3], dtype='float32')
                x = base.to_variable(inp)
                custom = CustomLayer(input_size=3, linear1_size=2)
                ret = custom(x, do_linear2=False)
107
                np.testing.assert_array_equal(ret.numpy().shape, [3, 2])
108
                ret = custom(x, do_linear2=True)
109
                np.testing.assert_array_equal(ret.numpy().shape, [3, 1])
110 111
            inp = np.ones([3, 3], dtype='float32')
            x = base.to_variable(inp)
112 113
            custom = CustomLayer(input_size=3, linear1_size=2)
            ret = custom(x, do_linear2=False)
114
            np.testing.assert_array_equal(ret.numpy().shape, [3, 2])
115
            ret = custom(x, do_linear2=True)
116
            np.testing.assert_array_equal(ret.numpy().shape, [3, 1])
117

118 119 120
    def test_dropout(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
121 122 123 124 125 126
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
127 128
            dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
            ret = dropout(t)
129 130 131
            ret2 = fluid.layers.dropout(
                t, dropout_prob=0.35, seed=1, is_test=False
            )
132
            static_ret, static_ret2 = self.get_static_graph_result(
133 134
                feed={'data': inp}, fetch_list=[ret, ret2]
            )
135
        with self.dynamic_graph():
136 137 138 139
            with _test_eager_guard():
                t = base.to_variable(inp)
                dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
                dy_eager_ret = dropout(t)
140 141 142
                dy_eager_ret2 = fluid.layers.dropout(
                    t, dropout_prob=0.35, seed=1, is_test=False
                )
143 144 145
                dy_eager_ret_value = dy_eager_ret.numpy()
                dy_eager_ret2_value = dy_eager_ret2.numpy()

146 147 148
            t = base.to_variable(inp)
            dropout = nn.Dropout(p=0.35, seed=1, is_test=False)
            dy_ret = dropout(t)
149 150 151
            dy_ret2 = fluid.layers.dropout(
                t, dropout_prob=0.35, seed=1, is_test=False
            )
152 153 154
            dy_ret_value = dy_ret.numpy()
            dy_ret2_value = dy_ret2.numpy()

155 156
        np.testing.assert_array_equal(dy_eager_ret_value, dy_eager_ret2_value)
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
157

158 159 160
        np.testing.assert_array_equal(static_ret, static_ret2)
        np.testing.assert_array_equal(dy_ret_value, dy_ret2_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
161

S
songyouwei 已提交
162 163 164
    def test_linear(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
165 166 167 168 169 170
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
S
songyouwei 已提交
171
            linear = nn.Linear(
172 173
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)
            )
S
songyouwei 已提交
174
            ret = linear(t)
175 176 177
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
S
songyouwei 已提交
178
        with self.dynamic_graph():
179 180 181 182 183
            with _test_eager_guard():
                t = base.to_variable(inp)
                linear = nn.Linear(
                    32,
                    4,
184 185
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
186 187 188
                dy_eager_ret = linear(t)
                dy_eager_ret_value = dy_eager_ret.numpy()

S
songyouwei 已提交
189 190
            t = base.to_variable(inp)
            linear = nn.Linear(
191 192
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)
            )
S
songyouwei 已提交
193 194 195
            dy_ret = linear(t)
            dy_ret_value = dy_ret.numpy()

196 197
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
S
songyouwei 已提交
198

199 200 201 202 203 204 205 206
        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
                linear = nn.Linear(
                    32,
                    4,
207 208
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
209 210 211 212 213 214 215 216
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
217 218 219
                linear = nn.Linear(
                    32,
                    4,
220 221
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
222 223 224 225 226 227 228
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

    def test_Flatten(self):
        inp = np.ones([3, 4, 4, 5], dtype='float32')
        with self.static_graph():
229 230 231 232 233 234
            t = layers.data(
                name='data',
                shape=[3, 4, 4, 5],
                dtype='float32',
                append_batch_size=False,
            )
235 236
            flatten = nn.Flatten()
            ret = flatten(t)
237 238 239
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
240
        with self.dynamic_graph():
241 242 243 244 245 246
            with _test_eager_guard():
                t = base.to_variable(inp)
                flatten = nn.Flatten()
                dy_eager_ret = flatten(t)
                dy_eager_ret_value = dy_eager_ret.numpy()

247 248 249 250 251
            t = base.to_variable(inp)
            flatten = nn.Flatten()
            dy_ret = flatten(t)
            dy_ret_value = dy_ret.numpy()

252 253
        np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)
254 255 256 257 258 259 260 261 262

        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
                linear = nn.Linear(
                    32,
                    4,
263 264
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
265 266 267 268 269 270 271 272
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
273 274 275
                linear = nn.Linear(
                    32,
                    4,
276 277
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
278 279 280 281
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

282 283 284
    def test_layer_norm(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
285 286 287 288 289 290
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
291 292 293
            ret = layers.layer_norm(
                t,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
294 295 296 297 298
                act='sigmoid',
            )
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
299
        with self.static_graph():
300 301 302 303 304 305
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
306
            lm = nn.LayerNorm(
307
                normalized_shape=[32, 32],
308
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
309 310
                act='sigmoid',
            )
311
            ret = lm(t)
312 313 314
            static_ret2 = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
315
        with self.dynamic_graph():
316 317 318 319
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[32, 32],
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
320 321
                    act='sigmoid',
                )
322 323 324
                dy_eager_ret = lm(base.to_variable(inp))
                dy_eager_ret_value = dy_eager_ret.numpy()

325
            lm = nn.LayerNorm(
326
                normalized_shape=[32, 32],
327
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
328 329
                act='sigmoid',
            )
330
            dy_ret = lm(base.to_variable(inp))
331
            dy_ret_value = dy_ret.numpy()
332

333
        with self.dynamic_graph():
334 335 336 337 338 339 340
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[32, 32],
                    shift=False,
                    scale=False,
                    param_attr=fluid.initializer.ConstantInitializer(value=1),
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
341 342
                    act='sigmoid',
                )
343 344 345 346 347
                lm(base.to_variable(inp))

                self.assertFalse(hasattr(lm, "_scale_w"))
                self.assertFalse(hasattr(lm, "_bias_w"))

348
            lm = nn.LayerNorm(
349
                normalized_shape=[32, 32],
350 351 352 353
                shift=False,
                scale=False,
                param_attr=fluid.initializer.ConstantInitializer(value=1),
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
354 355
                act='sigmoid',
            )
356 357 358 359
            lm(base.to_variable(inp))

            self.assertFalse(hasattr(lm, "_scale_w"))
            self.assertFalse(hasattr(lm, "_bias_w"))
360

361 362 363
        np.testing.assert_array_equal(static_ret, static_ret2)
        np.testing.assert_array_equal(dy_eager_ret_value, static_ret2)
        np.testing.assert_array_equal(dy_ret_value, static_ret2)
364

365
        with self.dynamic_graph():
366 367 368 369
            with _test_eager_guard():
                lm = nn.LayerNorm(
                    normalized_shape=[16, 32],
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
370 371
                    act='sigmoid',
                )
372 373 374
                with self.assertRaises(ValueError):
                    lm(base.to_variable(inp))

375 376 377
            lm = nn.LayerNorm(
                normalized_shape=[16, 32],
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
378 379
                act='sigmoid',
            )
380 381 382
            with self.assertRaises(ValueError):
                lm(base.to_variable(inp))

C
ceci3 已提交
383 384 385 386
    def test_SyncBatchNorm(self):
        if core.is_compiled_with_cuda():
            with self.static_graph():
                t = layers.data(name='t', shape=[-1, 3, 5, 5], dtype='float32')
C
ceci3 已提交
387
                my_sync_bn = paddle.nn.SyncBatchNorm(3)
C
ceci3 已提交
388 389
                ret = my_sync_bn(t)
                static_ret = self.get_static_graph_result(
390
                    feed={'t': np.ones([3, 3, 5, 5], dtype='float32')},
391 392
                    fetch_list=[ret],
                )[0]
C
ceci3 已提交
393 394

            with self.dynamic_graph():
395 396 397 398 399 400
                with _test_eager_guard():
                    t = np.ones([3, 3, 5, 5], dtype='float32')
                    my_syncbn = paddle.nn.SyncBatchNorm(3)
                    dy_eager_ret = my_syncbn(base.to_variable(t))
                    dy_eager_ret_value = dy_eager_ret.numpy()

C
ceci3 已提交
401 402 403 404
                t = np.ones([3, 3, 5, 5], dtype='float32')
                my_syncbn = paddle.nn.SyncBatchNorm(3)
                dy_ret = my_syncbn(base.to_variable(t))
                dy_ret_value = dy_ret.numpy()
405 406
            np.testing.assert_array_equal(static_ret, dy_ret_value)
            np.testing.assert_array_equal(static_ret, dy_eager_ret_value)
C
ceci3 已提交
407

408 409 410 411 412
    def test_relu(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            ret = layers.relu(t)
            static_ret = self.get_static_graph_result(
413 414
                feed={'t': np.ones([3, 3], dtype='float32')}, fetch_list=[ret]
            )[0]
415 416

        with self.dynamic_graph():
417 418 419 420 421
            with _test_eager_guard():
                t = np.ones([3, 3], dtype='float32')
                dy_eager_ret = layers.relu(base.to_variable(t))
                dy_eager_ret_value = dy_eager_ret.numpy()

422 423
            t = np.ones([3, 3], dtype='float32')
            dy_ret = layers.relu(base.to_variable(t))
424
            dy_ret_value = dy_ret.numpy()
425

426 427
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
C
ceci3 已提交
428

429 430 431 432 433
    def test_matmul(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            ret = layers.matmul(t, t2)
434 435 436 437 438 439 440
            static_ret = self.get_static_graph_result(
                feed={
                    't': np.ones([3, 3], dtype='float32'),
                    't2': np.ones([3, 3], dtype='float32'),
                },
                fetch_list=[ret],
            )[0]
441 442

        with self.dynamic_graph():
443 444 445
            with _test_eager_guard():
                t = np.ones([3, 3], dtype='float32')
                t2 = np.ones([3, 3], dtype='float32')
446 447 448
                dy_eager_ret = layers.matmul(
                    base.to_variable(t), base.to_variable(t2)
                )
449 450
                dy_eager_ret_value = dy_eager_ret.numpy()

451 452
            t = np.ones([3, 3], dtype='float32')
            t2 = np.ones([3, 3], dtype='float32')
X
polish  
Xin Pan 已提交
453
            dy_ret = layers.matmul(base.to_variable(t), base.to_variable(t2))
454
            dy_ret_value = dy_ret.numpy()
455

456 457
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
458

M
minqiyang 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471
    def test_gru_unit(self):
        lod = [[2, 4, 3]]
        D = 5
        T = sum(lod[0])
        N = len(lod[0])

        input = np.random.rand(T, 3 * D).astype('float32')
        hidden_input = np.random.rand(T, D).astype('float32')

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
472 473
                input=x, hidden=hidden, size=D * 3
            )
M
minqiyang 已提交
474
            static_ret = self.get_static_graph_result(
475 476 477
                feed={'x': input, 'hidden': hidden_input},
                fetch_list=[updated_hidden, reset_hidden_pre, gate],
            )
M
minqiyang 已提交
478 479 480 481 482

        with self.static_graph():
            x = layers.data(name='x', shape=[-1, D * 3], dtype='float32')
            hidden = layers.data(name='hidden', shape=[-1, D], dtype='float32')
            updated_hidden, reset_hidden_pre, gate = layers.gru_unit(
483 484
                input=x, hidden=hidden, size=D * 3
            )
485
            gru = nn.GRUUnit(size=D * 3)
M
minqiyang 已提交
486 487 488
            updated_hidden, reset_hidden_pre, gate = gru(x, hidden)

            static_ret2 = self.get_static_graph_result(
489 490 491
                feed={'x': input, 'hidden': hidden_input},
                fetch_list=[updated_hidden, reset_hidden_pre, gate],
            )
M
minqiyang 已提交
492 493

        with self.dynamic_graph():
494 495
            with _test_eager_guard():
                gru = nn.GRUUnit(size=D * 3)
496 497 498
                dy_eager_ret = gru(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
499 500 501 502
                dy_eager_ret_value = []
                for i in range(len(static_ret)):
                    dy_eager_ret_value.append(dy_eager_ret[i].numpy())

503
            gru = nn.GRUUnit(size=D * 3)
504 505 506
            dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input)
            )
507 508 509
            dy_ret_value = []
            for i in range(len(static_ret)):
                dy_ret_value.append(dy_ret[i].numpy())
M
minqiyang 已提交
510 511

        for i in range(len(static_ret)):
512 513 514 515 516 517 518 519 520
            np.testing.assert_allclose(
                static_ret[i], static_ret2[i], rtol=1e-05
            )
            np.testing.assert_allclose(
                static_ret[i], dy_ret_value[i], rtol=1e-05
            )
            np.testing.assert_allclose(
                static_ret[i], dy_eager_ret_value[i], rtol=1e-05
            )
M
minqiyang 已提交
521

522
        with self.dynamic_graph():
523 524 525 526
            with _test_eager_guard():
                custom_weight = np.random.randn(D, D * 3).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
527 528 529
                        custom_weight
                    )
                )
530 531
                gru1 = nn.GRUUnit(size=D * 3)
                gru2 = nn.GRUUnit(size=D * 3, param_attr=weight_attr)
532 533 534 535 536 537
                dy_ret1 = gru1(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
                dy_ret2 = gru2(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
538
                self.assertFalse(
539 540
                    np.array_equal(gru1.weight.numpy(), gru2.weight.numpy())
                )
541 542 543 544
                for o1, o2 in zip(dy_ret1, dy_ret2):
                    self.assertFalse(np.array_equal(o1.numpy(), o2.numpy()))
                gru2.weight.set_value(gru1.weight.numpy())
                gru2.bias.set_value(gru1.bias)
545 546 547 548 549 550
                dy_ret1 = gru1(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
                dy_ret2 = gru2(
                    base.to_variable(input), base.to_variable(hidden_input)
                )
551
                for o1, o2 in zip(dy_ret1, dy_ret2):
552
                    np.testing.assert_array_equal(o1.numpy(), o2.numpy())
553 554 555

                gru2.weight = gru1.weight
                gru2.bias = gru1.bias
556 557 558 559 560 561
                np.testing.assert_array_equal(
                    gru1.weight.numpy(), gru2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    gru1.bias.numpy(), gru2.bias.numpy()
                )
562

563
            custom_weight = np.random.randn(D, D * 3).astype("float32")
564 565 566 567 568
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
569 570
            gru1 = nn.GRUUnit(size=D * 3)
            gru2 = nn.GRUUnit(size=D * 3, param_attr=weight_attr)
571 572 573 574 575 576
            dy_ret1 = gru1(
                base.to_variable(input), base.to_variable(hidden_input)
            )
            dy_ret2 = gru2(
                base.to_variable(input), base.to_variable(hidden_input)
            )
577
            self.assertFalse(
578 579
                np.array_equal(gru1.weight.numpy(), gru2.weight.numpy())
            )
580 581 582 583
            for o1, o2 in zip(dy_ret1, dy_ret2):
                self.assertFalse(np.array_equal(o1.numpy(), o2.numpy()))
            gru2.weight.set_value(gru1.weight.numpy())
            gru2.bias.set_value(gru1.bias)
584 585 586 587 588 589
            dy_ret1 = gru1(
                base.to_variable(input), base.to_variable(hidden_input)
            )
            dy_ret2 = gru2(
                base.to_variable(input), base.to_variable(hidden_input)
            )
590
            for o1, o2 in zip(dy_ret1, dy_ret2):
591
                np.testing.assert_array_equal(o1.numpy(), o2.numpy())
592 593 594

            gru2.weight = gru1.weight
            gru2.bias = gru1.bias
595 596 597
            np.testing.assert_array_equal(
                gru1.weight.numpy(), gru2.weight.numpy()
            )
598
            np.testing.assert_array_equal(gru1.bias.numpy(), gru2.bias.numpy())
599

X
Xin Pan 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
    def test_elementwise_math(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 1.1
        n3 = np.ones([3, 3], dtype='float32') * 2
        n4 = np.ones([3, 3], dtype='float32') * 3
        n5 = np.ones([3, 3], dtype='float32') * 4
        n6 = np.ones([3, 3], dtype='float32') * 5

        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            t3 = layers.data(name='t3', shape=[3, 3], dtype='float32')
            t4 = layers.data(name='t4', shape=[3, 3], dtype='float32')
            t5 = layers.data(name='t5', shape=[3, 3], dtype='float32')
            t6 = layers.data(name='t6', shape=[3, 3], dtype='float32')

            ret = layers.elementwise_add(t, t2)
617
            ret = paddle.pow(ret, t3)
X
Xin Pan 已提交
618 619 620 621
            ret = layers.elementwise_div(ret, t4)
            ret = layers.elementwise_sub(ret, t5)
            ret = layers.elementwise_mul(ret, t6)

622 623 624 625
            static_ret = self.get_static_graph_result(
                feed={'t': n, 't2': n2, 't3': n3, 't4': n4, 't5': n5, 't6': n6},
                fetch_list=[ret],
            )[0]
X
Xin Pan 已提交
626 627

        with self.dynamic_graph():
628 629
            with _test_eager_guard():
                ret = layers.elementwise_add(to_variable(n), to_variable(n2))
630
                ret = paddle.pow(ret, to_variable(n3))
631 632 633 634 635
                ret = layers.elementwise_div(ret, to_variable(n4))
                ret = layers.elementwise_sub(ret, to_variable(n5))
                dy_eager_ret = layers.elementwise_mul(ret, to_variable(n6))
                dy_eager_ret_value = dy_eager_ret.numpy()

636
            ret = layers.elementwise_add(to_variable(n), to_variable(n2))
637
            ret = paddle.pow(ret, to_variable(n3))
638 639 640
            ret = layers.elementwise_div(ret, to_variable(n4))
            ret = layers.elementwise_sub(ret, to_variable(n5))
            dy_ret = layers.elementwise_mul(ret, to_variable(n6))
641
            dy_ret_value = dy_ret.numpy()
642

643 644
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_ret_value, rtol=1e-05)
X
Xin Pan 已提交
645 646 647 648 649 650

    def test_elementwise_minmax(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 2

        with self.dynamic_graph():
651
            with _test_eager_guard():
652
                min_eager_ret = paddle.minimum(to_variable(n), to_variable(n2))
H
HongyuJia 已提交
653
                max_eager_ret = paddle.maximum(to_variable(n), to_variable(n2))
654 655 656
                min_eager_ret_value = min_eager_ret.numpy()
                max_eager_ret_value = max_eager_ret.numpy()

657
            min_ret = paddle.minimum(to_variable(n), to_variable(n2))
H
HongyuJia 已提交
658
            max_ret = paddle.maximum(to_variable(n), to_variable(n2))
659 660
            min_ret_value = min_ret.numpy()
            max_ret_value = max_ret.numpy()
X
Xin Pan 已提交
661

662 663 664 665
        np.testing.assert_allclose(n, min_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n2, max_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n, min_eager_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n2, max_eager_ret_value, rtol=1e-05)
X
Xin Pan 已提交
666

667 668 669 670 671 672 673
    def test_sequence_conv(self):
        inp_np = np.arange(12).reshape([3, 4]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        with self.static_graph():
674 675 676 677 678 679 680
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
681
            out = layers.sequence_conv(seq, 2, act='sigmoid')
682 683 684 685 686 687 688 689 690
            static_rlt = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[out],
                with_lod=True,
            )[0]
691 692

        with self.static_graph():
693 694 695 696 697 698 699
            seq = layers.data(
                name='seq_in',
                shape=[3, 4],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
700
            seq_conv = nn.SequenceConv('seq_conv', num_filters=2, act='sigmoid')
701
            out = seq_conv(seq)
702 703 704 705 706 707 708 709 710 711 712 713
            static_rlt2 = self.get_static_graph_result(
                feed={
                    "seq_in": fluid.create_lod_tensor(
                        data=inp_np, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[out],
                with_lod=True,
            )[0]
        np.testing.assert_array_equal(
            np.array(static_rlt), np.array(static_rlt2)
        )
714 715 716 717 718 719

    def test_conv2d_transpose(self):
        inp_np = np.arange(0, 24).reshape([2, 3, 2, 2]).astype('float32')
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            out = layers.conv2d_transpose(
720 721
                input=img,
                num_filters=10,
722
                filter_size=27,
723
                act='sigmoid',
724 725 726 727 728
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
            static_rlt = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out]
            )[0]
729 730 731
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
            conv2d_transpose = nn.Conv2DTranspose(
732
                num_channels=3,
733
                num_filters=10,
734
                filter_size=27,
735
                act='sigmoid',
736 737
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
738
            out = conv2d_transpose(img)
739 740 741
            static_rlt2 = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out]
            )[0]
742
        with self.dynamic_graph():
743 744 745 746 747 748
            with _test_eager_guard():
                conv2d_transpose = nn.Conv2DTranspose(
                    num_channels=3,
                    num_filters=10,
                    filter_size=27,
                    act='sigmoid',
749 750
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
751 752 753
                dy_eager_rlt = conv2d_transpose(base.to_variable(inp_np))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

754
            conv2d_transpose = nn.Conv2DTranspose(
755
                num_channels=3,
756
                num_filters=10,
757
                filter_size=27,
758
                act='sigmoid',
759 760
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
761
            dy_rlt = conv2d_transpose(base.to_variable(inp_np))
762
            dy_rlt_value = dy_rlt.numpy()
763 764 765
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt2, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt2, rtol=1e-05)
766

767
        with self.dynamic_graph():
768 769 770 771 772
            with _test_eager_guard():
                images = np.ones([2, 3, 5, 5], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
773 774 775 776 777 778 779 780 781 782 783 784
                        custom_weight
                    )
                )
                conv2d1 = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2]
                )
                conv2d2 = nn.Conv2DTranspose(
                    num_channels=3,
                    num_filters=3,
                    filter_size=[2, 2],
                    param_attr=weight_attr,
                )
785 786 787
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
                self.assertFalse(
788 789
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
790 791 792 793

                conv2d1_weight_np = conv2d1.weight.numpy()
                conv2d1_bias = conv2d1.bias
                self.assertFalse(
794 795
                    np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy())
                )
796
                conv2d2.weight.set_value(conv2d1_weight_np)
797 798 799
                np.testing.assert_array_equal(
                    conv2d1_weight_np, conv2d2.weight.numpy()
                )
800 801 802
                conv2d2.bias.set_value(conv2d1_bias)
                dy_ret1 = conv2d1(base.to_variable(images))
                dy_ret2 = conv2d2(base.to_variable(images))
803
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
804 805 806

                conv2d2.weight = conv2d1.weight
                conv2d2.bias = conv2d1.bias
807 808 809 810 811 812
                np.testing.assert_array_equal(
                    conv2d1.weight.numpy(), conv2d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv2d1.bias.numpy(), conv2d2.bias.numpy()
                )
813

814 815
            images = np.ones([2, 3, 5, 5], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
816 817 818 819 820 821 822 823 824 825 826 827 828 829
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
            conv2d1 = nn.Conv2DTranspose(
                num_channels=3, num_filters=3, filter_size=[2, 2]
            )
            conv2d2 = nn.Conv2DTranspose(
                num_channels=3,
                num_filters=3,
                filter_size=[2, 2],
                param_attr=weight_attr,
            )
830 831 832 833 834 835 836
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d1_weight_np = conv2d1.weight.numpy()
            conv2d1_bias = conv2d1.bias
            self.assertFalse(
837 838
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy())
            )
839
            conv2d2.weight.set_value(conv2d1_weight_np)
840 841 842
            np.testing.assert_array_equal(
                conv2d1_weight_np, conv2d2.weight.numpy()
            )
843 844 845
            conv2d2.bias.set_value(conv2d1_bias)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
846
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
847 848 849

            conv2d2.weight = conv2d1.weight
            conv2d2.bias = conv2d1.bias
850 851 852 853 854 855
            np.testing.assert_array_equal(
                conv2d1.weight.numpy(), conv2d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv2d1.bias.numpy(), conv2d2.bias.numpy()
            )
856

857 858 859 860 861
        with self.static_graph():

            # the input of Conv2DTranspose must be Variable.
            def test_Variable():
                images = np.ones([2, 3, 5, 5], dtype='float32')
862 863 864
                conv2d = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2]
                )
865 866 867 868 869 870 871
                conv2d_ret1 = conv2d(images)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Conv2DTranspose must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
872 873 874 875 876 877
                images = layers.data(
                    name='pixel', shape=[3, 5, 5], dtype='int32'
                )
                conv2d = nn.Conv2DTranspose(
                    num_channels=3, num_filters=3, filter_size=[2, 2]
                )
878 879 880 881
                conv2d_ret2 = conv2d(images)

            self.assertRaises(TypeError, test_type)

882 883 884 885 886
    def test_bilinear_tensor_product(self):
        inp_np_x = np.array([[1, 2, 3]]).astype('float32')
        inp_np_y = np.array([[4, 5, 6]]).astype('float32')

        with self.static_graph():
887 888 889 890 891 892
            data_x = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
893 894 895 896 897
            out = layers.bilinear_tensor_product(
                data_x,
                data_y,
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
898 899
                act='sigmoid',
            )
900

901 902 903
            static_rlt = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out]
            )[0]
904

905
        with self.static_graph():
906 907 908 909 910 911
            data_x = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
912
            btp = nn.BilinearTensorProduct(
913 914
                3,
                3,
915 916
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
917 918
                act='sigmoid',
            )
919
            out = btp(data_x, data_y)
920 921 922
            static_rlt2 = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out]
            )[0]
923
        with self.dynamic_graph():
924 925 926 927 928 929
            with _test_eager_guard():
                btp = nn.BilinearTensorProduct(
                    3,
                    3,
                    6,
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
930 931 932 933 934
                    act='sigmoid',
                )
                dy_eager_rlt = btp(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
935 936
                dy_eager_rlt_value = dy_eager_rlt.numpy()

937
            btp = nn.BilinearTensorProduct(
938 939
                3,
                3,
940 941
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
942 943
                act='sigmoid',
            )
944
            dy_rlt = btp(base.to_variable(inp_np_x), base.to_variable(inp_np_y))
945
            dy_rlt_value = dy_rlt.numpy()
946

947
        with self.dynamic_graph():
948 949
            with _test_eager_guard():
                btp2 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
950 951 952
                dy_eager_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
953 954
                dy_eager_rlt2_value = dy_eager_rlt2.numpy()

955
            btp2 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
956 957 958
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
959
            dy_rlt2_value = dy_rlt2.numpy()
960

961
        with self.static_graph():
962 963 964 965 966 967 968 969 970 971 972 973 974
            data_x2 = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y2 = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            out2 = layers.bilinear_tensor_product(
                data_x2, data_y2, 6, act='sigmoid'
            )

            static_rlt3 = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out2]
            )[0]
975

976 977 978 979 980
        np.testing.assert_array_equal(dy_rlt2_value, static_rlt3)
        np.testing.assert_array_equal(dy_eager_rlt2_value, static_rlt3)
        np.testing.assert_array_equal(static_rlt2, static_rlt)
        np.testing.assert_array_equal(dy_rlt_value, static_rlt)
        np.testing.assert_array_equal(dy_eager_rlt_value, static_rlt)
981

982
        with self.dynamic_graph():
983 984 985 986
            with _test_eager_guard():
                custom_weight = np.random.randn(6, 3, 3).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
987 988 989
                        custom_weight
                    )
                )
990
                btp1 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
991 992 993 994 995 996 997 998 999
                btp2 = nn.BilinearTensorProduct(
                    3, 3, 6, act='sigmoid', param_attr=weight_attr
                )
                dy_rlt1 = btp1(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
                dy_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
1000
                self.assertFalse(
1001 1002
                    np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
                )
1003 1004
                btp2.weight.set_value(btp1.weight.numpy())
                btp2.bias.set_value(btp1.bias)
1005 1006 1007 1008 1009 1010
                dy_rlt1 = btp1(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
                dy_rlt2 = btp2(
                    base.to_variable(inp_np_x), base.to_variable(inp_np_y)
                )
1011
                np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1012 1013 1014

                btp2.weight = btp1.weight
                btp2.bias = btp1.bias
1015 1016 1017 1018 1019 1020
                np.testing.assert_array_equal(
                    btp1.weight.numpy(), btp2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    btp1.bias.numpy(), btp2.bias.numpy()
                )
1021

1022
            custom_weight = np.random.randn(6, 3, 3).astype("float32")
1023 1024 1025 1026 1027
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1028
            btp1 = nn.BilinearTensorProduct(3, 3, 6, act='sigmoid')
1029 1030 1031 1032 1033 1034 1035 1036 1037
            btp2 = nn.BilinearTensorProduct(
                3, 3, 6, act='sigmoid', param_attr=weight_attr
            )
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
1038 1039 1040
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            btp2.weight.set_value(btp1.weight.numpy())
            btp2.bias.set_value(btp1.bias)
1041 1042 1043 1044 1045 1046
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
1047
            np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1048 1049 1050

            btp2.weight = btp1.weight
            btp2.bias = btp1.bias
1051 1052 1053
            np.testing.assert_array_equal(
                btp1.weight.numpy(), btp2.weight.numpy()
            )
1054
            np.testing.assert_array_equal(btp1.bias.numpy(), btp2.bias.numpy())
1055

1056
    def prelu_test(self, mode):
1057 1058
        inp_np = np.ones([5, 200, 100, 100]).astype('float32')
        with self.static_graph():
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False,
            )
            out = layers.prelu(
                data_t, mode, param_attr=ParamAttr(initializer=Constant(1.0))
            )
            static_rlt = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out]
            )[0]
1071 1072

        with self.static_graph():
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
            data_t = layers.data(
                name="input",
                shape=[5, 200, 100, 100],
                dtype="float32",
                append_batch_size=False,
            )
            prelu = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=data_t.shape,
                param_attr=ParamAttr(initializer=Constant(1.0)),
            )
1085
            out = prelu(data_t)
1086 1087 1088
            static_rlt2 = self.get_static_graph_result(
                feed={"input": inp_np}, fetch_list=[out]
            )[0]
1089 1090

        with self.dynamic_graph():
1091 1092 1093 1094 1095
            with _test_eager_guard():
                prelu = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
1096 1097
                    param_attr=ParamAttr(initializer=Constant(1.0)),
                )
1098 1099 1100
                dy_eager_rlt = prelu(base.to_variable(inp_np))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1101 1102 1103 1104 1105 1106
            prelu = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=inp_np.shape,
                param_attr=ParamAttr(initializer=Constant(1.0)),
            )
1107
            dy_rlt = prelu(base.to_variable(inp_np))
1108
            dy_rlt_value = dy_rlt.numpy()
1109

1110 1111 1112
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
1113

1114
        with self.dynamic_graph():
1115 1116 1117 1118 1119 1120 1121
            with _test_eager_guard():
                inp_np = np.random.randn(5, 200, 100, 100).astype("float32")
                inp = base.to_variable(inp_np)
                prelu1 = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
1122 1123
                    param_attr=ParamAttr(initializer=Constant(2.0)),
                )
1124 1125 1126 1127
                prelu2 = nn.PRelu(
                    mode=mode,
                    channel=inp_np.shape[1],
                    input_shape=inp_np.shape,
1128 1129
                    param_attr=ParamAttr(initializer=Constant(1.0)),
                )
1130 1131 1132
                dy_rlt1 = prelu1(inp)
                dy_rlt2 = prelu2(inp)
                self.assertFalse(
1133 1134
                    np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy())
                )
1135
                self.assertFalse(
1136 1137
                    np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
                )
1138 1139 1140
                prelu2.weight.set_value(prelu1.weight.numpy())
                dy_rlt1 = prelu1(inp)
                dy_rlt2 = prelu2(inp)
1141
                np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1142 1143

                prelu2.weight = prelu1.weight
1144 1145 1146
                np.testing.assert_array_equal(
                    prelu1.weight.numpy(), prelu2.weight.numpy()
                )
1147

1148 1149
            inp_np = np.random.randn(5, 200, 100, 100).astype("float32")
            inp = base.to_variable(inp_np)
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
            prelu1 = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=inp_np.shape,
                param_attr=ParamAttr(initializer=Constant(2.0)),
            )
            prelu2 = nn.PRelu(
                mode=mode,
                channel=inp_np.shape[1],
                input_shape=inp_np.shape,
                param_attr=ParamAttr(initializer=Constant(1.0)),
            )
1162 1163 1164
            dy_rlt1 = prelu1(inp)
            dy_rlt2 = prelu2(inp)
            self.assertFalse(
1165 1166
                np.array_equal(prelu1.weight.numpy(), prelu2.weight.numpy())
            )
1167 1168 1169 1170
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            prelu2.weight.set_value(prelu1.weight.numpy())
            dy_rlt1 = prelu1(inp)
            dy_rlt2 = prelu2(inp)
1171
            np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
1172 1173

            prelu2.weight = prelu1.weight
1174 1175 1176
            np.testing.assert_array_equal(
                prelu1.weight.numpy(), prelu2.weight.numpy()
            )
1177

1178 1179 1180 1181 1182
    def test_prelu(self):
        self.prelu_test("channel")
        self.prelu_test("element")
        self.prelu_test("all")

1183 1184 1185 1186 1187
    def test_embeding(self):
        inp_word = np.array([[[1]]]).astype('int64')
        dict_size = 20
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
1188 1189 1190 1191 1192 1193 1194 1195 1196
            emb = layers.embedding(
                input=data_t,
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False,
            )
            static_rlt = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb]
            )[0]
1197 1198
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
1199 1200 1201
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1202
            emb_rlt = emb2(data_t)
1203 1204 1205
            static_rlt2 = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb_rlt]
            )[0]
1206
        with self.dynamic_graph():
1207
            with _test_eager_guard():
1208 1209 1210 1211 1212
                emb2 = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr='eager_emb.w',
                    is_sparse=False,
                )
1213 1214 1215
                dy_eager_rlt = emb2(base.to_variable(inp_word))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1216 1217 1218
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1219 1220
            dy_rlt = emb2(base.to_variable(inp_word))
            dy_rlt_value = dy_rlt.numpy()
1221 1222

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
1223
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
1224
        self.assertTrue(np.allclose(dy_eager_rlt_value, static_rlt))
1225

1226
        with self.dynamic_graph():
1227 1228 1229 1230
            with _test_eager_guard():
                custom_weight = np.random.randn(dict_size, 32).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1231 1232 1233
                        custom_weight
                    )
                )
1234
                emb1 = nn.Embedding(size=[dict_size, 32], is_sparse=False)
1235 1236 1237 1238 1239
                emb2 = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr=weight_attr,
                    is_sparse=False,
                )
1240 1241 1242
                rep1 = emb1(base.to_variable(inp_word))
                rep2 = emb2(base.to_variable(inp_word))
                self.assertFalse(
1243 1244 1245 1246 1247
                    np.array_equal(emb1.weight.numpy(), custom_weight)
                )
                np.testing.assert_array_equal(
                    emb2.weight.numpy(), custom_weight
                )
1248 1249 1250
                self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
                emb2.weight.set_value(emb1.weight.numpy())
                rep2 = emb2(base.to_variable(inp_word))
1251
                np.testing.assert_array_equal(rep1.numpy(), rep2.numpy())
1252 1253

                emb2.weight = emb1.weight
1254 1255 1256
                np.testing.assert_array_equal(
                    emb1.weight.numpy(), emb2.weight.numpy()
                )
1257

1258
            custom_weight = np.random.randn(dict_size, 32).astype("float32")
1259 1260 1261 1262 1263
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1264
            emb1 = nn.Embedding(size=[dict_size, 32], is_sparse=False)
1265 1266 1267
            emb2 = nn.Embedding(
                size=[dict_size, 32], param_attr=weight_attr, is_sparse=False
            )
1268 1269 1270
            rep1 = emb1(base.to_variable(inp_word))
            rep2 = emb2(base.to_variable(inp_word))
            self.assertFalse(np.array_equal(emb1.weight.numpy(), custom_weight))
1271
            np.testing.assert_array_equal(emb2.weight.numpy(), custom_weight)
1272 1273 1274
            self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
            emb2.weight.set_value(emb1.weight.numpy())
            rep2 = emb2(base.to_variable(inp_word))
1275
            np.testing.assert_array_equal(rep1.numpy(), rep2.numpy())
1276 1277

            emb2.weight = emb1.weight
1278 1279 1280
            np.testing.assert_array_equal(
                emb1.weight.numpy(), emb2.weight.numpy()
            )
1281

1282 1283 1284 1285
    def test_nce(self):
        window_size = 5
        dict_size = 20
        label_word = int(window_size // 2) + 1
1286
        inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
1287 1288 1289 1290 1291 1292
        nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')
        seed = 1
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
1293 1294 1295 1296 1297 1298 1299
                    layers.data(
                        name='word_{0}'.format(i), shape=[None], dtype='int64'
                    )
                )
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1
            )
1300 1301 1302 1303 1304
            embs = []
            for i in range(window_size):
                if i == label_word:
                    continue

1305 1306 1307 1308 1309 1310
                emb = fluid.embedding(
                    input=words[i],
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False,
                )
1311 1312 1313
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
1314
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
            nce_loss = layers.nce(
                input=embs,
                label=wl,
                num_total_classes=dict_size,
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce.w',
                bias_attr='nce.b',
                sample_weight=sample_weights,
            )
1327 1328 1329
            feed_dict = dict()
            for i in range(window_size):
                feed_dict['word_{0}'.format(i)] = inp_word[i]
1330 1331 1332
            static_rlt = self.get_static_graph_result(
                feed=feed_dict, fetch_list=[nce_loss]
            )[0]
W
Weilong Wu 已提交
1333

1334 1335 1336 1337
        with self.static_graph():
            words = []
            for i in range(window_size):
                words.append(
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
                    layers.data(
                        name='word_{0}'.format(i), shape=[None], dtype='int64'
                    )
                )
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1
            )
            emb = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357

            embs2 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs2.append(emb_rlt)

            embs2 = layers.concat(input=embs2, axis=1)
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
            nce = nn.NCE(
                num_total_classes=dict_size,
                dim=embs2.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce.w',
                bias_attr='nce.b',
                sample_weight=sample_weights,
            )
1369

1370 1371
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            nce_loss2 = nce(embs2, wl)
1372 1373 1374 1375
            feed_dict = dict()
            for i in range(len(words)):
                feed_dict['word_{0}'.format(i)] = inp_word[i]

1376 1377 1378
            static_rlt2 = self.get_static_graph_result(
                feed=feed_dict, fetch_list=[nce_loss2]
            )[0]
1379

L
Leo Chen 已提交
1380
        with self.dynamic_graph():
W
Weilong Wu 已提交
1381 1382 1383 1384
            with _test_eager_guard():
                words = []
                for i in range(window_size):
                    words.append(base.to_variable(inp_word[i]))
1385 1386 1387 1388 1389 1390 1391 1392
                sample_weights = layers.fill_constant(
                    shape=[5, 1], dtype='float32', value=1
                )
                emb = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr='eager_emb.w',
                    is_sparse=False,
                )
W
Weilong Wu 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
                embs3 = layers.concat(
                    input=embs3, axis=fluid.dygraph.to_variable(np.array([1]))
                )
                nce = nn.NCE(
                    num_total_classes=dict_size,
                    dim=embs3.shape[1],
                    num_neg_samples=2,
                    sampler="custom_dist",
                    custom_dist=nid_freq_arr.tolist(),
                    seed=seed,
                    param_attr='eager_nce.w',
                    bias_attr='eager_nce.b',
                    sample_weight=sample_weights,
                )
W
Weilong Wu 已提交
1416 1417 1418 1419 1420

                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                dy_eager_rlt = nce(embs3, wl)
                dy_eager_rlt_value = dy_eager_rlt.numpy()

1421 1422 1423
            words = []
            for i in range(window_size):
                words.append(base.to_variable(inp_word[i]))
1424 1425 1426 1427 1428 1429
            sample_weights = layers.fill_constant(
                shape=[5, 1], dtype='float32', value=1
            )
            emb = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1430 1431 1432 1433 1434 1435 1436 1437 1438

            embs3 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs3.append(emb_rlt)

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
            embs3 = layers.concat(
                input=embs3, axis=fluid.dygraph.to_variable(np.array([1]))
            )
            nce = nn.NCE(
                num_total_classes=dict_size,
                dim=embs3.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce.w',
                bias_attr='nce.b',
                sample_weight=sample_weights,
            )
1453

1454 1455
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            dy_rlt = nce(embs3, wl)
1456
            dy_rlt_value = dy_rlt.numpy()
1457

1458 1459 1460
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
1461

L
Leo Chen 已提交
1462
        with self.dynamic_graph():
W
Weilong Wu 已提交
1463
            with _test_eager_guard():
1464 1465 1466
                custom_weight = np.random.randn(dict_size, 128).astype(
                    "float32"
                )
W
Weilong Wu 已提交
1467 1468
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1469 1470 1471
                        custom_weight
                    )
                )
W
Weilong Wu 已提交
1472 1473 1474 1475 1476 1477
                words = []
                for i in range(window_size):
                    words.append(base.to_variable(inp_word[i]))
                sample_weights = layers.fill_constant(
                    shape=fluid.dygraph.to_variable(np.array([5, 1])),
                    dtype='float32',
1478 1479 1480 1481 1482 1483 1484
                    value=1,
                )
                emb = nn.Embedding(
                    size=[dict_size, 32],
                    param_attr='eager_emb.w',
                    is_sparse=False,
                )
W
Weilong Wu 已提交
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = layers.concat(input=embs3, axis=1)
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
                nce1 = nn.NCE(
                    num_total_classes=dict_size,
                    dim=embs3.shape[1],
                    num_neg_samples=2,
                    sampler="custom_dist",
                    custom_dist=nid_freq_arr.tolist(),
                    seed=seed,
                    param_attr='eager_nce1.w',
                    bias_attr='eager_nce1.b',
                    sample_weight=sample_weights,
                )

                nce2 = nn.NCE(
                    num_total_classes=dict_size,
                    dim=embs3.shape[1],
                    num_neg_samples=2,
                    sampler="custom_dist",
                    custom_dist=nid_freq_arr.tolist(),
                    seed=seed,
                    param_attr=weight_attr,
                    bias_attr='eager_nce2.b',
                    sample_weight=sample_weights,
                )
W
Weilong Wu 已提交
1518 1519 1520 1521 1522

                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce1_loss = nce1(embs3, wl)
                nce2_loss = nce2(embs3, wl)
                self.assertFalse(
1523 1524
                    np.array_equal(nce1_loss.numpy(), nce2_loss.numpy())
                )
W
Weilong Wu 已提交
1525 1526 1527 1528
                nce2.weight.set_value(nce1.weight.numpy())
                nce2.bias.set_value(nce1.bias)
                nce1_loss = nce1(embs3, wl)
                nce2_loss = nce2(embs3, wl)
1529 1530 1531
                np.testing.assert_array_equal(
                    nce1_loss.numpy(), nce2_loss.numpy()
                )
W
Weilong Wu 已提交
1532 1533 1534

                nce2.weight = nce1.weight
                nce2.bias = nce1.bias
1535 1536 1537 1538 1539 1540
                np.testing.assert_array_equal(
                    nce1.weight.numpy(), nce2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    nce1.bias.numpy(), nce2.bias.numpy()
                )
W
Weilong Wu 已提交
1541

1542
            custom_weight = np.random.randn(dict_size, 128).astype("float32")
1543 1544 1545 1546 1547
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1548 1549 1550 1551
            words = []
            for i in range(window_size):
                words.append(base.to_variable(inp_word[i]))
            sample_weights = layers.fill_constant(
S
songyouwei 已提交
1552 1553
                shape=fluid.dygraph.to_variable(np.array([5, 1])),
                dtype='float32',
1554 1555 1556 1557 1558
                value=1,
            )
            emb = nn.Embedding(
                size=[dict_size, 32], param_attr='emb.w', is_sparse=False
            )
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568

            embs3 = []
            for i in range(window_size):
                if i == label_word:
                    continue

                emb_rlt = emb(words[i])
                embs3.append(emb_rlt)

            embs3 = layers.concat(input=embs3, axis=1)
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
            nce1 = nn.NCE(
                num_total_classes=dict_size,
                dim=embs3.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr='nce1.w',
                bias_attr='nce1.b',
                sample_weight=sample_weights,
            )

            nce2 = nn.NCE(
                num_total_classes=dict_size,
                dim=embs3.shape[1],
                num_neg_samples=2,
                sampler="custom_dist",
                custom_dist=nid_freq_arr.tolist(),
                seed=seed,
                param_attr=weight_attr,
                bias_attr='nce2.b',
                sample_weight=sample_weights,
            )
1592

1593 1594 1595
            wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
            nce1_loss = nce1(embs3, wl)
            nce2_loss = nce2(embs3, wl)
1596
            self.assertFalse(
1597 1598
                np.array_equal(nce1_loss.numpy(), nce2_loss.numpy())
            )
1599 1600
            nce2.weight.set_value(nce1.weight.numpy())
            nce2.bias.set_value(nce1.bias)
1601 1602
            nce1_loss = nce1(embs3, wl)
            nce2_loss = nce2(embs3, wl)
1603
            np.testing.assert_array_equal(nce1_loss.numpy(), nce2_loss.numpy())
1604 1605 1606

            nce2.weight = nce1.weight
            nce2.bias = nce1.bias
1607 1608 1609
            np.testing.assert_array_equal(
                nce1.weight.numpy(), nce2.weight.numpy()
            )
1610
            np.testing.assert_array_equal(nce1.bias.numpy(), nce2.bias.numpy())
1611

S
songyouwei 已提交
1612 1613
    def test_one_hot(self):
        with self.dynamic_graph():
1614
            with _test_eager_guard():
1615 1616 1617
                label = fluid.dygraph.to_variable(
                    np.array([[1], [1], [3], [0]])
                )
1618 1619
                one_hot_label1 = fluid.layers.one_hot(input=label, depth=4)
                one_hot_label2 = fluid.layers.one_hot(
1620 1621 1622 1623 1624
                    input=label, depth=fluid.dygraph.to_variable(np.array([4]))
                )
                np.testing.assert_array_equal(
                    one_hot_label1.numpy(), one_hot_label2.numpy()
                )
1625

S
songyouwei 已提交
1626 1627 1628
            label = fluid.dygraph.to_variable(np.array([[1], [1], [3], [0]]))
            one_hot_label1 = fluid.layers.one_hot(input=label, depth=4)
            one_hot_label2 = fluid.layers.one_hot(
1629 1630 1631 1632 1633
                input=label, depth=fluid.dygraph.to_variable(np.array([4]))
            )
            np.testing.assert_array_equal(
                one_hot_label1.numpy(), one_hot_label2.numpy()
            )
S
songyouwei 已提交
1634 1635 1636

    def test_split(self):
        with self.dynamic_graph():
1637 1638 1639
            with _test_eager_guard():
                input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
                x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1)
1640 1641 1642 1643 1644
                x00, x11 = fluid.layers.split(
                    input,
                    num_or_sections=2,
                    dim=fluid.dygraph.to_variable(np.array([1])),
                )
1645 1646
                np.testing.assert_array_equal(x0.numpy(), x00.numpy())
                np.testing.assert_array_equal(x1.numpy(), x11.numpy())
1647

S
songyouwei 已提交
1648 1649
            input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
            x0, x1 = fluid.layers.split(input, num_or_sections=2, dim=1)
1650 1651 1652 1653 1654
            x00, x11 = fluid.layers.split(
                input,
                num_or_sections=2,
                dim=fluid.dygraph.to_variable(np.array([1])),
            )
1655 1656
            np.testing.assert_array_equal(x0.numpy(), x00.numpy())
            np.testing.assert_array_equal(x1.numpy(), x11.numpy())
S
songyouwei 已提交
1657 1658 1659

    def test_topk(self):
        with self.dynamic_graph():
1660 1661 1662 1663
            with _test_eager_guard():
                input = fluid.dygraph.to_variable(np.random.random((13, 11)))
                top5_values1, top5_indices1 = layers.topk(input, k=5)
                top5_values2, top5_indices2 = layers.topk(
1664 1665 1666 1667 1668 1669 1670 1671
                    input, k=fluid.dygraph.to_variable(np.array([5]))
                )
                np.testing.assert_array_equal(
                    top5_values1.numpy(), top5_values2.numpy()
                )
                np.testing.assert_array_equal(
                    top5_indices1.numpy(), top5_indices2.numpy()
                )
1672

S
songyouwei 已提交
1673 1674 1675
            input = fluid.dygraph.to_variable(np.random.random((13, 11)))
            top5_values1, top5_indices1 = layers.topk(input, k=5)
            top5_values2, top5_indices2 = layers.topk(
1676 1677 1678 1679 1680 1681 1682 1683
                input, k=fluid.dygraph.to_variable(np.array([5]))
            )
            np.testing.assert_array_equal(
                top5_values1.numpy(), top5_values2.numpy()
            )
            np.testing.assert_array_equal(
                top5_indices1.numpy(), top5_indices2.numpy()
            )
S
songyouwei 已提交
1684

L
lujun 已提交
1685 1686
    def test_conv3d(self):
        with self.static_graph():
1687 1688 1689
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32'
            )
1690
            ret = layers.conv3d(input=images, num_filters=3, filter_size=2)
L
lujun 已提交
1691
            static_ret = self.get_static_graph_result(
1692
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
1693 1694
                fetch_list=[ret],
            )[0]
L
lujun 已提交
1695 1696

        with self.static_graph():
1697 1698 1699
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32'
            )
1700
            conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
L
lujun 已提交
1701 1702
            ret = conv3d(images)
            static_ret2 = self.get_static_graph_result(
1703
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
1704 1705
                fetch_list=[ret],
            )[0]
L
lujun 已提交
1706 1707

        with self.dynamic_graph():
1708 1709 1710 1711 1712 1713
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
                dy_eager_ret = conv3d(base.to_variable(images))
                dy_eager_rlt_value = dy_eager_ret.numpy()

L
lujun 已提交
1714
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
1715
            conv3d = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
L
lujun 已提交
1716
            dy_ret = conv3d(base.to_variable(images))
1717
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1718

1719 1720 1721
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1722

1723
        with self.dynamic_graph():
1724 1725 1726 1727 1728
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
                        custom_weight
                    )
                )
                conv3d1 = nn.Conv3D(
                    num_channels=3, num_filters=3, filter_size=2
                )
                conv3d2 = nn.Conv3D(
                    num_channels=3,
                    num_filters=3,
                    filter_size=2,
                    param_attr=weight_attr,
                )
1741 1742 1743
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
                self.assertFalse(
1744 1745
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
1746 1747 1748 1749

                conv3d1_weight_np = conv3d1.weight.numpy()
                conv3d1_bias = conv3d1.bias
                self.assertFalse(
1750 1751
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
                )
1752
                conv3d2.weight.set_value(conv3d1_weight_np)
1753 1754 1755
                np.testing.assert_array_equal(
                    conv3d1_weight_np, conv3d2.weight.numpy()
                )
1756 1757 1758
                conv3d1.bias.set_value(conv3d1_bias)
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
1759
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1760 1761 1762

                conv3d2.weight = conv3d1.weight
                conv3d2.bias = conv3d1.bias
1763 1764 1765 1766 1767 1768
                np.testing.assert_array_equal(
                    conv3d1.weight.numpy(), conv3d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv3d1.bias.numpy(), conv3d2.bias.numpy()
                )
1769

1770 1771
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
1772 1773 1774 1775 1776
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1777
            conv3d1 = nn.Conv3D(num_channels=3, num_filters=3, filter_size=2)
1778 1779 1780 1781 1782 1783
            conv3d2 = nn.Conv3D(
                num_channels=3,
                num_filters=3,
                filter_size=2,
                param_attr=weight_attr,
            )
1784 1785 1786 1787 1788 1789 1790
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
1791 1792
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
            )
1793
            conv3d2.weight.set_value(conv3d1_weight_np)
1794 1795 1796
            np.testing.assert_array_equal(
                conv3d1_weight_np, conv3d2.weight.numpy()
            )
1797 1798 1799
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
1800
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1801 1802 1803

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
1804 1805 1806 1807 1808 1809
            np.testing.assert_array_equal(
                conv3d1.weight.numpy(), conv3d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv3d1.bias.numpy(), conv3d2.bias.numpy()
            )
1810

L
lujun 已提交
1811 1812 1813 1814 1815 1816 1817 1818
    def test_row_conv(self):
        input = np.arange(15).reshape([3, 5]).astype('float32')
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        with self.static_graph():
1819 1820 1821 1822 1823 1824 1825
            x = layers.data(
                name='X',
                shape=[3, 5],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
1826
            ret = layers.row_conv(input=x, future_context_size=2)
1827 1828 1829 1830 1831 1832 1833 1834 1835
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1836 1837

        with self.static_graph():
1838 1839 1840 1841 1842 1843 1844
            x = layers.data(
                name='X',
                shape=[3, 5],
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
1845 1846
            rowConv = nn.RowConv('RowConv', future_context_size=2)
            ret = rowConv(x)
1847 1848 1849 1850 1851 1852 1853 1854 1855
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1856

1857
        # TODO: dygraph can't support LODTensor
L
lujun 已提交
1858

1859
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1860

1861
    def func_group_norm(self):
L
lujun 已提交
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
1872 1873 1874 1875 1876 1877 1878
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
1879 1880 1881
            ret = layers.group_norm(
                input=X,
                groups=2,
1882
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1894 1895

        with self.static_graph():
1896 1897 1898 1899 1900 1901 1902
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
1903 1904 1905
            groupNorm = nn.GroupNorm(
                channels=shape[1],
                groups=2,
1906
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1907 1908
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
L
lujun 已提交
1909
            ret = groupNorm(X)
1910 1911 1912 1913 1914 1915 1916 1917 1918
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
1919 1920

        with self.dynamic_graph():
1921 1922 1923
            groupNorm = nn.GroupNorm(
                channels=shape[1],
                groups=2,
1924
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
1925 1926
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
L
lujun 已提交
1927
            dy_ret = groupNorm(base.to_variable(input))
1928
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
1929

1930 1931
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
1932

1933 1934 1935 1936 1937
    def test_group_norm(self):
        with _test_eager_guard():
            self.func_group_norm()
        self.func_group_norm()

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
    def test_instance_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
1949 1950 1951
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False
            )
1952
            ret = layers.instance_norm(input=X)
1953 1954 1955
            static_ret = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret]
            )[0]
1956 1957

        with self.static_graph():
1958 1959 1960
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False
            )
1961 1962
            instanceNorm = nn.InstanceNorm(num_channels=shape[1])
            ret = instanceNorm(X)
1963 1964 1965
            static_ret2 = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret]
            )[0]
1966 1967

        with self.dynamic_graph():
1968 1969 1970 1971 1972
            with _test_eager_guard():
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
                dy_eager_ret = instanceNorm(base.to_variable(input))
                dy_eager_rlt_value = dy_eager_ret.numpy()

1973 1974 1975 1976 1977
            instanceNorm = nn.InstanceNorm(num_channels=shape[1])
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value = dy_ret.numpy()

        with self.dynamic_graph():
1978 1979 1980 1981 1982
            with _test_eager_guard():
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
                dy_eager_ret = instanceNorm(base.to_variable(input))
                dy_eager_rlt_value2 = dy_eager_ret.numpy()

1983
            instanceNorm = nn.InstanceNorm(num_channels=shape[1])
1984 1985 1986
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value2 = dy_ret.numpy()

1987 1988 1989 1990 1991
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_rlt_value2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
1992 1993 1994 1995

        with self.static_graph():
            # the input of InstanceNorm must be Variable.
            def test_Variable():
1996
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
1997 1998 1999 2000 2001 2002 2003
                ret1 = instanceNorm(input)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of InstanceNorm must be float32 or float64
            def test_type():
                input = np.random.random(shape).astype('int32')
2004
                instanceNorm = nn.InstanceNorm(num_channels=shape[1])
2005 2006 2007 2008
                ret2 = instanceNorm(input)

            self.assertRaises(TypeError, test_type)

L
lujun 已提交
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
    def test_spectral_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
2020 2021 2022 2023 2024 2025 2026
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
L
lujun 已提交
2027
            ret = layers.spectral_norm(weight=Weight, dim=1, power_iters=2)
2028 2029 2030 2031 2032 2033 2034 2035 2036
            static_ret = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
2037 2038

        with self.static_graph():
2039 2040 2041 2042 2043 2044 2045
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
2046
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
2047
            ret = spectralNorm(Weight)
2048 2049 2050 2051 2052 2053 2054 2055 2056
            static_ret2 = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
2057 2058

        with self.dynamic_graph():
2059 2060 2061 2062 2063
            with _test_eager_guard():
                spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
                dy_eager_ret = spectralNorm(base.to_variable(input))
                dy_eager_rlt_value = dy_eager_ret.numpy()

2064
            spectralNorm = nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
2065
            dy_ret = spectralNorm(base.to_variable(input))
2066
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
2067

2068 2069 2070
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081

    def test_tree_conv(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        adj_array = [1, 2, 1, 3, 1, 4, 1, 5, 2, 6, 2, 7, 2, 8, 4, 9, 4, 10]
        adj = np.array(adj_array).reshape((1, 9, 2)).astype('int32')
        adj = np.tile(adj, (1, 1, 1))
        vectors = np.random.random((1, 10, 5)).astype('float32')
        with self.static_graph():
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
            NodesVector = fluid.layers.data(
                name='NodesVector',
                shape=(1, 10, 5),
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
            EdgeSet = fluid.layers.data(
                name='EdgeSet',
                shape=(1, 9, 2),
                dtype='int32',
                lod_level=1,
                append_batch_size=False,
            )
            ret = fluid.contrib.layers.tree_conv(
                nodes_vector=NodesVector,
                edge_set=EdgeSet,
                output_size=6,
                num_filters=1,
                max_depth=2,
            )
            static_ret = self.get_static_graph_result(
                feed={
                    'NodesVector': fluid.create_lod_tensor(
                        data=vectors, recursive_seq_lens=[[1]], place=place
                    ),
                    'EdgeSet': fluid.create_lod_tensor(
                        data=adj, recursive_seq_lens=[[1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=False,
            )[0]
L
lujun 已提交
2115 2116

        with self.static_graph():
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
            NodesVector = fluid.layers.data(
                name='NodesVector',
                shape=(1, 10, 5),
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
            EdgeSet = fluid.layers.data(
                name='EdgeSet',
                shape=(1, 9, 2),
                dtype='int32',
                lod_level=1,
                append_batch_size=False,
            )
            treeConv = nn.TreeConv(
                feature_size=5, output_size=6, num_filters=1, max_depth=2
            )
L
lujun 已提交
2134
            ret = treeConv(NodesVector, EdgeSet)
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
            static_ret2 = self.get_static_graph_result(
                feed={
                    'NodesVector': fluid.create_lod_tensor(
                        data=vectors, recursive_seq_lens=[[1]], place=place
                    ),
                    'EdgeSet': fluid.create_lod_tensor(
                        data=adj, recursive_seq_lens=[[1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=False,
            )[0]
L
lujun 已提交
2147 2148

        with self.dynamic_graph():
2149
            with _test_eager_guard():
2150 2151 2152 2153 2154 2155
                treeConv = nn.TreeConv(
                    feature_size=5, output_size=6, num_filters=1, max_depth=2
                )
                dy_eager_ret = treeConv(
                    base.to_variable(vectors), base.to_variable(adj)
                )
2156 2157
                dy_eager_rlt_value = dy_eager_ret.numpy()

2158 2159 2160
            treeConv = nn.TreeConv(
                feature_size=5, output_size=6, num_filters=1, max_depth=2
            )
L
lujun 已提交
2161
            dy_ret = treeConv(base.to_variable(vectors), base.to_variable(adj))
2162
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
2163

2164 2165 2166
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_eager_rlt_value, rtol=1e-05)
L
lujun 已提交
2167

2168
        with self.dynamic_graph():
2169 2170 2171 2172
            with _test_eager_guard():
                custom_weight = np.random.randn(5, 3, 6, 1).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
                        custom_weight
                    )
                )
                treeConv1 = nn.TreeConv(
                    feature_size=5,
                    output_size=6,
                    num_filters=1,
                    max_depth=2,
                    bias_attr='eager_tc1_b',
                )
                treeConv2 = nn.TreeConv(
                    feature_size=5,
                    output_size=6,
                    num_filters=1,
                    max_depth=2,
                    param_attr=weight_attr,
                    bias_attr='eager_tc2_b',
                )
                dy_ret1 = treeConv1(
                    base.to_variable(vectors), base.to_variable(adj)
                )
                dy_ret2 = treeConv2(
                    base.to_variable(vectors), base.to_variable(adj)
                )
2197
                self.assertFalse(
2198 2199
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
2200 2201
                treeConv2.weight.set_value(treeConv1.weight.numpy())
                treeConv2.bias.set_value(treeConv1.bias)
2202 2203 2204 2205 2206 2207
                dy_ret1 = treeConv1(
                    base.to_variable(vectors), base.to_variable(adj)
                )
                dy_ret2 = treeConv2(
                    base.to_variable(vectors), base.to_variable(adj)
                )
2208
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2209 2210 2211

                treeConv2.weight = treeConv1.weight
                treeConv2.bias = treeConv1.bias
2212 2213 2214 2215 2216 2217
                np.testing.assert_array_equal(
                    treeConv1.weight.numpy(), treeConv2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    treeConv1.bias.numpy(), treeConv2.bias.numpy()
                )
2218

2219
            custom_weight = np.random.randn(5, 3, 6, 1).astype("float32")
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
            treeConv1 = nn.TreeConv(
                feature_size=5,
                output_size=6,
                num_filters=1,
                max_depth=2,
                bias_attr='tc1_b',
            )
            treeConv2 = nn.TreeConv(
                feature_size=5,
                output_size=6,
                num_filters=1,
                max_depth=2,
                param_attr=weight_attr,
                bias_attr='tc2_b',
            )
            dy_ret1 = treeConv1(
                base.to_variable(vectors), base.to_variable(adj)
            )
            dy_ret2 = treeConv2(
                base.to_variable(vectors), base.to_variable(adj)
            )
2246 2247 2248
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))
            treeConv2.weight.set_value(treeConv1.weight.numpy())
            treeConv2.bias.set_value(treeConv1.bias)
2249 2250 2251 2252 2253 2254
            dy_ret1 = treeConv1(
                base.to_variable(vectors), base.to_variable(adj)
            )
            dy_ret2 = treeConv2(
                base.to_variable(vectors), base.to_variable(adj)
            )
2255
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2256 2257 2258

            treeConv2.weight = treeConv1.weight
            treeConv2.bias = treeConv1.bias
2259 2260 2261 2262 2263 2264
            np.testing.assert_array_equal(
                treeConv1.weight.numpy(), treeConv2.weight.numpy()
            )
            np.testing.assert_array_equal(
                treeConv1.bias.numpy(), treeConv2.bias.numpy()
            )
2265

L
lujun 已提交
2266
    def test_conv3d_transpose(self):
2267 2268 2269
        input_array = (
            np.arange(0, 48).reshape([2, 3, 2, 2, 2]).astype('float32')
        )
L
lujun 已提交
2270 2271 2272

        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
2273 2274 2275
            out = layers.conv3d_transpose(
                input=img, num_filters=12, filter_size=12, use_cudnn=False
            )
L
lujun 已提交
2276
            static_rlt = self.get_static_graph_result(
2277 2278
                feed={'pixel': input_array}, fetch_list=[out]
            )[0]
L
lujun 已提交
2279 2280
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
2281 2282 2283
            conv3d_transpose = nn.Conv3DTranspose(
                num_channels=3, num_filters=12, filter_size=12, use_cudnn=False
            )
L
lujun 已提交
2284 2285
            out = conv3d_transpose(img)
            static_rlt2 = self.get_static_graph_result(
2286 2287
                feed={'pixel': input_array}, fetch_list=[out]
            )[0]
L
lujun 已提交
2288
        with self.dynamic_graph():
2289
            with _test_eager_guard():
2290 2291 2292 2293 2294 2295
                conv3d_transpose = nn.Conv3DTranspose(
                    num_channels=3,
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False,
                )
2296 2297 2298
                dy_eager_rlt = conv3d_transpose(base.to_variable(input_array))
                dy_eager_rlt_value = dy_eager_rlt.numpy()

2299 2300 2301
            conv3d_transpose = nn.Conv3DTranspose(
                num_channels=3, num_filters=12, filter_size=12, use_cudnn=False
            )
L
lujun 已提交
2302
            dy_rlt = conv3d_transpose(base.to_variable(input_array))
2303
            dy_rlt_value = dy_rlt.numpy()
2304 2305 2306
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_eager_rlt_value, static_rlt, rtol=1e-05)
L
lujun 已提交
2307

2308
        with self.dynamic_graph():
2309 2310 2311 2312 2313
            with _test_eager_guard():
                images = np.ones([2, 3, 6, 6, 6], dtype='float32')
                custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
                weight_attr = fluid.ParamAttr(
                    initializer=fluid.initializer.NumpyArrayInitializer(
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
                        custom_weight
                    )
                )
                conv3d1 = nn.Conv3DTranspose(
                    num_channels=3,
                    num_filters=3,
                    filter_size=2,
                    bias_attr='eager_conv3d1_b',
                    use_cudnn=False,
                )
                conv3d2 = nn.Conv3DTranspose(
                    num_channels=3,
                    num_filters=3,
                    filter_size=2,
                    param_attr=weight_attr,
                    bias_attr='eager_conv3d2_b',
                    use_cudnn=False,
                )
2332 2333 2334
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
                self.assertFalse(
2335 2336
                    np.array_equal(dy_ret1.numpy(), dy_ret2.numpy())
                )
2337 2338 2339 2340

                conv3d1_weight_np = conv3d1.weight.numpy()
                conv3d1_bias = conv3d1.bias
                self.assertFalse(
2341 2342
                    np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
                )
2343
                conv3d2.weight.set_value(conv3d1_weight_np)
2344 2345 2346
                np.testing.assert_array_equal(
                    conv3d1_weight_np, conv3d2.weight.numpy()
                )
2347 2348 2349
                conv3d1.bias.set_value(conv3d1_bias)
                dy_ret1 = conv3d1(base.to_variable(images))
                dy_ret2 = conv3d2(base.to_variable(images))
2350
                np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2351 2352 2353

                conv3d2.weight = conv3d1.weight
                conv3d2.bias = conv3d1.bias
2354 2355 2356 2357 2358 2359
                np.testing.assert_array_equal(
                    conv3d1.weight.numpy(), conv3d2.weight.numpy()
                )
                np.testing.assert_array_equal(
                    conv3d1.bias.numpy(), conv3d2.bias.numpy()
                )
2360

2361 2362
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
            conv3d1 = nn.Conv3DTranspose(
                num_channels=3,
                num_filters=3,
                filter_size=2,
                bias_attr='conv3d1_b',
                use_cudnn=False,
            )
            conv3d2 = nn.Conv3DTranspose(
                num_channels=3,
                num_filters=3,
                filter_size=2,
                param_attr=weight_attr,
                bias_attr='conv3d2_b',
                use_cudnn=False,
            )
2383 2384 2385 2386 2387 2388 2389
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
2390 2391
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
            )
2392
            conv3d2.weight.set_value(conv3d1_weight_np)
2393 2394 2395
            np.testing.assert_array_equal(
                conv3d1_weight_np, conv3d2.weight.numpy()
            )
2396 2397 2398
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
2399
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
2400 2401 2402

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
2403 2404 2405 2406 2407 2408
            np.testing.assert_array_equal(
                conv3d1.weight.numpy(), conv3d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv3d1.bias.numpy(), conv3d2.bias.numpy()
            )
2409

2410 2411 2412 2413 2414 2415 2416 2417
    def test_eye_op(self):
        np_eye = np.eye(3, 2)
        array_rlt1 = [np_eye for _ in range(3)]
        stack_rlt1 = np.stack(array_rlt1, axis=0)
        array_rlt2 = [stack_rlt1 for _ in range(4)]
        stack_rlt2 = np.stack(array_rlt2, axis=0)

        with self.dynamic_graph():
2418 2419
            with _test_eager_guard():
                eager_eye_tensor = layers.eye(num_rows=3, num_columns=2)
2420 2421 2422 2423 2424 2425
                eager_eye_tensor_rlt1 = layers.eye(
                    num_rows=3, num_columns=2, batch_shape=[3]
                )
                eager_eye_tensor_rlt2 = layers.eye(
                    num_rows=3, num_columns=2, batch_shape=[4, 3]
                )
2426 2427 2428 2429 2430 2431
                eager_diag_tensor = layers.eye(20)
                eager_eye_tensor_value = eager_eye_tensor.numpy()
                eager_eye_tensor_rlt1_value = eager_eye_tensor_rlt1.numpy()
                eager_eye_tensor_rlt2_value = eager_eye_tensor_rlt2.numpy()
                eager_diag_tensor_value = eager_diag_tensor.numpy()

2432
            eye_tensor = layers.eye(num_rows=3, num_columns=2)
2433 2434 2435 2436 2437 2438
            eye_tensor_rlt1 = layers.eye(
                num_rows=3, num_columns=2, batch_shape=[3]
            )
            eye_tensor_rlt2 = layers.eye(
                num_rows=3, num_columns=2, batch_shape=[4, 3]
            )
2439
            diag_tensor = layers.eye(20)
2440 2441 2442 2443
            eye_tensor_value = eye_tensor.numpy()
            eye_tensor_rlt1_value = eye_tensor_rlt1.numpy()
            eye_tensor_rlt2_value = eye_tensor_rlt2.numpy()
            diag_tensor_value = diag_tensor.numpy()
2444

2445
        np.testing.assert_allclose(eager_eye_tensor_value, np_eye, rtol=1e-05)
2446 2447 2448 2449 2450 2451 2452 2453 2454
        np.testing.assert_allclose(
            eager_eye_tensor_rlt1_value, stack_rlt1, rtol=1e-05
        )
        np.testing.assert_allclose(
            eager_eye_tensor_rlt2_value, stack_rlt2, rtol=1e-05
        )
        np.testing.assert_allclose(
            eager_diag_tensor_value, np.eye(20), rtol=1e-05
        )
2455 2456

        np.testing.assert_allclose(eye_tensor_value, np_eye, rtol=1e-05)
2457 2458 2459 2460 2461 2462
        np.testing.assert_allclose(
            eye_tensor_rlt1_value, stack_rlt1, rtol=1e-05
        )
        np.testing.assert_allclose(
            eye_tensor_rlt2_value, stack_rlt2, rtol=1e-05
        )
2463
        np.testing.assert_allclose(diag_tensor_value, np.eye(20), rtol=1e-05)
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473

        with self.assertRaises(TypeError):
            layers.eye(num_rows=3.1)
        with self.assertRaises(TypeError):
            layers.eye(num_rows=3, num_columns=2.2)
        with self.assertRaises(TypeError):
            layers.eye(num_rows=3, batch_shape=2)
        with self.assertRaises(TypeError):
            layers.eye(num_rows=3, batch_shape=[-1])

2474
    def func_while_loop(self):
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
        with self.static_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

            def cond(i):
                return layers.less_than(i, ten)

            def body(i):
                return i + 1

            out = layers.while_loop(cond, body, [i])
            static_ret = self.get_static_graph_result(feed={}, fetch_list=out)

        with self.dynamic_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

2492
            def cond1(i):
2493 2494
                return layers.less_than(i, ten)

2495
            def body1(i):
2496 2497
                return i + 1

2498
            dy_ret = layers.while_loop(cond1, body1, [i])
2499 2500 2501 2502 2503 2504
            with self.assertRaises(ValueError):
                j = layers.fill_constant(shape=[1], dtype='int64', value=0)

                def body2(i):
                    return i + 1, i + 2

2505
                layers.while_loop(cond1, body2, [j])
2506

2507
        np.testing.assert_array_equal(static_ret[0], dy_ret[0].numpy())
2508

2509 2510 2511 2512 2513
    def test_while_loop(self):
        with _test_eager_guard():
            self.func_while_loop()
        self.func_while_loop()

2514 2515 2516 2517 2518 2519 2520 2521
    def test_compare(self):
        value_a = np.arange(3)
        value_b = np.arange(3)
        # less than
        with self.static_graph():
            a = layers.data(name='a', shape=[1], dtype='int64')
            b = layers.data(name='b', shape=[1], dtype='int64')
            cond = layers.less_than(x=a, y=b)
2522 2523 2524
            static_ret = self.get_static_graph_result(
                feed={"a": value_a, "b": value_b}, fetch_list=[cond]
            )[0]
2525
        with self.dynamic_graph():
2526 2527 2528 2529 2530 2531 2532 2533
            with _test_eager_guard():
                da = base.to_variable(value_a)
                db = base.to_variable(value_b)
                dcond = layers.less_than(x=da, y=db)

                for i in range(len(static_ret)):
                    self.assertTrue(dcond.numpy()[i] == static_ret[i])

2534 2535 2536 2537
            da = base.to_variable(value_a)
            db = base.to_variable(value_b)
            dcond = layers.less_than(x=da, y=db)

2538 2539
            for i in range(len(static_ret)):
                self.assertTrue(dcond.numpy()[i] == static_ret[i])
2540 2541 2542 2543 2544 2545

        # less equal
        with self.static_graph():
            a1 = layers.data(name='a1', shape=[1], dtype='int64')
            b1 = layers.data(name='b1', shape=[1], dtype='int64')
            cond1 = layers.less_equal(x=a1, y=b1)
2546 2547 2548
            static_ret1 = self.get_static_graph_result(
                feed={"a1": value_a, "b1": value_b}, fetch_list=[cond1]
            )[0]
2549
        with self.dynamic_graph():
2550 2551 2552 2553 2554 2555 2556 2557
            with _test_eager_guard():
                da1 = base.to_variable(value_a)
                db1 = base.to_variable(value_b)
                dcond1 = layers.less_equal(x=da1, y=db1)

                for i in range(len(static_ret1)):
                    self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

2558 2559 2560 2561 2562 2563 2564
            da1 = base.to_variable(value_a)
            db1 = base.to_variable(value_b)
            dcond1 = layers.less_equal(x=da1, y=db1)

            for i in range(len(static_ret1)):
                self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

2565
        # greater than
2566 2567 2568 2569
        with self.static_graph():
            a2 = layers.data(name='a2', shape=[1], dtype='int64')
            b2 = layers.data(name='b2', shape=[1], dtype='int64')
            cond2 = layers.greater_than(x=a2, y=b2)
2570 2571 2572
            static_ret2 = self.get_static_graph_result(
                feed={"a2": value_a, "b2": value_b}, fetch_list=[cond2]
            )[0]
2573
        with self.dynamic_graph():
2574 2575 2576 2577 2578 2579 2580 2581
            with _test_eager_guard():
                da2 = base.to_variable(value_a)
                db2 = base.to_variable(value_b)
                dcond2 = layers.greater_than(x=da2, y=db2)

                for i in range(len(static_ret2)):
                    self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

2582 2583 2584 2585 2586 2587 2588
            da2 = base.to_variable(value_a)
            db2 = base.to_variable(value_b)
            dcond2 = layers.greater_than(x=da2, y=db2)

            for i in range(len(static_ret2)):
                self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

2589
        # greater equal
2590 2591 2592 2593
        with self.static_graph():
            a3 = layers.data(name='a3', shape=[1], dtype='int64')
            b3 = layers.data(name='b3', shape=[1], dtype='int64')
            cond3 = layers.greater_equal(x=a3, y=b3)
2594 2595 2596
            static_ret3 = self.get_static_graph_result(
                feed={"a3": value_a, "b3": value_b}, fetch_list=[cond3]
            )[0]
2597
        with self.dynamic_graph():
2598 2599 2600 2601 2602 2603 2604 2605
            with _test_eager_guard():
                da3 = base.to_variable(value_a)
                db3 = base.to_variable(value_b)
                dcond3 = layers.greater_equal(x=da3, y=db3)

                for i in range(len(static_ret3)):
                    self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
            da3 = base.to_variable(value_a)
            db3 = base.to_variable(value_b)
            dcond3 = layers.greater_equal(x=da3, y=db3)

            for i in range(len(static_ret3)):
                self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

        # equal
        with self.static_graph():
            a4 = layers.data(name='a4', shape=[1], dtype='int64')
            b4 = layers.data(name='b4', shape=[1], dtype='int64')
            cond4 = layers.equal(x=a4, y=b4)
2618 2619 2620
            static_ret4 = self.get_static_graph_result(
                feed={"a4": value_a, "b4": value_b}, fetch_list=[cond4]
            )[0]
2621
        with self.dynamic_graph():
2622 2623 2624 2625 2626 2627 2628 2629
            with _test_eager_guard():
                da4 = base.to_variable(value_a)
                db4 = base.to_variable(value_b)
                dcond4 = layers.equal(x=da4, y=db4)

                for i in range(len(static_ret4)):
                    self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
            da4 = base.to_variable(value_a)
            db4 = base.to_variable(value_b)
            dcond4 = layers.equal(x=da4, y=db4)

            for i in range(len(static_ret4)):
                self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

        # not equal
        with self.static_graph():
            a5 = layers.data(name='a5', shape=[1], dtype='int64')
            b5 = layers.data(name='b5', shape=[1], dtype='int64')
            cond5 = layers.equal(x=a5, y=b5)
2642 2643 2644
            static_ret5 = self.get_static_graph_result(
                feed={"a5": value_a, "b5": value_b}, fetch_list=[cond5]
            )[0]
2645
        with self.dynamic_graph():
2646 2647 2648 2649 2650 2651 2652 2653
            with _test_eager_guard():
                da5 = base.to_variable(value_a)
                db5 = base.to_variable(value_b)
                dcond5 = layers.equal(x=da5, y=db5)

                for i in range(len(static_ret5)):
                    self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

2654 2655 2656 2657 2658 2659 2660
            da5 = base.to_variable(value_a)
            db5 = base.to_variable(value_b)
            dcond5 = layers.equal(x=da5, y=db5)

            for i in range(len(static_ret5)):
                self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

2661 2662 2663 2664 2665 2666 2667 2668
    def test_cond(self):
        def less_than_branch(a, b):
            return fluid.layers.elementwise_add(a, b)

        def greater_equal_branch(a, b):
            return fluid.layers.elementwise_sub(a, b)

        with self.static_graph():
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
            a = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.1
            )
            b = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.23
            )
            out = fluid.layers.cond(
                a >= b,
                lambda: greater_equal_branch(a, b),
                lambda: less_than_branch(a, b),
            )
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
2685 2686 2687 2688 2689
            exe = fluid.Executor(place)
            ret = exe.run(fetch_list=[out])
            static_res = ret[0]

        with self.dynamic_graph():
2690 2691 2692
            with _test_eager_guard():
                a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
                b = fluid.dygraph.to_variable(
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
                    np.array([0.23]).astype('float32')
                )
                out = layers.cond(
                    a < b,
                    lambda: less_than_branch(a, b),
                    lambda: greater_equal_branch(a, b),
                )
                out2 = layers.cond(
                    a >= b,
                    lambda: greater_equal_branch(a, b),
                    lambda: less_than_branch(a, b),
                )
2705 2706
                eager_dynamic_res = out.numpy()
                eager_dynamic_res2 = out2.numpy()
2707 2708 2709
                np.testing.assert_array_equal(
                    eager_dynamic_res, eager_dynamic_res2
                )
2710 2711 2712 2713 2714
                with self.assertRaises(TypeError):
                    layers.cond(a < b, 'str', 'str')
                with self.assertRaises(TypeError):
                    layers.cond(a >= b, 'str', 'str')

2715 2716
            a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
            b = fluid.dygraph.to_variable(np.array([0.23]).astype('float32'))
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
            out = layers.cond(
                a < b,
                lambda: less_than_branch(a, b),
                lambda: greater_equal_branch(a, b),
            )
            out2 = layers.cond(
                a >= b,
                lambda: greater_equal_branch(a, b),
                lambda: less_than_branch(a, b),
            )
2727 2728
            dynamic_res = out.numpy()
            dynamic_res2 = out2.numpy()
2729
            np.testing.assert_array_equal(dynamic_res, dynamic_res2)
2730 2731 2732 2733 2734
            with self.assertRaises(TypeError):
                layers.cond(a < b, 'str', 'str')
            with self.assertRaises(TypeError):
                layers.cond(a >= b, 'str', 'str')

2735 2736
        np.testing.assert_array_equal(static_res, dynamic_res)
        np.testing.assert_array_equal(static_res, eager_dynamic_res)
2737

2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
    def test_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
            pred_3 = layers.equal(x, y)  # false: 0.3 == 0.1

2757 2758 2759
            out_1 = layers.case(
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
2760 2761
            out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])

2762 2763 2764 2765 2766
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
2767 2768 2769 2770
            exe = fluid.Executor(place)
            static_res1, static_res2 = exe.run(fetch_list=[out_1, out_2])

        with self.dynamic_graph():
2771 2772 2773 2774 2775 2776 2777 2778 2779
            with _test_eager_guard():
                x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
                y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
                z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

                pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
                pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
                pred_3 = layers.equal(x, y)  # false: 0.3 == 0.1

2780 2781 2782 2783 2784 2785
                out_1 = layers.case(
                    pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
                )
                out_2 = layers.case(
                    pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)]
                )
2786 2787 2788
                eager_dynamic_res1 = out_1.numpy()
                eager_dynamic_res2 = out_2.numpy()

2789 2790 2791 2792 2793 2794 2795 2796
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

            pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
            pred_3 = layers.equal(x, y)  # false: 0.3 == 0.1

2797 2798 2799
            out_1 = layers.case(
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
2800 2801 2802 2803
            out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])
            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()

2804 2805 2806 2807
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
        np.testing.assert_array_equal(static_res1, eager_dynamic_res1)
        np.testing.assert_array_equal(static_res2, eager_dynamic_res2)
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822

    def test_switch_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
            out_1 = layers.switch_case(
                branch_index=index_1,
                branch_fns={1: fn_1, 2: fn_2},
                default=fn_3,
            )
            out_2 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3,
            )
            out_3 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
            )

            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
2843 2844
            exe = fluid.Executor(place)
            static_res1, static_res2, static_res3 = exe.run(
2845 2846
                fetch_list=[out_1, out_2, out_3]
            )
2847 2848

        with self.dynamic_graph():
2849
            with _test_eager_guard():
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
                index_1 = layers.fill_constant(
                    shape=[1], dtype='int32', value=1
                )
                index_2 = layers.fill_constant(
                    shape=[1], dtype='int32', value=2
                )

                out_1 = layers.switch_case(
                    branch_index=index_1,
                    branch_fns={1: fn_1, 2: fn_2},
                    default=fn_3,
                )
                out_2 = layers.switch_case(
                    branch_index=index_2,
                    branch_fns=[(1, fn_1), (2, fn_2)],
                    default=fn_3,
                )
                out_3 = layers.switch_case(
                    branch_index=index_2,
                    branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
                )
2871 2872 2873 2874 2875

                eager_dynamic_res1 = out_1.numpy()
                eager_dynamic_res2 = out_2.numpy()
                eager_dynamic_res3 = out_3.numpy()

2876 2877 2878
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
            out_1 = layers.switch_case(
                branch_index=index_1,
                branch_fns={1: fn_1, 2: fn_2},
                default=fn_3,
            )
            out_2 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3,
            )
            out_3 = layers.switch_case(
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
            )
2893 2894 2895 2896 2897

            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()
            dynamic_res3 = out_3.numpy()

2898 2899 2900 2901 2902 2903
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
        np.testing.assert_array_equal(static_res3, dynamic_res3)
        np.testing.assert_array_equal(static_res1, eager_dynamic_res1)
        np.testing.assert_array_equal(static_res2, eager_dynamic_res2)
        np.testing.assert_array_equal(static_res3, eager_dynamic_res3)
2904

2905 2906 2907 2908
    def test_crop_tensor(self):
        with self.static_graph():
            x = fluid.layers.data(name="x1", shape=[6, 5, 8])

2909 2910 2911 2912 2913 2914
            dim1 = fluid.layers.data(
                name="dim1", shape=[1], append_batch_size=False
            )
            dim2 = fluid.layers.data(
                name="dim2", shape=[1], append_batch_size=False
            )
2915
            crop_shape1 = (1, 2, 4, 4)
2916 2917 2918
            crop_shape2 = fluid.layers.data(
                name="crop_shape", shape=[4], append_batch_size=False
            )
2919 2920
            crop_shape3 = [-1, dim1, dim2, 4]
            crop_offsets1 = [0, 0, 1, 0]
2921 2922 2923
            crop_offsets2 = fluid.layers.data(
                name="crop_offset", shape=[4], append_batch_size=False
            )
2924 2925
            crop_offsets3 = [0, dim1, dim2, 0]

2926 2927 2928 2929 2930 2931 2932 2933 2934
            out1 = fluid.layers.crop_tensor(
                x, shape=crop_shape1, offsets=crop_offsets1
            )
            out2 = fluid.layers.crop_tensor(
                x, shape=crop_shape2, offsets=crop_offsets2
            )
            out3 = fluid.layers.crop_tensor(
                x, shape=crop_shape3, offsets=crop_offsets3
            )
2935 2936 2937 2938 2939

            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
            self.assertIsNotNone(out3)

2940 2941 2942
    def test_shard_index(self):
        with self.static_graph():
            x = fluid.layers.data(name="label", shape=[4, 1], dtype='int64')
2943 2944 2945
            shard_label = fluid.layers.shard_index(
                input=x, index_num=20, nshards=2, shard_id=0
            )
2946 2947 2948

        self.assertIsNotNone(shard_label)

2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
    def test_accuracy(self):
        x = np.random.rand(3, 32, 32).astype("float32")
        y = np.array([[1], [0], [1]])
        with self.static_graph():
            data = fluid.data(name="input", shape=[-1, 32, 32], dtype="float32")
            label = fluid.data(name="label", shape=[-1, 1], dtype="int")
            fc_out = fluid.layers.fc(input=data, size=10)
            predict = fluid.layers.softmax(input=fc_out)
            result = fluid.layers.accuracy(input=predict, label=label, k=5)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)

            exe.run(fluid.default_startup_program())
L
Leo Chen 已提交
2962 2963
            # x = np.random.rand(3, 32, 32).astype("float32")
            # y = np.array([[1], [0], [1]])
2964 2965 2966
            static_out = exe.run(
                feed={"input": x, "label": y}, fetch_list=result[0]
            )
2967

L
Leo Chen 已提交
2968
        with self.dynamic_graph(force_to_use_cpu=True):
2969 2970 2971 2972 2973 2974
            data = base.to_variable(x)
            label = base.to_variable(y)
            fc_out = fluid.layers.fc(data, size=10)
            predict = fluid.layers.softmax(fc_out)
            dynamic_out = fluid.layers.accuracy(input=predict, label=label, k=5)

2975
        np.testing.assert_array_equal(static_out[0], dynamic_out.numpy())
2976

Y
Yu Yang 已提交
2977

2978
class TestBook(LayerTest):
H
hong 已提交
2979 2980
    def setUp(self):
        self.only_static_set = set({"make_word_embedding"})
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
        self.not_compare_static_dygraph_set = set(
            {
                "make_gaussian_random",
                "make_gaussian_random_batch_size_like",
                "make_kldiv_loss",
                "make_prelu",
                "make_sampled_softmax_with_cross_entropy",
                "make_sampling_id",
                "make_uniform_random_batch_size_like",
            }
        )
2992
        self.all_close_compare = set({"make_spectral_norm"})
H
hong 已提交
2993

2994
    def func_all_layers(self):
2995 2996 2997 2998 2999
        attrs = (getattr(self, name) for name in dir(self))
        methods = filter(inspect.ismethod, attrs)
        for method in methods:
            if not method.__name__.startswith('make_'):
                continue
M
minqiyang 已提交
3000 3001 3002
            self._low_data_bound = 0
            self._high_data_bound = 2
            self._batch_size = 2
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
            self._feed_dict = {}
            self._force_to_use_cpu = False
            with self.static_graph():
                static_var = method()
                if isinstance(static_var, tuple):
                    static_var = static_var[0]

                if static_var is not None:
                    fetch_list = [static_var.name]
                    static_result = self.get_static_graph_result(
                        feed=self._feed_dict,
                        fetch_list=fetch_list,
3015 3016
                        force_to_use_cpu=self._force_to_use_cpu,
                    )
H
hong 已提交
3017

3018 3019 3020
                else:
                    assert method.__name__ in ('make_get_places')
                    continue
H
hong 已提交
3021 3022
            if method.__name__ in self.only_static_set:
                continue
3023 3024 3025 3026 3027

            with self.dynamic_graph(self._force_to_use_cpu):
                dy_result = method()
                if isinstance(dy_result, tuple):
                    dy_result = dy_result[0]
3028
                dy_result_value = dy_result.numpy()
3029

3030
            if method.__name__ in self.all_close_compare:
3031 3032 3033 3034 3035 3036
                np.testing.assert_allclose(
                    static_result[0],
                    dy_result_value,
                    rtol=1e-05,
                    atol=0,
                    err_msg='Result of function [{}] compare failed'.format(
3037 3038 3039
                        method.__name__
                    ),
                )
3040 3041
                continue

H
hong 已提交
3042
            if method.__name__ not in self.not_compare_static_dygraph_set:
3043 3044 3045 3046
                np.testing.assert_array_equal(
                    static_result[0],
                    dy_result_value,
                    err_msg='Result of function [{}] not equal'.format(
3047 3048 3049
                        method.__name__
                    ),
                )
3050

3051 3052 3053 3054 3055
    def test_all_layers(self):
        with _test_eager_guard():
            self.func_all_layers()
        self.func_all_layers()

3056 3057 3058
    def _get_np_data(self, shape, dtype, append_batch_size=True):
        np.random.seed(self.seed)
        if append_batch_size:
M
minqiyang 已提交
3059
            shape = [self._batch_size] + shape
3060 3061 3062 3063 3064
        if dtype == 'float32':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'float64':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'int32':
3065 3066 3067
            return np.random.randint(
                self._low_data_bound, self._high_data_bound, shape
            ).astype(dtype)
3068
        elif dtype == 'int64':
3069 3070 3071 3072 3073 3074 3075
            return np.random.randint(
                self._low_data_bound, self._high_data_bound, shape
            ).astype(dtype)

    def _get_data(
        self, name, shape, dtype, set_feed_dict=True, append_batch_size=True
    ):
3076
        if base.enabled():
3077 3078 3079 3080 3081
            return base.to_variable(
                value=self._get_np_data(shape, dtype, append_batch_size),
                name=name,
                zero_copy=False,
            )
3082 3083
        else:
            if set_feed_dict:
3084
                self._feed_dict[name] = self._get_np_data(
3085 3086 3087 3088 3089 3090 3091 3092
                    shape, dtype, append_batch_size
                )
            return layers.data(
                name=name,
                shape=shape,
                dtype=dtype,
                append_batch_size=append_batch_size,
            )
3093 3094

    def make_sampled_softmax_with_cross_entropy(self):
3095 3096 3097
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
M
minqiyang 已提交
3098
            logits = self._get_data(name='Logits', shape=[256], dtype='float32')
M
minqiyang 已提交
3099
            label = self._get_data(name='Label', shape=[1], dtype='int64')
3100
            num_samples = 25
3101
            output = layers.sampled_softmax_with_cross_entropy(
3102 3103 3104
                logits, label, num_samples
            )
            return output
3105 3106

    def make_fit_a_line(self):
3107 3108 3109 3110
        with program_guard(
            fluid.default_main_program(),
            startup_program=fluid.default_startup_program(),
        ):
3111
            x = self._get_data(name='x', shape=[13], dtype='float32')
Y
Yu Yang 已提交
3112
            y_predict = layers.fc(input=x, size=1, act=None)
3113
            y = self._get_data(name='y', shape=[1], dtype='float32')
Y
Yu Yang 已提交
3114
            cost = layers.square_error_cost(input=y_predict, label=y)
3115
            avg_cost = paddle.mean(cost)
3116
            return avg_cost
Y
Yu Yang 已提交
3117

3118
    def make_recognize_digits_mlp(self):
3119 3120 3121
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
Y
Yu Yang 已提交
3122
            # Change g_program, so the rest layers use `g_program`
3123 3124
            images = self._get_data(name='pixel', shape=[784], dtype='float32')
            label = self._get_data(name='label', shape=[1], dtype='int64')
Y
Yu Yang 已提交
3125 3126
            hidden1 = layers.fc(input=images, size=128, act='relu')
            hidden2 = layers.fc(input=hidden1, size=64, act='relu')
3127 3128 3129 3130 3131 3132
            predict = layers.fc(
                input=[hidden2, hidden1],
                size=10,
                act='softmax',
                param_attr=["sftmax.w1", "sftmax.w2"],
            )
Y
Yu Yang 已提交
3133
            cost = layers.cross_entropy(input=predict, label=label)
3134
            avg_cost = paddle.mean(cost)
3135
            return avg_cost
Y
Yu Yang 已提交
3136

3137
    def make_conv2d_transpose(self):
3138 3139 3140
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3141
            img = self._get_data(name='pixel', shape=[3, 2, 2], dtype='float32')
3142 3143 3144
            return layers.conv2d_transpose(
                input=img, num_filters=10, output_size=28
            )
3145

3146
    def make_recognize_digits_conv(self):
3147 3148 3149 3150 3151 3152
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            images = self._get_data(
                name='pixel', shape=[1, 28, 28], dtype='float32'
            )
3153
            label = self._get_data(name='label', shape=[1], dtype='int64')
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
            conv_pool_1 = nets.simple_img_conv_pool(
                input=images,
                filter_size=5,
                num_filters=2,
                pool_size=2,
                pool_stride=2,
                act="relu",
            )
            conv_pool_2 = nets.simple_img_conv_pool(
                input=conv_pool_1,
                filter_size=5,
                num_filters=4,
                pool_size=2,
                pool_stride=2,
                act="relu",
            )
Y
Yu Yang 已提交
3170 3171 3172

            predict = layers.fc(input=conv_pool_2, size=10, act="softmax")
            cost = layers.cross_entropy(input=predict, label=label)
3173
            avg_cost = paddle.mean(cost)
3174
            return avg_cost
Y
Yu Yang 已提交
3175

3176
    def make_word_embedding(self):
3177 3178 3179
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
Y
Yu Yang 已提交
3180 3181
            dict_size = 10000
            embed_size = 32
3182
            first_word = self._get_data(name='firstw', shape=[1], dtype='int64')
3183 3184 3185
            second_word = self._get_data(
                name='secondw', shape=[1], dtype='int64'
            )
3186 3187 3188
            third_word = self._get_data(name='thirdw', shape=[1], dtype='int64')
            forth_word = self._get_data(name='forthw', shape=[1], dtype='int64')
            next_word = self._get_data(name='nextw', shape=[1], dtype='int64')
Y
Yu Yang 已提交
3189

3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
            embed_first = layers.embedding(
                input=first_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
            embed_second = layers.embedding(
                input=second_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )

            embed_third = layers.embedding(
                input=third_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
            embed_forth = layers.embedding(
                input=forth_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
Y
Yu Yang 已提交
3215 3216 3217

            concat_embed = layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
3218 3219
                axis=1,
            )
Y
Yu Yang 已提交
3220 3221

            hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid')
3222 3223 3224
            predict_word = layers.fc(
                input=hidden1, size=dict_size, act='softmax'
            )
Y
Yu Yang 已提交
3225
            cost = layers.cross_entropy(input=predict_word, label=next_word)
3226
            avg_cost = paddle.mean(cost)
3227
            return avg_cost
Y
Yu Yang 已提交
3228

3229
    def make_sigmoid_cross_entropy(self):
3230 3231 3232
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3233 3234
            dat = self._get_data(name='data', shape=[10], dtype='float32')
            lbl = self._get_data(name='label', shape=[10], dtype='float32')
3235
            ignore_index = -1
3236 3237 3238
            return layers.sigmoid_cross_entropy_with_logits(
                x=dat, label=lbl, ignore_index=ignore_index
            )
3239 3240 3241 3242 3243 3244

    def make_hsigmoid(self):
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            x = self._get_data(name='x', shape=[2], dtype='float32')
            y = self._get_data(name='y', shape=[2], dtype='int64')
3245
            return layers.hsigmoid(input=x, label=y, num_classes=2)
W
weixing02 已提交
3246

J
JiabinYang 已提交
3247
        # test hsigmod with custom tree structure
J
JiabinYang 已提交
3248 3249
        program2 = Program()
        with program_guard(program2):
3250 3251
            x2 = self._get_data(name='x2', shape=[4, 8], dtype='float32')
            y2 = self._get_data(name='y2', shape=[4], dtype='int64')
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
            path_table = self._get_data(
                name='path_table', shape=[4, 6], dtype='int64'
            )
            path_code = self._get_data(
                name='path_code', shape=[4, 6], dtype='int64'
            )
            return layers.hsigmoid(
                input=x2,
                label=y2,
                num_classes=6,
                path_table=path_table,
                path_code=path_code,
                is_custom=True,
            )
J
JiabinYang 已提交
3266

3267
    def make_pool2d(self):
3268 3269 3270
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3271
            x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32')
3272 3273 3274
            return layers.pool2d(
                x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1)
            )
3275

K
Kaipeng Deng 已提交
3276
    def make_pool2d_infershape(self):
3277 3278 3279
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3280
            theta = self._get_data("theta", shape=[2, 3], dtype='float32')
3281 3282 3283
            x = paddle.nn.functional.affine_grid(
                theta, out_shape=[2, 3, 244, 244]
            )
3284 3285 3286
            return layers.pool2d(
                x, pool_size=[5, 3], pool_stride=[1, 2], pool_padding=(2, 1)
            )
K
Kaipeng Deng 已提交
3287 3288

    def make_pool3d(self):
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x', shape=[3, 244, 244, 244], dtype='float32'
            )
            return layers.pool3d(
                x,
                pool_size=[5, 3, 2],
                pool_stride=[1, 2, 3],
                pool_padding=(2, 1, 1),
            )
K
Kaipeng Deng 已提交
3301

3302
    def make_lstm_unit(self):
3303 3304 3305 3306 3307 3308
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x_t_data = self._get_data(
                name='x_t_data', shape=[10, 10], dtype='float32'
            )
Y
yangyaming 已提交
3309
            x_t = layers.fc(input=x_t_data, size=10)
3310 3311 3312
            prev_hidden_data = self._get_data(
                name='prev_hidden_data', shape=[10, 30], dtype='float32'
            )
Y
yangyaming 已提交
3313
            prev_hidden = layers.fc(input=prev_hidden_data, size=30)
3314 3315 3316
            prev_cell_data = self._get_data(
                name='prev_cell', shape=[10, 30], dtype='float32'
            )
Y
yangyaming 已提交
3317
            prev_cell = layers.fc(input=prev_cell_data, size=30)
3318 3319 3320
            return layers.lstm_unit(
                x_t=x_t, hidden_t_prev=prev_hidden, cell_t_prev=prev_cell
            )
3321

3322
    def make_softmax(self):
3323 3324 3325
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3326
            data = self._get_data(name='data', shape=[10], dtype='float32')
D
dangqingqing 已提交
3327
            hid = layers.fc(input=data, size=20)
3328
            return layers.softmax(hid, axis=1)
D
dangqingqing 已提交
3329

3330
    def make_space_to_depth(self):
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data',
                shape=[32, 9, 6, 6],
                append_batch_size=False,
                dtype='float32',
            )
            return layers.space_to_depth(data, 3)
J
JiabinYang 已提交
3341

3342
    def make_lrn(self):
3343 3344 3345
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3346
            data = self._get_data(name='data', shape=[6, 2, 2], dtype='float32')
3347
            return layers.lrn(data)
3348

3349
    def make_get_places(self):
3350 3351 3352
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3353
            get_places(device_count=1)
X
xuezhong 已提交
3354

3355
    @prog_scope()
3356
    def make_nce(self):
Y
Yang Yu 已提交
3357 3358
        window_size = 5
        words = []
3359
        for i in range(window_size):
Y
Yang Yu 已提交
3360
            words.append(
3361 3362 3363 3364
                self._get_data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'
                )
            )
Y
Yang Yu 已提交
3365 3366

        dict_size = 10000
M
minqiyang 已提交
3367
        label_word = int(window_size // 2) + 1
Y
Yang Yu 已提交
3368 3369

        embs = []
3370
        for i in range(window_size):
Y
Yang Yu 已提交
3371 3372 3373
            if i == label_word:
                continue

3374 3375 3376 3377 3378 3379
            emb = layers.embedding(
                input=words[i],
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=True,
            )
Y
Yang Yu 已提交
3380 3381 3382 3383

            embs.append(emb)

        embs = layers.concat(input=embs, axis=1)
3384 3385 3386 3387 3388 3389 3390
        loss = layers.nce(
            input=embs,
            label=words[label_word],
            num_total_classes=dict_size,
            param_attr='nce.w',
            bias_attr='nce.b',
        )
3391
        avg_loss = paddle.mean(loss)
3392
        return avg_loss
Y
Yang Yu 已提交
3393

3394
    def make_multiplex(self):
3395 3396 3397
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3398 3399 3400
            x1 = self._get_data(name='x1', shape=[4], dtype='float32')
            x2 = self._get_data(name='x2', shape=[4], dtype='float32')
            index = self._get_data(name='index', shape=[1], dtype='int32')
3401
            out = layers.multiplex(inputs=[x1, x2], index=index)
3402
            return out
3403 3404

    def make_softmax_with_cross_entropy(self):
3405 3406 3407
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3408 3409
            x = self._get_data(name='x', shape=[16], dtype='float32')
            y = self._get_data(name='label', shape=[1], dtype='int64')
3410
            loss, softmax = layers.softmax_with_cross_entropy(
3411 3412
                x, y, return_softmax=True
            )
3413 3414 3415
            self.assertIsNotNone(loss)
            self.assertIsNotNone(softmax)

3416
            loss = layers.softmax_with_cross_entropy(x, y)
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
            self.assertIsNotNone(loss)

            x1 = self._get_data(name='x1', shape=[16, 32, 64], dtype='float32')
            y1 = self._get_data(name='label1', shape=[1, 32, 64], dtype='int64')
            y2 = self._get_data(name='label2', shape=[16, 1, 64], dtype='int64')
            y3 = self._get_data(name='label3', shape=[16, 32, 1], dtype='int64')
            loss1 = layers.softmax_with_cross_entropy(x1, y1, axis=1)
            loss2 = layers.softmax_with_cross_entropy(x1, y2, axis=2)
            loss3 = layers.softmax_with_cross_entropy(x1, y3, axis=3)
            loss4 = layers.softmax_with_cross_entropy(x1, y3, axis=-1)
            self.assertIsNotNone(loss1)
            self.assertIsNotNone(loss2)
            self.assertIsNotNone(loss3)
            self.assertIsNotNone(loss4)
3431
            return loss4
3432 3433

    def make_smooth_l1(self):
3434 3435 3436
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3437 3438
            x = self._get_data(name='x', shape=[4], dtype='float32')
            y = self._get_data(name='label', shape=[4], dtype='float32')
3439
            loss = layers.smooth_l1(x, y)
3440
            return loss
3441

3442
    def make_scatter(self):
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x', shape=[3, 3], append_batch_size=False, dtype='float32'
            )
            idx = self._get_data(
                name='idx', shape=[2], append_batch_size=False, dtype='int32'
            )
            updates = self._get_data(
                name='updates',
                shape=[2, 3],
                append_batch_size=False,
                dtype='float32',
            )
3458
            out = layers.scatter(input=x, index=idx, updates=updates)
3459
            return out
Y
yangyaming 已提交
3460

3461 3462 3463 3464
    def make_one_hot(self):
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
            one_hot_label = layers.one_hot(input=label, depth=10)
3465
            return one_hot_label
3466

3467 3468 3469 3470 3471
    def make_label_smooth(self):
        # TODO(minqiyang): support gpu ut
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
3472
            one_hot_label = layers.one_hot(input=label, depth=10)
3473 3474 3475 3476
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="int32"
            )
            return smooth_label
3477

3478
    def make_topk(self):
3479 3480 3481
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3482 3483
            data = self._get_data(name="label", shape=[200], dtype="float32")
            values, indices = layers.topk(data, k=5)
3484 3485
            return values
            return indices
J
jerrywgz 已提交
3486

3487
    def make_resize_bilinear(self):
3488 3489 3490
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3491
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
B
baiyf 已提交
3492
            output = layers.resize_bilinear(x, out_shape=[12, 12])
3493
            return output
K
Kaipeng Deng 已提交
3494 3495

    def make_resize_bilinear_by_scale(self):
3496 3497 3498
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3499 3500
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_bilinear(x, scale=1.5)
3501
            return output
3502

3503
    def make_resize_nearest(self):
K
Kaipeng Deng 已提交
3504
        try:
3505 3506 3507
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
K
Kaipeng Deng 已提交
3508 3509 3510 3511 3512 3513
                x = self._get_data(name='x1', shape=[3, 9, 6], dtype="float32")
                output = layers.resize_nearest(x, out_shape=[12, 12])
        except ValueError:
            pass

        try:
3514 3515 3516 3517 3518 3519
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
                x = self._get_data(
                    name='x2', shape=[3, 9, 6, 7], dtype="float32"
                )
K
Kaipeng Deng 已提交
3520 3521 3522 3523
                output = layers.resize_nearest(x, out_shape=[12, 12, 12])
        except ValueError:
            pass

3524 3525 3526
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3527
            x = self._get_data(name='x', shape=[3, 9, 6], dtype="float32")
3528
            output = layers.resize_nearest(x, out_shape=[12, 12])
3529
            return output
K
Kaipeng Deng 已提交
3530 3531

    def make_resize_nearest_by_scale(self):
3532 3533 3534
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3535 3536
            x = self._get_data(name='x1', shape=[3, 9, 6], dtype="float32")
            output = layers.resize_nearest(x, scale=1.8)
3537
            return output
K
Kaipeng Deng 已提交
3538 3539 3540

    def make_resize_trilinear(self):
        try:
3541 3542 3543
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
K
Kaipeng Deng 已提交
3544 3545 3546 3547 3548 3549
                x = self._get_data(name='x2', shape=[3, 9, 6], dtype="float32")
                output = layers.resize_trilinear(x, out_shape=[12, 12, 12])
        except ValueError:
            pass

        try:
3550 3551 3552 3553 3554 3555
            with program_guard(
                fluid.default_main_program(), fluid.default_startup_program()
            ):
                x = self._get_data(
                    name='x', shape=[3, 9, 6, 7], dtype="float32"
                )
K
Kaipeng Deng 已提交
3556 3557 3558 3559
                output = layers.resize_trilinear(x, out_shape=[12, 12])
        except ValueError:
            pass

3560 3561 3562
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3563 3564
            x = self._get_data(name='x', shape=[3, 9, 6, 7], dtype="float32")
            output = layers.resize_trilinear(x, out_shape=[12, 12, 12])
3565
            return output
K
Kaipeng Deng 已提交
3566 3567

    def make_resize_trilinear_by_scale(self):
3568 3569 3570
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3571 3572
            x = self._get_data(name='x', shape=[3, 9, 6, 7], dtype="float32")
            output = layers.resize_trilinear(x, scale=2.1)
3573
            return output
3574

3575
    def make_polygon_box_transform(self):
3576 3577 3578
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3579
            x = self._get_data(name='x', shape=[8, 4, 4], dtype="float32")
3580
            output = layers.polygon_box_transform(input=x)
3581
            return output
3582

3583
    def make_l2_normalize(self):
3584 3585 3586
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3587
            x = self._get_data(name='x', shape=[8, 7, 10], dtype="float32")
3588
            output = layers.l2_normalize(x, axis=1)
3589
            return output
3590

3591
    def make_crop(self):
3592 3593 3594
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3595 3596
            x = self._get_data(name='x', shape=[3, 5], dtype="float32")
            y = self._get_data(name='y', shape=[2, 3], dtype="float32")
3597
            output = layers.crop(x, shape=y)
3598
            return output
3599 3600 3601 3602

    def make_mean_iou(self):
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            x = self._get_data(name='x', shape=[16], dtype='int32')
M
minqiyang 已提交
3603 3604
            y = self._get_data(name='label', shape=[16], dtype='int32')
            iou = layers.mean_iou(x, y, self._high_data_bound)
3605
            return iou
W
whs 已提交
3606

3607
    def make_argsort(self):
3608 3609 3610
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3611
            data = self._get_data(name='x', shape=[2, 3, 3], dtype="float32")
3612
            out, ids = layers.argsort(input=data, axis=1)
3613 3614
            return out
            return ids
3615 3616

    def make_rank_loss(self):
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            label = self._get_data(
                name='label',
                append_batch_size=False,
                shape=[16, 1],
                dtype="float32",
            )
            left = self._get_data(
                name='left',
                append_batch_size=False,
                shape=[16, 1],
                dtype="float32",
            )
            right = self._get_data(
                name='right',
                append_batch_size=False,
                shape=[16, 1],
                dtype="float32",
            )
3638
            out = layers.rank_loss(label, left, right, name="rank_loss")
3639
            return out
3640

3641
    def make_shape(self):
3642 3643 3644 3645 3646 3647
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 100, 100], dtype="float32"
            )
G
fix  
gongweibao 已提交
3648
            out = layers.shape(input)
3649
            return out
B
Bai Yifan 已提交
3650

3651
    def make_pad2d(self):
3652 3653 3654 3655 3656 3657
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 100, 100], dtype="float32"
            )
3658
            paddings = layers.fill_constant(shape=[4], dtype='int32', value=1)
3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
            out = layers.pad2d(
                input,
                paddings=[1, 2, 3, 4],
                mode='reflect',
                data_format='NCHW',
                name="shape",
            )
            out_1 = layers.pad2d(
                input,
                paddings=paddings,
                mode='reflect',
                data_format='NCHW',
                name="shape",
            )
            return out
            return out_1
W
whs 已提交
3675

3676
    def make_prelu(self):
3677 3678 3679 3680 3681 3682
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[5, 200, 100, 100], dtype="float32"
            )
J
jerrywgz 已提交
3683
            mode = 'channel'
3684 3685 3686 3687 3688 3689 3690
            out = layers.prelu(
                input,
                mode,
                param_attr=ParamAttr(initializer=Constant(1.0)),
                name='prelu',
            )
            return out
J
jerrywgz 已提交
3691

3692
    def make_sigmoid(self):
3693 3694 3695
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3696
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3697
            out = layers.sigmoid(input, name='sigmoid')
3698
            return out
T
tensor-tang 已提交
3699

3700
    def make_exp(self):
3701 3702 3703
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3704
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3705
            out = layers.exp(input, name='exp')
3706
            return out
T
tensor-tang 已提交
3707

3708
    def make_tanh(self):
3709 3710 3711
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3712
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3713
            out = layers.tanh(input, name='tanh')
3714
            return out
T
tensor-tang 已提交
3715

3716
    def make_tanh_shrink(self):
3717 3718 3719
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3720
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3721
            out = layers.tanh_shrink(input, name='tanh_shrink')
3722
            return out
T
tensor-tang 已提交
3723

3724
    def make_sqrt(self):
3725 3726 3727
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3728
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3729
            out = layers.sqrt(input, name='sqrt')
3730
            return out
T
tensor-tang 已提交
3731

3732
    def make_abs(self):
3733 3734 3735
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3736
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3737
            out = layers.abs(input, name='abs')
3738
            return out
T
tensor-tang 已提交
3739

3740
    def make_ceil(self):
3741 3742 3743
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3744
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3745
            out = layers.ceil(input, name='ceil')
3746
            return out
T
tensor-tang 已提交
3747

3748
    def make_floor(self):
3749 3750 3751
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3752
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3753
            out = layers.floor(input, name='floor')
3754
            return out
T
tensor-tang 已提交
3755

3756
    def make_cos(self):
3757 3758 3759
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3760
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3761
            out = layers.cos(input, name='cos')
3762
            return out
T
tensor-tang 已提交
3763

3764
    def make_sin(self):
3765 3766 3767
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3768
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3769
            out = layers.sin(input, name='sin')
3770
            return out
T
tensor-tang 已提交
3771

3772
    def make_round(self):
3773 3774 3775
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3776
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3777
            out = layers.round(input, name='round')
3778
            return out
T
tensor-tang 已提交
3779

3780
    def make_reciprocal(self):
3781 3782 3783
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3784
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3785
            out = layers.reciprocal(input, name='reciprocal')
3786
            return out
T
tensor-tang 已提交
3787

3788
    def make_square(self):
3789 3790 3791
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3792
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3793
            out = layers.square(input, name='square')
3794
            return out
T
tensor-tang 已提交
3795

3796
    def make_softplus(self):
3797 3798 3799
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3800
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3801
            out = layers.softplus(input, name='softplus')
3802
            return out
T
tensor-tang 已提交
3803

3804
    def make_softsign(self):
3805 3806 3807
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3808
            input = self._get_data(name="input", shape=[16], dtype="float32")
T
tensor-tang 已提交
3809
            out = layers.softsign(input, name='softsign')
3810
            return out
T
tensor-tang 已提交
3811

K
Kaipeng Deng 已提交
3812
    def make_mish(self):
3813 3814 3815
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
3816 3817
            input = self._get_data(name="input", shape=[16], dtype="float32")
            out = layers.mish(input, name='mish')
3818
            return out
K
Kaipeng Deng 已提交
3819

3820
    def make_cross_entropy(self):
3821 3822 3823
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3824 3825
            x = self._get_data(name="x", shape=[30, 10], dtype="float32")
            label = self._get_data(name="label", shape=[30, 1], dtype="int64")
3826 3827
            mode = 'channel'
            out = layers.cross_entropy(x, label, False, 4)
3828
            return out
3829

3830 3831 3832 3833 3834
    def make_bpr_loss(self):
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            x = self._get_data(name="x", shape=[30, 10], dtype="float32")
            label = self._get_data(name="label", shape=[30, 1], dtype="int64")
3835
            out = layers.bpr_loss(x, label)
3836
            return out
3837

3838
    def make_expand(self):
3839 3840 3841
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3842
            x = self._get_data(name="input", shape=[10], dtype='int32')
W
whs 已提交
3843
            out = layers.expand(x, [1, 2])
3844
            return out
W
whs 已提交
3845

3846
    def make_uniform_random_batch_size_like(self):
3847 3848 3849 3850 3851 3852
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )
G
fix  
gongweibao 已提交
3853
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
3854
            return out
G
fix  
gongweibao 已提交
3855

3856
    def make_gaussian_random(self):
3857 3858 3859
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
G
fix  
gongweibao 已提交
3860
            out = layers.gaussian_random(shape=[20, 30])
3861
            return out
G
fix  
gongweibao 已提交
3862

3863
    def make_sampling_id(self):
3864 3865 3866 3867 3868 3869 3870 3871 3872
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False,
            )
G
fix  
gongweibao 已提交
3873 3874

            out = layers.sampling_id(x)
3875
            return out
G
fix  
gongweibao 已提交
3876

3877
    def make_gaussian_random_batch_size_like(self):
3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0
            )
            return out
G
fix  
gongweibao 已提交
3889

3890
    def make_sum(self):
3891 3892 3893 3894 3895 3896
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )
G
fix  
gongweibao 已提交
3897 3898

            out = layers.sum(input)
3899
            return out
G
fix  
gongweibao 已提交
3900

3901
    def make_slice(self):
G
fix  
gongweibao 已提交
3902 3903 3904 3905
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        axes = [0, 1, 2]

3906 3907 3908 3909 3910 3911
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32'
            )
G
fix  
gongweibao 已提交
3912 3913

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
3914
            return out
G
merge  
gongweibao 已提交
3915

3916
    def make_scale_variable(self):
3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32'
            )
            scale_var = self._get_data(
                name="scale",
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
3929
            out = layers.scale(input, scale=scale_var)
3930 3931
            return out

3932
    def make_softshrink(self):
3933 3934 3935
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3936
            input = self._get_data(name="input", shape=[16], dtype="float32")
3937
            out = layers.softshrink(input, alpha=0.3)
3938
            return out
G
fix  
gongweibao 已提交
3939

M
minqiyang 已提交
3940
    def make_iou_similarity(self):
3941 3942 3943
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
M
minqiyang 已提交
3944 3945
            x = self._get_data(name="x", shape=[4], dtype="float32")
            y = self._get_data(name="y", shape=[4], dtype="float32")
X
Xin Pan 已提交
3946
            out = layers.iou_similarity(x, y, name='iou_similarity')
3947
            return out
3948 3949

    def make_grid_sampler(self):
3950 3951 3952
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3953 3954
            x = self._get_data(name='x', shape=[3, 5, 7], dtype='float32')
            grid = self._get_data(name='grid', shape=[5, 7, 2], dtype='float32')
D
dengkaipeng 已提交
3955
            out = layers.grid_sampler(x, grid)
3956
            return out
3957 3958

    def make_bilinear_tensor_product_layer(self):
3959 3960 3961
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
3962 3963 3964 3965
            data = self._get_data(name='data', shape=[4], dtype="float32")

            theta = self._get_data(name="theta", shape=[5], dtype="float32")
            out = layers.bilinear_tensor_product(data, theta, 6)
3966
            return out
3967 3968

    def make_batch_norm(self):
3969 3970 3971 3972 3973 3974
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
3975
            out = layers.batch_norm(data)
3976
            return out
3977

3978
    def make_batch_norm_momentum_variable(self):
3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
            momentum = self._get_data(
                name='momentum',
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
3991
            out = layers.batch_norm(data, momentum=momentum)
3992
            return out
3993

K
Kaipeng Deng 已提交
3994
    def make_inplace_abn(self):
3995 3996 3997 3998 3999 4000
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
K
Kaipeng Deng 已提交
4001
            out = layers.inplace_abn(data, act='leaky_relu', act_alpha=0.2)
4002
            return out
K
Kaipeng Deng 已提交
4003 4004

    def make_inplace_abn_momentum_variable(self):
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
            momentum = self._get_data(
                name='momentum',
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
            out = layers.inplace_abn(
                data, momentum=momentum, act='elu', act_alpha=2.0
            )
            return out
K
Kaipeng Deng 已提交
4021

4022
    def make_range(self):
4023 4024 4025
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
C
ccrrong 已提交
4026 4027 4028
            paddle.arange(0, 10, 2, 'int32')
            paddle.arange(0.1, 10.0, 0.2, 'float32')
            paddle.arange(0.1, 10.0, 0.2, 'float64')
4029 4030 4031
            start = layers.fill_constant(shape=[1], value=0.1, dtype="float32")
            end = layers.fill_constant(shape=[1], value=10.0, dtype="float32")
            step = layers.fill_constant(shape=[1], value=0.2, dtype="float32")
C
ccrrong 已提交
4032
            y = paddle.arange(start, end, step, 'float64')
4033 4034 4035
            return y

    def make_spectral_norm(self):
4036 4037 4038 4039 4040 4041 4042 4043 4044
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            weight = self._get_data(
                name='weight',
                shape=[2, 3, 32, 32],
                dtype="float32",
                append_batch_size=False,
            )
4045
            out = layers.spectral_norm(weight, dim=1, power_iters=1)
4046
            return out
4047 4048

    def make_kldiv_loss(self):
4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False,
            )
            target = self._get_data(
                name='target',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False,
            )
4064
            loss = layers.kldiv_loss(x=x, target=target, reduction='batchmean')
4065
            return loss
4066 4067

    def make_temporal_shift(self):
4068 4069 4070
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
4071 4072
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            out = layers.temporal_shift(x, seg_num=2, shift_ratio=0.2)
4073
            return out
4074 4075

    def make_shuffle_channel(self):
4076 4077 4078
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
4079 4080
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            out = layers.shuffle_channel(x, group=4)
4081
            return out
4082

M
minqiyang 已提交
4083
    def make_fsp_matrix(self):
4084 4085 4086
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
4087 4088 4089
            x = self._get_data(name="X", shape=[16, 4, 4], dtype="float32")
            y = self._get_data(name="Y", shape=[8, 4, 4], dtype="float32")
            out = layers.fsp_matrix(x, y)
4090
            return out
4091

M
minqiyang 已提交
4092
    def make_pixel_shuffle(self):
4093 4094 4095
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
M
minqiyang 已提交
4096 4097
            x = self._get_data(name="X", shape=[9, 4, 4], dtype="float32")
            out = layers.pixel_shuffle(x, upscale_factor=3)
4098
            return out
M
minqiyang 已提交
4099

R
ruri 已提交
4100
    def make_mse_loss(self):
4101 4102 4103
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
R
ruri 已提交
4104 4105 4106
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
            out = layers.mse_loss(input=x, label=y)
4107
            return out
R
ruri 已提交
4108

4109
    def make_square_error_cost(self):
4110 4111 4112
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
4113 4114 4115
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
            out = layers.square_error_cost(input=x, label=y)
4116
            return out
4117

4118 4119 4120 4121
    def test_dynamic_lstmp(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            hidden_dim, proj_dim = 16, 8
4122 4123 4124
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1
            )
4125 4126
            fc_out = layers.fc(input=seq_data, size=4 * hidden_dim)
            self.assertIsNotNone(
4127 4128 4129 4130
                layers.dynamic_lstmp(
                    input=fc_out, size=4 * hidden_dim, proj_size=proj_dim
                )
            )
4131 4132 4133 4134 4135 4136

    def test_im2sequence(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 128, 128], dtype='float32')
            y = layers.data(name='y', shape=[], dtype='float32')
4137 4138 4139 4140 4141 4142 4143 4144
            output = layers.im2sequence(
                input=x,
                input_image_size=y,
                stride=[1, 1],
                filter_size=[2, 2],
                out_stride=[1, 1],
            )
            return output
4145 4146 4147 4148

    def test_lod_reset(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4149
            # case 1
4150
            x = layers.data(name='x', shape=[10], dtype='float32')
4151 4152 4153
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2
            )
4154 4155 4156
            z = layers.lod_reset(x=x, y=y)
            self.assertTrue(z.lod_level == 2)
            # case 2
4157
            lod_tensor_in = layers.data(name='lod_in', shape=[1], dtype='int32')
4158 4159 4160 4161 4162 4163
            z = layers.lod_reset(x=x, y=lod_tensor_in)
            self.assertTrue(z.lod_level == 1)
            # case 3
            z = layers.lod_reset(x=x, target_lod=[1, 2, 3])
            self.assertTrue(z.lod_level == 1)
            return z
4164

W
whs 已提交
4165
    def test_affine_grid(self):
4166
        with self.static_graph():
W
whs 已提交
4167 4168 4169 4170
            data = layers.data(name='data', shape=[2, 3, 3], dtype="float32")
            out, ids = layers.argsort(input=data, axis=1)

            theta = layers.data(name="theta", shape=[2, 3], dtype="float32")
4171
            out_shape = layers.data(name="out_shape", shape=[-1], dtype="int32")
4172 4173
            data_0 = paddle.nn.functional.affine_grid(theta, out_shape)
            data_1 = paddle.nn.functional.affine_grid(theta, [5, 3, 28, 28])
W
whs 已提交
4174 4175 4176

            self.assertIsNotNone(data_0)
            self.assertIsNotNone(data_1)
D
dengkaipeng 已提交
4177

W
wangchaochaohu 已提交
4178 4179 4180 4181 4182 4183 4184
    def test_stridedslice(self):
        axes = [0, 1, 2]
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        strides = [1, 1, 1]
        with self.static_graph():
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
4185 4186 4187
            out = layers.strided_slice(
                x, axes=axes, starts=starts, ends=ends, strides=strides
            )
W
wangchaochaohu 已提交
4188 4189
            return out

4190 4191
    def test_fill_constant_batch_size_like(self):
        with self.static_graph():
4192 4193 4194 4195 4196 4197
            like = fluid.layers.fill_constant(
                shape=[1, 200], value=10, dtype='int64'
            )
            out = layers.fill_constant_batch_size_like(
                input=like, shape=[2, 3300], value=1315454564656, dtype='int64'
            )
4198 4199
            return out

4200 4201 4202 4203
    def test_psroi_pool(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
4204 4205 4206
            rois = layers.data(
                name="rois", shape=[4], dtype="float32", lod_level=1
            )
4207
            output = layers.psroi_pool(x, rois, 5, 0.25, 7, 7)
4208
            return output
4209

4210 4211 4212 4213
    def test_sequence_expand(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10], dtype='float32')
4214 4215 4216 4217
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2
            )
            return layers.sequence_expand(x=x, y=y, ref_level=1)
4218

4219 4220 4221 4222 4223
    def test_sequence_reshape(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8], dtype='float32', lod_level=1)
            out = layers.sequence_reshape(input=x, new_dim=16)
4224
            return out
4225

4226 4227 4228 4229
    def test_sequence_unpad(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10, 5], dtype='float32')
4230
            length = layers.data(name='length', shape=[], dtype='int64')
4231
            return layers.sequence_unpad(x=x, length=length)
4232

4233 4234 4235
    def test_sequence_softmax(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4236 4237 4238
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1
            )
4239
            seq = layers.fc(input=seq_data, size=20)
4240
            return layers.sequence_softmax(seq)
4241

4242 4243 4244 4245 4246
    def test_sequence_unsqueeze(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8, 2], dtype='float32')
            out = layers.unsqueeze(input=x, axes=[1])
4247
            return out
4248

4249 4250 4251
    def test_sequence_scatter(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
            x = layers.data(
                name='x', shape=[3, 6], append_batch_size=False, dtype='float32'
            )
            idx = layers.data(
                name='idx',
                shape=[12, 1],
                append_batch_size=False,
                dtype='int32',
                lod_level=1,
            )
            updates = layers.data(
                name='updates',
                shape=[12, 1],
                append_batch_size=False,
                dtype='float32',
                lod_level=1,
            )
4269
            out = layers.sequence_scatter(input=x, index=idx, updates=updates)
4270
            return out
W
whs 已提交
4271

4272 4273 4274 4275
    def test_sequence_slice(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            import numpy as np
4276 4277 4278 4279

            seqs = layers.data(
                name='x', shape=[10, 5], dtype='float32', lod_level=1
            )
4280 4281
            offset = layers.assign(input=np.array([[0, 1]]).astype('int32'))
            length = layers.assign(input=np.array([[2, 1]]).astype('int32'))
4282 4283 4284 4285
            out = layers.sequence_slice(
                input=seqs, offset=offset, length=length
            )
            return out
W
whs 已提交
4286

J
Jiawei Wang 已提交
4287 4288 4289
    def test_filter_by_instag(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307
            x1 = layers.data(
                name='Ins', shape=[32, 1], dtype='float32', lod_level=0
            )
            x2 = layers.data(
                name='Ins_tag',
                shape=[32, 1],
                dtype='int64',
                lod_level=0,
                stop_gradient=True,
            )
            x3 = layers.create_global_var(
                shape=[1, 1],
                value=20,
                dtype='int64',
                persistable=True,
                force_cpu=True,
                name='Filter_tag',
            )
J
Jiawei Wang 已提交
4308 4309
            out1, out2 = layers.filter_by_instag(x1, x2, x3, is_lod=True)

Z
zhoushiyu 已提交
4310 4311 4312
    def test_shuffle_batch(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4313 4314 4315
            x = layers.data(
                name='X', shape=[4, 50], dtype='float32', lod_level=0
            )
Z
zhoushiyu 已提交
4316 4317 4318 4319 4320
            out1 = fluid.contrib.layers.shuffle_batch(x)
            default_main_program().random_seed = 1000
            out2 = fluid.contrib.layers.shuffle_batch(x)
            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
4321
            return out1
Z
zhoushiyu 已提交
4322

4323 4324 4325 4326
    def test_partial_sum(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
4327 4328 4329 4330
            sum = fluid.contrib.layers.partial_sum(
                [x, y], start_index=0, length=2
            )
            return sum
4331

S
ShenLiang 已提交
4332 4333 4334 4335 4336 4337 4338 4339 4340
    def test_batch_fc(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[16, 2, 3], dtype="float32")
            out = fluid.contrib.layers.batch_fc(
                input=input,
                param_size=[16, 3, 10],
                param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="w_0",
4341 4342
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
S
ShenLiang 已提交
4343 4344 4345 4346
                bias_size=[16, 10],
                bias_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="b_0",
4347 4348 4349 4350 4351
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
                act="relu",
            )
        return out
S
ShenLiang 已提交
4352

S
ShenLiang 已提交
4353 4354 4355
    def test_rank_attention(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[None, 2], dtype="float32")
4356 4357 4358
            rank_offset = fluid.data(
                name="rank_offset", shape=[None, 7], dtype="int32"
            )
S
ShenLiang 已提交
4359 4360 4361 4362 4363 4364 4365
            out = fluid.contrib.layers.rank_attention(
                input=input,
                rank_offset=rank_offset,
                rank_param_shape=[18, 3],
                rank_param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="ubm_rank_param.w_0",
4366 4367 4368 4369 4370
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
                max_rank=3,
            )
            return out
S
ShenLiang 已提交
4371

4372
    def test_roi_pool(self):
4373 4374 4375 4376
        x_np = np.random.rand(2, 3, 8, 8).astype('float32')
        rois_np = np.random.rand(3, 4).astype('float32')
        rois_num_np = np.array([1, 2]).astype('int32')

4377
        with self.static_graph():
4378 4379 4380 4381
            x = layers.data(name="x", shape=[3, 8, 8], dtype="float32")
            rois = layers.data(name="rois", shape=[4], dtype="float32")
            rois_num = fluid.data(name="rois_num", shape=[None], dtype="int32")
            output = layers.roi_pool(x, rois, 4, 4, 0.5, rois_num=rois_num)
4382 4383 4384 4385
            static_res = self.get_static_graph_result(
                feed={'x': x_np, 'rois': rois_np, 'rois_num': rois_num_np},
                fetch_list=[output],
            )[0]
4386 4387

        with self.dynamic_graph():
4388 4389 4390 4391
            with _test_eager_guard():
                x_dy = base.to_variable(x_np)
                rois_dy = base.to_variable(rois_np)
                rois_num_dy = base.to_variable(rois_num_np)
4392 4393 4394
                dy_eager_res = layers.roi_pool(
                    x_dy, rois_dy, 4, 4, 0.5, rois_num=rois_num_dy
                )
4395 4396
                dy_eager_res_value = dy_eager_res[0].numpy()

4397 4398 4399
            x_dy = base.to_variable(x_np)
            rois_dy = base.to_variable(rois_np)
            rois_num_dy = base.to_variable(rois_num_np)
4400 4401 4402
            dy_res = layers.roi_pool(
                x_dy, rois_dy, 4, 4, 0.5, rois_num=rois_num_dy
            )
4403
            dy_res_value = dy_res[0].numpy()
4404 4405
        np.testing.assert_array_equal(static_res, dy_res_value)
        np.testing.assert_array_equal(static_res, dy_eager_res_value)
4406 4407 4408 4409 4410 4411 4412 4413

    def test_sequence_enumerate(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="input", shape=[1], dtype='int32', lod_level=1)
            out = layers.sequence_enumerate(input=x, win_size=2, pad_value=0)

    def test_roi_align(self):
4414 4415 4416 4417
        x_np = np.random.rand(2, 3, 8, 8).astype('float32')
        rois_np = np.random.rand(3, 4).astype('float32')
        rois_num_np = np.array([1, 2]).astype('int32')

4418
        with self.static_graph():
4419 4420 4421 4422
            x = layers.data(name="x", shape=[3, 8, 8], dtype="float32")
            rois = layers.data(name="rois", shape=[4], dtype="float32")
            rois_num = fluid.data(name="rois_num", shape=[None], dtype="int32")
            output = layers.roi_align(x, rois, 4, 4, 0.5, 2, rois_num=rois_num)
4423 4424 4425 4426
            static_res = self.get_static_graph_result(
                feed={'x': x_np, 'rois': rois_np, 'rois_num': rois_num_np},
                fetch_list=[output],
            )[0]
4427 4428

        with self.dynamic_graph():
4429 4430 4431 4432
            with _test_eager_guard():
                x_dy = base.to_variable(x_np)
                rois_dy = base.to_variable(rois_np)
                rois_num_dy = base.to_variable(rois_num_np)
4433 4434 4435
                dy_eager_res = layers.roi_align(
                    x_dy, rois_dy, 4, 4, 0.5, 2, rois_num=rois_num_dy
                )
4436 4437
                dy_eager_res_value = dy_eager_res.numpy()

4438 4439 4440
            x_dy = base.to_variable(x_np)
            rois_dy = base.to_variable(rois_np)
            rois_num_dy = base.to_variable(rois_num_np)
4441 4442 4443
            dy_res = layers.roi_align(
                x_dy, rois_dy, 4, 4, 0.5, 2, rois_num=rois_num_dy
            )
4444
            dy_res_value = dy_res.numpy()
4445 4446
        np.testing.assert_array_equal(static_res, dy_eager_res_value)
        np.testing.assert_array_equal(static_res, dy_res_value)
4447

4448 4449 4450 4451 4452 4453 4454
    def test_dice_loss(self):
        num_classes = 4
        eps = 1e-6
        input_np = np.random.rand(2, 3, num_classes).astype('float32')
        label_np = np.random.randint(0, num_classes, [2, 3, 1], dtype=np.int64)

        with self.static_graph():
4455 4456 4457 4458 4459 4460
            input_ = layers.data(
                name="input", shape=[None, 3, num_classes], dtype="float32"
            )
            label_ = layers.data(
                name="label", shape=[None, 3, 1], dtype="int64"
            )
4461
            output = layers.dice_loss(input_, label_, eps)
4462 4463 4464
            static_res = self.get_static_graph_result(
                feed={'input': input_np, 'label': label_np}, fetch_list=[output]
            )[0]
4465 4466

        with self.dynamic_graph():
4467 4468 4469 4470 4471 4472
            with _test_eager_guard():
                input_ = base.to_variable(input_np)
                label_ = base.to_variable(label_np)
                dy_eager_res = layers.dice_loss(input_, label_, eps)
                dy_eager_res_value = dy_eager_res.numpy()

4473 4474 4475 4476
            input_ = base.to_variable(input_np)
            label_ = base.to_variable(label_np)
            dy_res = layers.dice_loss(input_, label_, eps)
            dy_res_value = dy_res.numpy()
4477 4478
        np.testing.assert_array_equal(static_res, dy_res_value)
        np.testing.assert_array_equal(static_res, dy_eager_res_value)
4479

4480 4481 4482 4483
    def test_roi_perspective_transform(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
4484 4485 4486
            rois = layers.data(
                name="rois", shape=[8], dtype="float32", lod_level=1
            )
4487
            output = layers.roi_perspective_transform(x, rois, 7, 7, 0.6)
4488
            return output
4489 4490 4491 4492 4493 4494

    def test_row_conv(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[16], dtype='float32', lod_level=1)
            out = layers.row_conv(input=x, future_context_size=2)
4495
            return out
4496 4497 4498 4499

    def test_simple_conv2d(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
4500 4501 4502 4503 4504 4505
            images = layers.data(
                name='pixel', shape=[3, 48, 48], dtype='float32'
            )
            return layers.conv2d(
                input=images, num_filters=3, filter_size=[4, 4]
            )
4506 4507 4508 4509 4510 4511

    def test_squeeze(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
            x = layers.data(name='x', shape=[1, 1, 4], dtype='float32')
            out = layers.squeeze(input=x, axes=[2])
4512
            return out
4513 4514 4515 4516

    def test_flatten(self):
        # TODO(minqiyang): dygraph do not support op without kernel now
        with self.static_graph():
4517 4518 4519 4520 4521 4522
            x = layers.data(
                name='x',
                append_batch_size=False,
                shape=[4, 4, 3],
                dtype="float32",
            )
4523
            out = layers.flatten(x, axis=1, name="flatten")
4524
            return out
4525

Z
zhoukunsheng 已提交
4526 4527 4528 4529 4530 4531 4532
    def test_linspace(self):
        program = Program()
        with program_guard(program):
            out = layers.linspace(20, 10, 5, 'float64')
            self.assertIsNotNone(out)
        print(str(program))

4533 4534 4535 4536
    def test_unfold(self):
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 20, 20], dtype='float32')
            out = layers.unfold(x, [3, 3], 1, 1, 1)
4537
            return out
4538

4539 4540 4541 4542
    def test_partial_concat(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
4543 4544 4545 4546 4547 4548
            concat1 = fluid.contrib.layers.partial_concat(
                [x, y], start_index=0, length=2
            )
            concat2 = fluid.contrib.layers.partial_concat(
                x, start_index=0, length=-1
            )
4549 4550
            return concat1, concat2

C
cjt222 已提交
4551
    def test_deform_roi_pooling(self):
4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='input',
                shape=[2, 3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
            rois = layers.data(
                name="rois", shape=[4], dtype='float32', lod_level=1
            )
            trans = layers.data(
                name="trans",
                shape=[2, 3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
            out = layers.deformable_roi_pooling(
                input=input,
                rois=rois,
                trans=trans,
                no_trans=False,
                spatial_scale=1.0,
                group_size=(1, 1),
                pooled_height=8,
                pooled_width=8,
                part_size=(8, 8),
                sample_per_part=4,
                trans_std=0.1,
            )
        return out
C
cjt222 已提交
4584

4585
    def test_retinanet_target_assign(self):
4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            bbox_pred = layers.data(
                name='bbox_pred',
                shape=[1, 100, 4],
                append_batch_size=False,
                dtype='float32',
            )
            cls_logits = layers.data(
                name='cls_logits',
                shape=[1, 100, 10],
                append_batch_size=False,
                dtype='float32',
            )
            anchor_box = layers.data(
                name='anchor_box',
                shape=[100, 4],
                append_batch_size=False,
                dtype='float32',
            )
            anchor_var = layers.data(
                name='anchor_var',
                shape=[100, 4],
                append_batch_size=False,
                dtype='float32',
            )
            gt_boxes = layers.data(
                name='gt_boxes',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32',
            )
            gt_labels = layers.data(
                name='gt_labels',
                shape=[10, 1],
                append_batch_size=False,
                dtype='int32',
            )
            is_crowd = layers.data(
                name='is_crowd',
                shape=[1],
                append_batch_size=False,
                dtype='int32',
            )
            im_info = layers.data(
                name='im_info',
                shape=[1, 3],
                append_batch_size=False,
                dtype='float32',
            )
            return layers.retinanet_target_assign(
                bbox_pred,
                cls_logits,
                anchor_box,
                anchor_var,
                gt_boxes,
                gt_labels,
                is_crowd,
                im_info,
                10,
            )
4648

4649
    def test_sigmoid_focal_loss(self):
4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='data',
                shape=[10, 80],
                append_batch_size=False,
                dtype='float32',
            )
            label = layers.data(
                name='label',
                shape=[10, 1],
                append_batch_size=False,
                dtype='int32',
            )
            fg_num = layers.data(
                name='fg_num', shape=[1], append_batch_size=False, dtype='int32'
            )
            out = fluid.layers.sigmoid_focal_loss(
                x=input, label=label, fg_num=fg_num, gamma=2.0, alpha=0.25
            )
            return out
4672

4673
    def test_addmm(self):
4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='input_data',
                shape=[3, 3],
                append_batch_size=False,
                dtype='float32',
            )
            x = layers.data(
                name='x', shape=[3, 2], append_batch_size=False, dtype='float32'
            )
            y = layers.data(
                name='y', shape=[2, 3], append_batch_size=False, dtype='float32'
            )
4689 4690

            out = paddle.addmm(input=input, x=x, y=y)
4691
            return out
4692

4693
    def test_retinanet_detection_output(self):
4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            bboxes = layers.data(
                name='bboxes',
                shape=[1, 21, 4],
                append_batch_size=False,
                dtype='float32',
            )
            scores = layers.data(
                name='scores',
                shape=[1, 21, 10],
                append_batch_size=False,
                dtype='float32',
            )
            anchors = layers.data(
                name='anchors',
                shape=[21, 4],
                append_batch_size=False,
                dtype='float32',
            )
            im_info = layers.data(
                name="im_info",
                shape=[1, 3],
                append_batch_size=False,
                dtype='float32',
            )
4721 4722 4723 4724 4725 4726 4727 4728 4729
            nmsed_outs = layers.retinanet_detection_output(
                bboxes=[bboxes, bboxes],
                scores=[scores, scores],
                anchors=[anchors, anchors],
                im_info=im_info,
                score_threshold=0.05,
                nms_top_k=1000,
                keep_top_k=100,
                nms_threshold=0.3,
4730 4731 4732
                nms_eta=1.0,
            )
            return nmsed_outs
4733

4734 4735 4736
    def test_warpctc_with_padding(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
4737 4738 4739 4740 4741 4742
            input_length = layers.data(
                name='logits_length', shape=[11], dtype='int64'
            )
            label_length = layers.data(
                name='labels_length', shape=[12], dtype='int64'
            )
4743
            label = layers.data(name='label', shape=[12, 1], dtype='int32')
4744 4745 4746 4747 4748 4749 4750 4751 4752 4753
            predict = layers.data(
                name='predict', shape=[4, 4, 8], dtype='float32'
            )
            output = layers.warpctc(
                input=predict,
                label=label,
                input_length=input_length,
                label_length=label_length,
            )
            return output
4754

4755 4756
    def test_edit_distance(self):
        with self.static_graph():
4757 4758 4759 4760 4761 4762
            predict = layers.data(
                name='predict', shape=[-1, 1], dtype='int64', lod_level=1
            )
            label = layers.data(
                name='label', shape=[-1, 1], dtype='int64', lod_level=1
            )
4763 4764 4765
            evaluator = fluid.evaluator.EditDistance(predict, label)
            return evaluator.metrics

4766 4767 4768 4769
    def test_basic_gru(self):
        input_size = 128
        hidden_size = 256
        with self.static_graph():
4770 4771 4772 4773 4774 4775 4776 4777 4778
            input = fluid.data(
                name="input", shape=[None, None, input_size], dtype='float32'
            )
            pre_hidden = fluid.data(
                name="pre_hidden", shape=[None, hidden_size], dtype='float32'
            )
            sequence_length = fluid.data(
                name="sequence_length", shape=[None], dtype='int32'
            )
4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789

            for bidirectional in [True, False]:
                for batch_first in [True, False]:
                    rnn_out, last_hidden = fluid.contrib.layers.basic_gru(
                        input,
                        pre_hidden,
                        hidden_size=256,
                        num_layers=2,
                        sequence_length=sequence_length,
                        dropout_prob=0.5,
                        bidirectional=bidirectional,
4790 4791
                        batch_first=batch_first,
                    )
4792

Y
Yu Yang 已提交
4793

4794 4795 4796 4797
class TestMetricsDetectionMap(unittest.TestCase):
    def test_detection_map(self):
        program = fluid.Program()
        with program_guard(program):
4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818
            detect_res = fluid.layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32',
            )
            label = fluid.layers.data(
                name='label',
                shape=[10, 1],
                append_batch_size=False,
                dtype='float32',
            )
            box = fluid.layers.data(
                name='bbox',
                shape=[10, 4],
                append_batch_size=False,
                dtype='float32',
            )
            map_eval = fluid.metrics.DetectionMAP(
                detect_res, label, box, class_num=21
            )
4819 4820 4821 4822 4823 4824
            cur_map, accm_map = map_eval.get_map_var()
            self.assertIsNotNone(cur_map)
            self.assertIsNotNone(accm_map)
        print(str(program))


4825 4826
class ExampleNet(paddle.nn.Layer):
    def __init__(self):
4827
        super().__init__()
4828
        self.weight = self.create_parameter(
4829 4830
            shape=[1, 1], attr=paddle.ParamAttr(trainable=False)
        )
4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843

    def forward(self):
        # only for test parameter trainable attr
        pass


class TestLayerParameterTrainableSet(unittest.TestCase):
    def test_layer_parameter_set(self):
        with fluid.dygraph.guard():
            net = ExampleNet()
            self.assertFalse(net.weight.trainable)


4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860
class TestLayerTrainingAttribute(unittest.TestCase):
    def test_set_train_eval_in_dynamic_mode(self):
        with fluid.dygraph.guard():
            net = paddle.nn.Dropout()
            net.train()
            self.assertTrue(net.training)
            net.eval()
            self.assertFalse(net.training)

    def test_set_train_eval_in_static_mode(self):
        net = paddle.nn.Dropout()
        net.train()
        self.assertTrue(net.training)
        net.eval()
        self.assertFalse(net.training)


J
Jiabin Yang 已提交
4861 4862
class MyLayer(paddle.nn.Layer):
    def __init__(self):
4863
        super().__init__()
J
Jiabin Yang 已提交
4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874
        self._linear = paddle.nn.Linear(1, 1)
        self._dropout = paddle.nn.Dropout(p=0.5)

    def forward(self, input):
        temp = self._linear(input)
        temp = self._dropout(temp)
        return temp


class MySuperLayer(paddle.nn.Layer):
    def __init__(self):
4875
        super().__init__()
J
Jiabin Yang 已提交
4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890
        self._mylayer = MyLayer()

    def forward(self, input):
        temp = self._mylayer(input)
        return temp


class TestSubLayerCount(unittest.TestCase):
    def test_sublayer(self):
        with fluid.dygraph.guard():
            mySuperlayer = MySuperLayer()
            self.assertTrue(len(mySuperlayer.sublayers()) == 3)
            self.assertTrue(len(mySuperlayer.sublayers(include_self=True)) == 4)


Y
Yu Yang 已提交
4891
if __name__ == '__main__':
4892
    paddle.enable_static()
Y
Yu Yang 已提交
4893
    unittest.main()