test_sequence_expand.py 3.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
wanghaoshuang 已提交
15 16 17 18 19
import unittest
import numpy as np
from op_test import OpTest


W
wanghaoshuang 已提交
20
class TestSequenceExpand(OpTest):
W
wanghaoshuang 已提交
21
    def set_data(self):
D
dzhwinter 已提交
22 23 24 25 26 27 28 29
        x = [i / 10.0 for i in range(3)]
        y = [i / 10.0 for i in range(8)]
        x_data = np.array(x).reshape(3, 1).astype('float32')
        y_data = np.array(y).reshape(8, 1).astype('float32')
        print(x_data)
        print(y_data)
        # x_data = np.random.uniform(0.1, 1, [3, 1]).astype('float32')
        # y_data = np.random.uniform(0.1, 1, [8, 1]).astype('float32')
W
wanghaoshuang 已提交
30 31
        y_lod = [[0, 1, 4, 8]]
        self.inputs = {'X': x_data, 'Y': (y_data, y_lod)}
W
wanghaoshuang 已提交
32 33

    def compute(self):
W
wanghaoshuang 已提交
34 35
        x = self.inputs['X']
        x_data, x_lod = x if type(x) == tuple else (x, None)
W
wanghaoshuang 已提交
36
        n = 1 + x_data.shape[0] if not x_lod else len(x_lod[0])
W
wanghaoshuang 已提交
37 38 39 40
        y_data, y_lod = self.inputs['Y']
        repeats = [((y_lod[-1][i + 1] - y_lod[-1][i]))
                   for i in range(len(y_lod[-1]) - 1)]
        out = x_data.repeat(repeats, axis=0)
W
wanghaoshuang 已提交
41
        self.outputs = {'Out': out}
W
wanghaoshuang 已提交
42 43

    def setUp(self):
W
wanghaoshuang 已提交
44
        self.op_type = 'sequence_expand'
W
wanghaoshuang 已提交
45 46 47 48 49 50
        self.set_data()
        self.compute()

    def test_check_output(self):
        self.check_output()

W
wanghaoshuang 已提交
51 52
    def test_check_grad(self):
        self.check_grad(["X"], "Out")
W
wanghaoshuang 已提交
53

D
dzhwinter 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    # class TestSequenceExpandCase1(TestSequenceExpand):
    #     def set_data(self):
    #         x_data = np.random.uniform(0.1, 1, [5, 1]).astype('float32')
    #         x_lod = [[0, 2, 5]]
    #         y_data = np.random.uniform(0.1, 1, [13, 1]).astype('float32')
    #         y_lod = [[0, 2, 5], [0, 2, 4, 7, 10, 13]]
    #         self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}

    # class TestSequenceExpandCase2(TestSequenceExpand):
    #     def set_data(self):
    #         x_data = np.random.uniform(0.1, 1, [1, 2, 2]).astype('float32')
    #         x_lod = [[0, 1]]
    #         y_data = np.random.uniform(0.1, 1, [2, 2, 2]).astype('float32')
    #         y_lod = [[0, 2]]
    #         self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}

    # class TestSequenceExpandCase3(TestSequenceExpand):
    #     def set_data(self):
    #         x_data = np.random.uniform(0.1, 1, [4, 1]).astype('float32')
    #         x_lod = [[0, 1, 2, 3, 4]]
    #         y_data = np.random.uniform(0.1, 1, [6, 1]).astype('float32')
    #         y_lod = [[0, 2, 4, 4, 6]]
    #         self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}

    # class TestSequenceExpandCase4(TestSequenceExpand):
    #     def set_data(self):
    #         x_data = np.array(
    #             [0.1, 0.3, 0.2, 0.15, 0.25, 0.2, 0.15, 0.25, 0.1, 0.3]).reshape(
    #                 [2, 5]).astype('float32')
    #         x_lod = [[
    #             0,
    #             1,
    #             2,
    #         ]]
    #         y_data = np.random.uniform(0.1, 1, [2, 1]).astype('float32')
    #         y_lod = [[0, 1, 2], [0, 1, 2]]
    #         self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}
91 92


W
wanghaoshuang 已提交
93 94
if __name__ == '__main__':
    unittest.main()