batch_norm_grad_kernel.cu 53.2 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16 17 18 19 20
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/operators/layout_utils.h"
#include "paddle/fluid/operators/norm_utils.cu.h"
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/flags.h"
H
hong 已提交
21 22 23
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/batch_norm_kernel.h"
Z
zhangkaihuo 已提交
24
#include "paddle/phi/kernels/empty_kernel.h"
H
hong 已提交
25
#include "paddle/phi/kernels/funcs/eigen/common.h"
26
#include "paddle/phi/kernels/funcs/norm_utils.h"
Z
zhangkaihuo 已提交
27
#include "paddle/phi/kernels/funcs/reduce_function.h"
H
hong 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
#include "paddle/phi/kernels/gpu/batch_norm_utils.h"

#ifdef __HIPCC__
#define LAUNCH_BOUNDS(BlockDim) __launch_bounds__(BlockDim)
#else
#define LAUNCH_BOUNDS(BlockDim)
#endif

DECLARE_bool(cudnn_batchnorm_spatial_persistent);
namespace phi {

template <typename T>
using CudnnDataType = paddle::platform::CudnnDataType<T>;
template <typename T>
using BatchNormParamType = typename CudnnDataType<T>::BatchNormParamType;

template <typename T, int BlockDim, phi::DataLayout layout>
static __global__ LAUNCH_BOUNDS(BlockDim) void KeBNBackwardScaleBias(
    const T *dy,
    const T *x,
    const BatchNormParamType<T> *mean,
    const BatchNormParamType<T> *variance,
    const double epsilon,
    const int N,
    const int C,
    const int HxW,
    BatchNormParamType<T> *dscale,
    BatchNormParamType<T> *dbias) {
  const int outer_size = C;
  const int inner_size = N * HxW;
  typedef cub::BlockReduce<BatchNormParamType<T>, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage ds_storage;
  __shared__ typename BlockReduce::TempStorage db_storage;

  for (int i = blockIdx.x; i < outer_size; i += gridDim.x) {
    BatchNormParamType<T> ds_sum = static_cast<BatchNormParamType<T>>(0);
    BatchNormParamType<T> db_sum = static_cast<BatchNormParamType<T>>(0);

    BatchNormParamType<T> inv_var_i = 1.0 / sqrt(variance[i] + epsilon);
    BatchNormParamType<T> mean_i = mean[i];
    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index = layout == phi::DataLayout::kNCHW
                            ? (j / HxW * C + i) * HxW + j % HxW
                            : j * outer_size + i;
      ds_sum += static_cast<BatchNormParamType<T>>(dy[index]) *
                (static_cast<BatchNormParamType<T>>(x[index]) - mean_i);
      db_sum += static_cast<BatchNormParamType<T>>(dy[index]);
    }
    ds_sum = BlockReduce(ds_storage).Reduce(ds_sum, cub::Sum());
    db_sum = BlockReduce(db_storage).Reduce(db_sum, cub::Sum());
    if (threadIdx.x == 0) {
      dscale[i] = ds_sum * inv_var_i;
      dbias[i] = db_sum;
    }
    __syncthreads();
  }
}

template <typename T, phi::DataLayout layout>
static __global__ void KeBNBackwardData(const T *dy,
                                        const BatchNormParamType<T> *scale,
                                        const BatchNormParamType<T> *variance,
                                        const double epsilon,
                                        const int C,
                                        const int HxW,
                                        const int num,
                                        T *dx) {
  int gid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  for (int i = gid; i < num; i += stride) {
    const int c = layout == phi::DataLayout::kNCHW ? i / HxW % C : i % C;
    BatchNormParamType<T> inv_var = 1.0 / sqrt(variance[c] + epsilon);
    dx[i] = static_cast<T>(static_cast<BatchNormParamType<T>>(dy[i]) *
                           scale[c] * inv_var);
  }
}

template <typename T>
static __global__ void KeBNRestoreData(const phi::DataLayout layout,
                                       T *x,
                                       const BatchNormParamType<T> *scale,
                                       const BatchNormParamType<T> *bias,
                                       const BatchNormParamType<T> *mean,
                                       const BatchNormParamType<T> *variance,
                                       double epsilon,
                                       int C,
                                       int M,
                                       const int num,
                                       const T *y) {
  int gid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  for (int i = gid; i < num; i += stride) {
    const int c = layout == phi::DataLayout::kNCHW ? (i / M) % C : i % C;
    auto y_i = static_cast<BatchNormParamType<T>>(y[i]);
    auto x_i = (y_i - bias[c]) / scale[c] / variance[c] + mean[c];
    x[i] = static_cast<T>(x_i);
  }
}

template <typename T>
class InplaceHelper {
 public:
  void operator()(const phi::DataLayout layout,
                  T *x,
                  const BatchNormParamType<T> *scale,
                  const BatchNormParamType<T> *bias,
                  const BatchNormParamType<T> *mean,
                  const BatchNormParamType<T> *variance,
                  double epsilon,
                  int C,
                  int M,
                  const int num,
                  const T *y,
                  int grid2,
                  const int block,
                  const gpuStream_t &stream) {
    PADDLE_ENFORCE_EQ(x,
                      y,
                      phi::errors::InvalidArgument(
                          "X and Y should be inplaced in inplace mode"));
    KeBNRestoreData<<<grid2, block, 0, stream>>>(
        layout, x, scale, bias, mean, variance, epsilon, C, M, num, y);
  }
};

template <typename T, int BlockDim, phi::DataLayout layout>
static __global__ LAUNCH_BOUNDS(BlockDim) void BNBackward(
    const T *dy,
    const T *x,
    const BatchNormParamType<T> *scale,
    const BatchNormParamType<T> *saved_mean,
    const BatchNormParamType<T> *saved_inv_variance,
    const int C,
    const int N,
    const int HxW,
    const double epsilon,
    T *dx,
    BatchNormParamType<T> *dscale,
    BatchNormParamType<T> *dbias) {
  const int outer_size = C;
  const int inner_size = N * HxW;
  typedef cub::BlockReduce<BatchNormParamType<T>, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage ds_storage;
  __shared__ typename BlockReduce::TempStorage db_storage;
  __shared__ typename BlockReduce::TempStorage mean_storage;
  __shared__ typename BlockReduce::TempStorage variance_storeage;
  __shared__ BatchNormParamType<T> inv_var_val;
  __shared__ BatchNormParamType<T> mean_val;
  __shared__ BatchNormParamType<T> dscale_val;
  __shared__ BatchNormParamType<T> dbias_val;

  for (int i = blockIdx.x; i < outer_size; i += gridDim.x) {
    BatchNormParamType<T> ds_sum = static_cast<BatchNormParamType<T>>(0);
    BatchNormParamType<T> db_sum = static_cast<BatchNormParamType<T>>(0);

    if (saved_mean && saved_inv_variance) {
      if (threadIdx.x == 0) {
        inv_var_val = saved_inv_variance[i];
        mean_val = saved_mean[i];
      }
    } else {
      BatchNormParamType<T> x_sum = static_cast<BatchNormParamType<T>>(0);
      BatchNormParamType<T> x_square_sum =
          static_cast<BatchNormParamType<T>>(0);

      for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
        const int index = layout == phi::DataLayout::kNCHW
                              ? (j / HxW * C + i) * HxW + j % HxW
                              : j * outer_size + i;
        BatchNormParamType<T> x_i =
            static_cast<BatchNormParamType<T>>(x[index]);
        x_sum += x_i;
        x_square_sum += x_i * x_i;
      }
Z
zhangkaihuo 已提交
202

H
hong 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
      x_sum = BlockReduce(mean_storage).Reduce(x_sum, cub::Sum());
      x_square_sum =
          BlockReduce(variance_storeage).Reduce(x_square_sum, cub::Sum());
      if (threadIdx.x == 0) {
        mean_val = x_sum / inner_size;
        inv_var_val =
            1 / sqrt(x_square_sum / inner_size - mean_val * mean_val + epsilon);
      }
    }
    __syncthreads();

    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index = layout == phi::DataLayout::kNCHW
                            ? (j / HxW * C + i) * HxW + j % HxW
                            : j * outer_size + i;
      BatchNormParamType<T> dy_i =
          static_cast<BatchNormParamType<T>>(dy[index]);
      ds_sum +=
          dy_i * (static_cast<BatchNormParamType<T>>(x[index]) - mean_val);
      db_sum += dy_i;
    }
Z
zhangkaihuo 已提交
224

H
hong 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
    ds_sum = BlockReduce(ds_storage).Reduce(ds_sum, cub::Sum());
    db_sum = BlockReduce(db_storage).Reduce(db_sum, cub::Sum());
    if (threadIdx.x == 0) {
      dscale_val = ds_sum * inv_var_val;
      dbias_val = db_sum;
      dscale[i] = dscale_val;
      dbias[i] = dbias_val;
    }
    __syncthreads();

    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index = layout == phi::DataLayout::kNCHW
                            ? (j / HxW * C + i) * HxW + j % HxW
                            : j * outer_size + i;
      dx[index] = scale[i] * inv_var_val *
                  (static_cast<BatchNormParamType<T>>(dy[index]) -
                   dbias_val / static_cast<BatchNormParamType<T>>(inner_size) -
                   (static_cast<BatchNormParamType<T>>(x[index]) - mean_val) *
                       inv_var_val * dscale_val / inner_size);
    }
  }
}

Z
zhangkaihuo 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
template <typename T>
__device__ __forceinline__ void BlockReduceByVetical(
    BatchNormParamType<T> x_sum,
    BatchNormParamType<T> x_square_sum,
    BatchNormParamType<T> *smem_sum,
    BatchNormParamType<T> *smem_square_sum,
    BatchNormParamType<T> *x_sum_out,
    BatchNormParamType<T> *x_square_sum_out) {
  int tid = threadIdx.x + threadIdx.y * blockDim.x;
#pragma unroll
  for (int offset = blockDim.y / 2; offset > 0; offset >>= 1) {
    if (threadIdx.y < offset * 2) {
      smem_sum[tid] = x_sum;
      smem_square_sum[tid] = x_square_sum;
    }
    __syncthreads();
    if (threadIdx.y < offset) {
      int pair_tid = tid + offset * blockDim.x;
      x_sum += smem_sum[pair_tid];
      x_square_sum += smem_square_sum[pair_tid];
    }
  }
  if (threadIdx.y == 0) {
    *x_sum_out = x_sum;
    *x_square_sum_out = x_square_sum;
  }
}

template <typename T, int BlockDim>
static __global__ void BNBackward2DChannelLastStage1(
    const T *x,
    const int C,
    const int N,
    const int HxW,
    const double epsilon,
    BatchNormParamType<T> *block_data_ptr,
    BatchNormParamType<T> *compute_mean,
    BatchNormParamType<T> *compute_inv_var,
    int *flag_ptr) {
  int outer_size = C;
  int inner_size = N * HxW;

  __shared__ BatchNormParamType<T> smem_sum[BlockDim];
  __shared__ BatchNormParamType<T> smem_square_sum[BlockDim];
  __shared__ BatchNormParamType<T> inv_var_val;
  __shared__ BatchNormParamType<T> mean_val;

  int outer_loop_stride = gridDim.x * blockDim.x;
  int inner_loop_stride = gridDim.y * blockDim.y;

  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < outer_size;
       i += outer_loop_stride) {
    BatchNormParamType<T> x_sum = static_cast<BatchNormParamType<T>>(0);
    BatchNormParamType<T> x_square_sum = static_cast<BatchNormParamType<T>>(0);

    for (int j = blockIdx.y * blockDim.y + threadIdx.y; j < inner_size;
         j += inner_loop_stride) {
      const int index = j * outer_size + i;
      BatchNormParamType<T> x_i = static_cast<BatchNormParamType<T>>(x[index]);
      x_sum += x_i;
      x_square_sum += x_i * x_i;
    }

    // vertical block sum
    BlockReduceByVetical<T>(x_sum,
                            x_square_sum,
                            &smem_sum[0],
                            &smem_square_sum[0],
                            &x_sum,
                            &x_square_sum);

    if (gridDim.y > 1) {
      volatile BatchNormParamType<T> *staging_sum = block_data_ptr;
      volatile BatchNormParamType<T> *staging_square_sum =
          &block_data_ptr[C * gridDim.y];
      // write block data to global memory
      if (threadIdx.y == 0) {
        staging_sum[i + blockIdx.y * C] = x_sum;
        staging_square_sum[i + blockIdx.y * C] = x_square_sum;
      }

      // make sure write is visible to all blocks
      __threadfence();
      __syncthreads();

      __shared__ bool is_last_block_done;
      // mark block done
      if (threadIdx.x == 0 && threadIdx.y == 0) {
        int old = atomicAdd(&flag_ptr[blockIdx.x], 1);
        is_last_block_done = (old == (gridDim.y - 1));
      }

      __syncthreads();

      if (is_last_block_done) {
        x_sum = static_cast<BatchNormParamType<T>>(0);
        x_square_sum = static_cast<BatchNormParamType<T>>(0);
        // thread sum
        for (int y = threadIdx.y; y < gridDim.y; y += blockDim.y) {
          x_sum += staging_sum[i + y * C];
          x_square_sum += staging_square_sum[i + y * C];
        }

        // vertical block sum
        BlockReduceByVetical<T>(x_sum,
                                x_square_sum,
                                &smem_sum[0],
                                &smem_square_sum[0],
                                &x_sum,
                                &x_square_sum);

        // final compute
        if (threadIdx.y == 0) {
          BatchNormParamType<T> compute_mean_val = x_sum / inner_size;
          BatchNormParamType<T> variance_val =
              x_square_sum / inner_size - compute_mean_val * compute_mean_val;
          BatchNormParamType<T> compute_inv_var_val =
              1 / sqrt(variance_val + epsilon);

          compute_mean[i] = compute_mean_val;
          compute_inv_var[i] = compute_inv_var_val;
        }
      }
    }
  }
}

template <typename T, int BlockDim>
static __global__ void BNBackward2DChannelLastStage2(
    const T *dy,
    const T *x,
    const BatchNormParamType<T> *means,
    const BatchNormParamType<T> *variances,
    const int C,
    const int N,
    const int HxW,
    const double epsilon,
    BatchNormParamType<T> *block_data_ptr,
    BatchNormParamType<T> *dscale,
    BatchNormParamType<T> *dbias,
    int *flag_ptr) {
  int outer_size = C;
  int inner_size = N * HxW;

  __shared__ BatchNormParamType<T> smem_ds_sum[BlockDim];
  __shared__ BatchNormParamType<T> smem_db_sum[BlockDim];
  __shared__ BatchNormParamType<T> inv_var_val;
  __shared__ BatchNormParamType<T> mean_val;

  int outer_loop_stride = gridDim.x * blockDim.x;
  int inner_loop_stride = gridDim.y * blockDim.y;

  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < outer_size;
       i += outer_loop_stride) {
    BatchNormParamType<T> ds_sum = static_cast<BatchNormParamType<T>>(0);
    BatchNormParamType<T> db_sum = static_cast<BatchNormParamType<T>>(0);
    BatchNormParamType<T> mean_val = means[i];
    BatchNormParamType<T> inv_var_val = variances[i];

    for (int j = blockIdx.y * blockDim.y + threadIdx.y; j < inner_size;
         j += inner_loop_stride) {
      const int index = j * outer_size + i;
      BatchNormParamType<T> dy_i =
          static_cast<BatchNormParamType<T>>(dy[index]);
      ds_sum +=
          dy_i * (static_cast<BatchNormParamType<T>>(x[index]) - mean_val);
      db_sum += dy_i;
    }

    // vertical block sum
    BlockReduceByVetical<T>(
        ds_sum, db_sum, &smem_ds_sum[0], &smem_db_sum[0], &ds_sum, &db_sum);

    if (gridDim.y > 1) {
      volatile BatchNormParamType<T> *staging_ds_sum = block_data_ptr;
      volatile BatchNormParamType<T> *staging_db_sum =
          &block_data_ptr[C * gridDim.y];
      // write block data to global memory
      if (threadIdx.y == 0) {
        staging_ds_sum[i + blockIdx.y * C] = ds_sum;
        staging_db_sum[i + blockIdx.y * C] = db_sum;
      }

      // make sure write is visible to all blocks
      __threadfence();
      __syncthreads();

      __shared__ bool is_last_block_done;
      // mark block done
      if (threadIdx.x == 0 && threadIdx.y == 0) {
        int old = atomicAdd(&flag_ptr[blockIdx.x], 1);
        is_last_block_done = (old == (gridDim.y - 1));
      }

      __syncthreads();

      if (is_last_block_done) {
        ds_sum = static_cast<BatchNormParamType<T>>(0);
        db_sum = static_cast<BatchNormParamType<T>>(0);
        // thread sum
        for (int y = threadIdx.y; y < gridDim.y; y += blockDim.y) {
          ds_sum += staging_ds_sum[i + y * C];
          db_sum += staging_db_sum[i + y * C];
        }

        // vertical block sum
        BlockReduceByVetical<T>(
            ds_sum, db_sum, &smem_ds_sum[0], &smem_db_sum[0], &ds_sum, &db_sum);

        // final compute
        if (threadIdx.y == 0) {
          dscale[i] = ds_sum * inv_var_val;
          dbias[i] = db_sum;
        }
      }
    }
  }
}

template <typename T, int BlockDim>
static __global__ void BNBackward2DChannelLastStage3(
    const T *dy,
    const T *x,
    const BatchNormParamType<T> *scale,
    const BatchNormParamType<T> *dscales,
    const BatchNormParamType<T> *dbias,
    const BatchNormParamType<T> *means,
    const BatchNormParamType<T> *variances,
    const int C,
    const int N,
    const int HxW,
    const double epsilon,
    T *dx) {
  const int outer_size = C;
  const int inner_size = N * HxW;
  int outer_loop_stride = gridDim.x * blockDim.x;
  int inner_loop_stride = gridDim.y * blockDim.y;

  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < outer_size;
       i += outer_loop_stride) {
    BatchNormParamType<T> mean_val = means[i];
    BatchNormParamType<T> inv_var_val = variances[i];
    BatchNormParamType<T> dscale_val = dscales[i];
    BatchNormParamType<T> dbias_val = dbias[i];

    for (int j = blockIdx.y * blockDim.y + threadIdx.y; j < inner_size;
         j += inner_loop_stride) {
      const int index = j * outer_size + i;
      dx[index] = scale[i] * inv_var_val *
                  (static_cast<BatchNormParamType<T>>(dy[index]) -
                   dbias_val / static_cast<BatchNormParamType<T>>(inner_size) -
                   (static_cast<BatchNormParamType<T>>(x[index]) - mean_val) *
                       inv_var_val * dscale_val / inner_size);
    }
  }
}

H
hong 已提交
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
template <typename T, int BlockDim, phi::DataLayout layout>
static __global__ LAUNCH_BOUNDS(BlockDim) void BNBackwardData(
    const T *dy,
    const BatchNormParamType<T> *scale,
    const BatchNormParamType<T> *mean,
    const T *x,
    const BatchNormParamType<T> *variance,
    const int C,
    const int N,
    const int HxW,
    T *dx) {
  const int outer_size = C;
  const int inner_size = N * HxW;
  typedef cub::BlockReduce<BatchNormParamType<T>, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage dy_storage;
  __shared__ typename BlockReduce::TempStorage dy_x_sub_mean_storage;
  __shared__ BatchNormParamType<T> dy_sum_val;
  __shared__ BatchNormParamType<T> dy_x_sub_mean_sum_val;

  for (int i = blockIdx.x; i < outer_size; i += gridDim.x) {
    BatchNormParamType<T> inv_var_i = variance[i];
    BatchNormParamType<T> mean_i = mean[i];
    BatchNormParamType<T> dy_sum = static_cast<BatchNormParamType<T>>(0);
    BatchNormParamType<T> dy_x_sub_mean_sum =
        static_cast<BatchNormParamType<T>>(0);
    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index = layout == phi::DataLayout::kNCHW
                            ? (j / HxW * C + i) * HxW + j % HxW
                            : j * outer_size + i;
      BatchNormParamType<T> dy_i =
          static_cast<BatchNormParamType<T>>(dy[index]);
      dy_sum += dy_i;
      dy_x_sub_mean_sum +=
          dy_i * (static_cast<BatchNormParamType<T>>(x[index]) - mean_i);
    }

    dy_sum = BlockReduce(dy_storage).Reduce(dy_sum, cub::Sum());
    dy_x_sub_mean_sum = BlockReduce(dy_x_sub_mean_storage)
                            .Reduce(dy_x_sub_mean_sum, cub::Sum());

    if (threadIdx.x == 0) {
      dy_sum_val = dy_sum;
      dy_x_sub_mean_sum_val = dy_x_sub_mean_sum;
    }
    __syncthreads();
    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index = layout == phi::DataLayout::kNCHW
                            ? (j / HxW * C + i) * HxW + j % HxW
                            : j * outer_size + i;
      dx[index] =
          (static_cast<BatchNormParamType<T>>(dy[index]) -
           dy_sum_val / static_cast<BatchNormParamType<T>>(inner_size) -
           (static_cast<BatchNormParamType<T>>(x[index]) - mean_i) *
               dy_x_sub_mean_sum_val * inv_var_i * inv_var_i / inner_size) *
          scale[i] * inv_var_i;
    }
  }
}

template <typename T, typename Context>
void BatchNormGradRawKernel(const Context &ctx,
                            const DenseTensor &x,
                            const DenseTensor &scale,
                            const DenseTensor &bias,
569 570
                            const paddle::optional<DenseTensor> &mean,
                            const paddle::optional<DenseTensor> &variance,
H
hong 已提交
571 572
                            const DenseTensor &saved_mean,
                            const DenseTensor &saved_variance,
573
                            const paddle::optional<DenseTensor> &reserve_space,
H
hong 已提交
574
                            const DenseTensor &y_grad,
H
hong 已提交
575 576 577 578 579 580 581 582 583 584 585 586
                            float momentum,
                            float epsilon_f,
                            const std::string &data_layout_str,
                            bool is_test,
                            bool use_global_stats,
                            bool trainable_statistics,
                            bool is_inplace,
                            DenseTensor *x_grad,
                            DenseTensor *scale_grad,
                            DenseTensor *bias_grad) {
  double epsilon = static_cast<double>(epsilon_f);

587
  const DataLayout data_layout = phi::StringToDataLayout(data_layout_str);
H
hong 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608

  const auto *d_y = &y_grad;

  auto *d_x = x_grad;
  auto *d_scale = scale_grad;
  auto *d_bias = bias_grad;

  use_global_stats = is_test || use_global_stats;

  const auto &x_dims = x.dims();

  PADDLE_ENFORCE_EQ(
      x_dims.size() >= 2 && x_dims.size() <= 5,
      true,
      phi::errors::InvalidArgument(
          "The size of input's dimensions should be between 2 and 5."
          "But received: the size of input's dimensions is [%d],"
          "the dimensions of input is [%s]",
          x_dims.size(),
          x_dims));
  int N, C, H, W, D;
609
  phi::funcs::ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D);
H
hong 已提交
610 611 612 613 614 615 616

  // init output
  if (d_x) {
    ctx.template Alloc<T>(d_x);
  }

  if (d_scale && d_bias) {
H
hong 已提交
617 618
    ctx.template Alloc<BatchNormParamType<T>>(d_scale);
    ctx.template Alloc<BatchNormParamType<T>>(d_bias);
H
hong 已提交
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
  }

  PADDLE_ENFORCE_EQ(
      scale.dims().size(),
      1UL,
      phi::errors::InvalidArgument(
          "The size of scale's dimensions must equal to 1. But received: "
          "the size of scale's dimensions is [%d], the dimensions of scale "
          "is [%s].",
          scale.dims().size(),
          scale.dims()));
  PADDLE_ENFORCE_EQ(
      scale.dims()[0],
      C,
      phi::errors::InvalidArgument(
          "The first dimension of scale must equal to Channels[%d]. But "
          "received: the first dimension of scale is [%d]",
          C,
          scale.dims()[0]));

  auto dtype = paddle::platform::CudnnDataType<T>::type;
#ifdef PADDLE_WITH_HIP
  auto compute_format =
      data_layout == DataLayout::kNHWC ? DataLayout::kNHWC : DataLayout::kNCHW;

// TODO(wangran16): wait for MIOpen to improve the performance of BN
// HIP do not support compute format of NHWC
// auto compute_format = DataLayout::kNCHW;
#else
  const bool fast_nhwc_batch_norm = dtype == CUDNN_DATA_HALF &&
                                    FLAGS_cudnn_batchnorm_spatial_persistent &&
                                    (reserve_space.get_ptr() != nullptr);
  auto compute_format = fast_nhwc_batch_norm && data_layout == DataLayout::kNHWC
                            ? DataLayout::kNHWC
                            : DataLayout::kNCHW;
#endif

  DenseTensor transformed_x(x.type());
  DenseTensor transformed_d_y(d_y->type());
  DenseTensor transformed_d_x;
  if (data_layout == DataLayout::kNHWC && compute_format == DataLayout::kNCHW &&
      x_dims.size() > 2) {
    VLOG(3) << "Transform input tensor from NHWC to NCHW.";
    ResizeToChannelFirst<Context, T>(ctx, &x, &transformed_x);
    TransToChannelFirst<Context, T>(ctx, &x, &transformed_x);
    ResizeToChannelFirst<Context, T>(ctx, d_y, &transformed_d_y);
    TransToChannelFirst<Context, T>(ctx, d_y, &transformed_d_y);
    if (d_x) {
      ResizeToChannelFirst<Context, T>(ctx, d_x, &transformed_d_x);
    }
  } else {
    transformed_x.ShareDataWith(x);
    transformed_d_y.ShareDataWith(*d_y);
    if (d_x) {
      transformed_d_x.ShareDataWith(*d_x);
    }
  }

  std::vector<int> dims;
  std::vector<int> strides;
  if (compute_format == DataLayout::kNCHW) {
    dims = {N, C, H, W, D};
    strides = {C * H * W * D, H * W * D, W * D, D, 1};
  } else {
    dims = {N, C, H, W, D};
    strides = {H * W * C * D, 1, W * D * C, D * C, C};
  }

  const int num = transformed_x.numel();
#ifdef HIPCC
  const int block = 256;
#else
  const int block = 512;
#endif
  int max_threads = ctx.GetMaxPhysicalThreadCount();
  const int max_blocks = std::max(max_threads / block, 1);
  int grid1 = (num + block - 1) / block;
  int grid2 = std::min(C, max_blocks);
  auto stream = ctx.stream();
  InplaceHelper<T> inplace_functor;

  if (!use_global_stats) {
    if ((N * H * W * D) == 1) {
      if (d_x) {
        paddle::framework::TensorCopy(*d_y, ctx.GetPlace(), d_x);
      }
      phi::funcs::SetConstant<Context, BatchNormParamType<T>> functor;
      functor(ctx, d_scale, static_cast<BatchNormParamType<T>>(0));
      functor(ctx, d_bias, static_cast<BatchNormParamType<T>>(0));
      return;
    }

// ------------------- cudnn descriptors ---------------------
#ifdef PADDLE_WITH_HIP
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// miopenTensorDescriptor_t data_desc_;
// miopenTensorDescriptor_t bn_param_desc_;
// miopenBatchNormMode_t mode_;

// PADDLE_ENFORCE_GPU_SUCCESS(
//     platform::dynload::miopenCreateTensorDescriptor(&data_desc_));
// PADDLE_ENFORCE_GPU_SUCCESS(
//     platform::dynload::miopenCreateTensorDescriptor(&bn_param_desc_));
#else
    cudnnTensorDescriptor_t data_desc_;
    cudnnTensorDescriptor_t bn_param_desc_;
    cudnnBatchNormMode_t mode_;

    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::cudnnCreateTensorDescriptor(&data_desc_));
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::cudnnCreateTensorDescriptor(
            &bn_param_desc_));
#endif
    if (epsilon <= CUDNN_BN_MIN_EPSILON - FLT_EPSILON) {
      LOG(ERROR) << "Provided epsilon is smaller than "
                 << "CUDNN_BN_MIN_EPSILON. Setting it to "
                 << "CUDNN_BN_MIN_EPSILON instead.";
    }
    epsilon = std::max(epsilon, CUDNN_BN_MIN_EPSILON);
#ifdef PADDLE_WITH_HIP
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// mode_ = miopenBNSpatial;
#elif CUDNN_VERSION_MIN(7, 0, 1)
    if (FLAGS_cudnn_batchnorm_spatial_persistent) {
      mode_ = CUDNN_BATCHNORM_SPATIAL_PERSISTENT;
    } else if (H == 1 && W == 1) {
      mode_ = CUDNN_BATCHNORM_PER_ACTIVATION;
    } else {
      mode_ = CUDNN_BATCHNORM_SPATIAL;
    }
#else
    if (H == 1 && W == 1) {
      mode_ = CUDNN_BATCHNORM_PER_ACTIVATION;
    } else {
      mode_ = CUDNN_BATCHNORM_SPATIAL;
    }
#endif  // CUDNN_VERSION_MIN(7, 0, 1)

#ifdef PADDLE_WITH_HIP
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::miopenSetTensorDescriptor(
//     data_desc_, CudnnDataType<T>::type,
//     x_dims.size() > 3 ? x_dims.size() : 4, const_cast<int *>(dims.data()),
//     const_cast<int *>(strides.data())));
// PADDLE_ENFORCE_GPU_SUCCESS(
//     platform::dynload::miopenDeriveBNTensorDescriptor(bn_param_desc_,
//                                                       data_desc_, mode_));
#else
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::cudnnSetTensorNdDescriptor(
            data_desc_,
            CudnnDataType<T>::type,
            x_dims.size() > 3 ? x_dims.size() : 4,
            dims.data(),
            strides.data()));
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::cudnnDeriveBNTensorDescriptor(
            bn_param_desc_, data_desc_, mode_));
#endif

    const auto *saved_mean_data =
        saved_mean.template data<BatchNormParamType<T>>();
    const auto *saved_var_data =
        saved_variance.template data<BatchNormParamType<T>>();

    if (is_inplace) {
      inplace_functor(compute_format,
                      transformed_x.data<T>(),
                      scale.template data<BatchNormParamType<T>>(),
                      bias.template data<BatchNormParamType<T>>(),
                      saved_mean_data,
                      saved_var_data,
                      epsilon,
                      C,
                      H * W * D,
                      num,
                      transformed_x.data<T>(),
                      grid2,
                      block,
                      stream);
    }

    // This branch calls CUDNN APIs
    if (d_x && d_scale && d_bias) {
#ifdef PADDLE_WITH_HIP
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
      if (compute_format == DataLayout::kNCHW) {
        BNBackward<T, block, DataLayout::kNCHW>
            <<<grid2, block, 0, ctx.stream()>>>(
                transformed_d_y.template data<T>(),
                transformed_x.template data<T>(),
                scale.template data<BatchNormParamType<T>>(),
                saved_mean_data,
                saved_var_data,
                C,
                N,
                H * W * D,
                epsilon,
                transformed_d_x.template data<T>(),
                ctx.template Alloc<BatchNormParamType<T>>(d_scale),
                ctx.template Alloc<BatchNormParamType<T>>(d_bias));
      } else {
        BNBackward<T, block, DataLayout::kNHWC>
            <<<grid2, block, 0, ctx.stream()>>>(
                transformed_d_y.template data<T>(),
                transformed_x.template data<T>(),
                scale.template data<BatchNormParamType<T>>(),
                saved_mean_data,
                saved_var_data,
                C,
                N,
                H * W * D,
                epsilon,
                transformed_d_x.template data<T>(),
                ctx.template Alloc<BatchNormParamType<T>>(d_scale),
                ctx.template Alloc<BatchNormParamType<T>>(d_bias));
      }

// TODO(wangran16): wait for MIOpen to improve the performance of BN
// PADDLE_ENFORCE_GPU_SUCCESS(
//     platform::dynload::miopenBatchNormalizationBackward(
//         dev_ctx.cudnn_handle(), mode_, CudnnDataType<T>::kOne(),
//         CudnnDataType<T>::kZero(), CudnnDataType<T>::kOne(),
//         CudnnDataType<T>::kZero(), data_desc_,
//         transformed_x.template data<T>(), data_desc_,
//         transformed_d_y.template data<T>(), data_desc_,
//         transformed_d_x.template mutable_data<T>(ctx.GetPlace()),
//         bn_param_desc_, scale->template data<BatchNormParamType<T>>(),
//         d_scale->template mutable_data<BatchNormParamType<T>>(
//             ctx.GetPlace()),
//         d_bias->template mutable_data<BatchNormParamType<T>>(
//             ctx.GetPlace()),
//         epsilon, saved_mean_data, saved_var_data));
#else
853
      // CUDNN only support small batch size
Z
zhangkaihuo 已提交
854 855
      // const size_t CUDNN_PER_ACTIVATION_THRESHOLD = 131070;
      const size_t CUDNN_PER_ACTIVATION_THRESHOLD = 10240;
856
      const size_t CUDNN_SPATIAL_THRESHOLD = 880801;
857
      const bool use_native_kernel =
858 859
          ((x_dims.size() == 2 && N >= CUDNN_PER_ACTIVATION_THRESHOLD) ||
           (x_dims.size() == 3 && N >= CUDNN_SPATIAL_THRESHOLD));
860
      if (use_native_kernel) {
Z
zhangkaihuo 已提交
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
        if (x_dims.size() == 2) {
          dim3 block;
          dim3 grid;
          const int block_size = 512;
          const int MAX_GRID_SIZE = 128;
          const int WARP_SIZE = 32;

          // init intermediate storage
          DenseTensor block_data_tensor;
          DenseTensor flag_tensor;
          DenseTensor compute_mean_tensor =
              phi::Empty<BatchNormParamType<T>, Context>(ctx, {C});
          DenseTensor compute_inv_var_tensor =
              phi::Empty<BatchNormParamType<T>, Context>(ctx, {C});

          BatchNormParamType<T> *block_data_ptr = nullptr;
          int *flag_ptr = nullptr;

          int block_x =
              std::min(phi::funcs::details::GetLastPow2(C), WARP_SIZE);
          int block_y =
              std::min(phi::funcs::details::GetLastPow2(N * H * W * D / 16),
                       block_size / block_x);
          if (block_x * block_y != block_size) {
            block_x = std::min(phi::funcs::details::GetLastPow2(C),
                               block_size / block_y);
          }
          int grid_x = (C + block_x - 1) / block_x;
          int grid_y =
              std::min((N * H * W * D + block_y * 16 - 1) / (block_y * 16),
                       MAX_GRID_SIZE);

          block.x = block_x;
          block.y = block_y;
          grid.x = grid_x;
          grid.y = grid_y;

          if (grid.y > 1) {
            block_data_tensor = phi::Empty<BatchNormParamType<T>, Context>(
                ctx, {2 * C * grid.y});
            flag_tensor = phi::Empty<int, Context>(ctx, {grid.x});

            block_data_ptr = block_data_tensor.data<BatchNormParamType<T>>();
            flag_ptr = flag_tensor.data<int>();
            funcs::SetConstant<Context, int> set_zero;
            set_zero(ctx, &flag_tensor, static_cast<int>(0));
          }
          // 1. reduce_sum(x) => mean, inv_var
          auto *mean_ptr =
              saved_mean_data == nullptr
                  ? compute_mean_tensor.data<BatchNormParamType<T>>()
                  : saved_mean_data;
          auto *variance_ptr =
              saved_var_data == nullptr
                  ? compute_inv_var_tensor.data<BatchNormParamType<T>>()
                  : saved_var_data;

          if (saved_mean_data == nullptr) {
            BNBackward2DChannelLastStage1<T, block_size>
                <<<grid, block, 0, ctx.stream()>>>(
                    transformed_x.template data<T>(),
                    C,
                    N,
                    H * W * D,
                    epsilon,
                    block_data_ptr,
                    compute_mean_tensor.data<BatchNormParamType<T>>(),
                    compute_inv_var_tensor.data<BatchNormParamType<T>>(),
                    flag_ptr);
          }
          // 2. reduce_sum(x, dy, mean) => dscale, dbias
          BNBackward2DChannelLastStage2<T, block_size>
              <<<grid, block, 0, ctx.stream()>>>(
934 935
                  transformed_d_y.template data<T>(),
                  transformed_x.template data<T>(),
Z
zhangkaihuo 已提交
936 937
                  mean_ptr,
                  variance_ptr,
938 939 940 941
                  C,
                  N,
                  H * W * D,
                  epsilon,
Z
zhangkaihuo 已提交
942
                  block_data_ptr,
943
                  ctx.template Alloc<BatchNormParamType<T>>(d_scale),
Z
zhangkaihuo 已提交
944 945 946 947 948 949
                  ctx.template Alloc<BatchNormParamType<T>>(d_bias),
                  flag_ptr);

          // 3. elementwise_mul(scale, mean, inv_var, dy, dscale, dbias) => dx
          BNBackward2DChannelLastStage3<T, block_size>
              <<<grid, block, 0, ctx.stream()>>>(
950 951 952
                  transformed_d_y.template data<T>(),
                  transformed_x.template data<T>(),
                  scale.template data<BatchNormParamType<T>>(),
Z
zhangkaihuo 已提交
953 954 955 956
                  d_scale->data<BatchNormParamType<T>>(),
                  d_bias->data<BatchNormParamType<T>>(),
                  mean_ptr,
                  variance_ptr,
957 958 959 960
                  C,
                  N,
                  H * W * D,
                  epsilon,
Z
zhangkaihuo 已提交
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
                  transformed_d_x.template data<T>());

        } else {
          if (compute_format == DataLayout::kNCHW) {
            BNBackward<T, block, DataLayout::kNCHW>
                <<<grid2, block, 0, ctx.stream()>>>(
                    transformed_d_y.template data<T>(),
                    transformed_x.template data<T>(),
                    scale.template data<BatchNormParamType<T>>(),
                    saved_mean_data,
                    saved_var_data,
                    C,
                    N,
                    H * W * D,
                    epsilon,
                    transformed_d_x.template data<T>(),
                    ctx.template Alloc<BatchNormParamType<T>>(d_scale),
                    ctx.template Alloc<BatchNormParamType<T>>(d_bias));
          } else {
            BNBackward<T, block, DataLayout::kNHWC>
                <<<grid2, block, 0, ctx.stream()>>>(
                    transformed_d_y.template data<T>(),
                    transformed_x.template data<T>(),
                    scale.template data<BatchNormParamType<T>>(),
                    saved_mean_data,
                    saved_var_data,
                    C,
                    N,
                    H * W * D,
                    epsilon,
                    transformed_d_x.template data<T>(),
                    ctx.template Alloc<BatchNormParamType<T>>(d_scale),
                    ctx.template Alloc<BatchNormParamType<T>>(d_bias));
          }
H
hong 已提交
995
        }
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
      } else {
#if CUDNN_VERSION_MIN(7, 4, 1)
        size_t workspace_size = 0;
        void *workspace_ptr = nullptr;
        DenseTensor workspace_tensor;
        auto reserve_space_size = reserve_space->memory_size();
        // --------------- cudnn batchnorm workspace ---------------
        PADDLE_ENFORCE_GPU_SUCCESS(
            paddle::platform::dynload::
                cudnnGetBatchNormalizationBackwardExWorkspaceSize(
                    /*handle=*/ctx.cudnn_handle(),
                    /*mode=*/mode_,
                    /*bnIps=*/CUDNN_BATCHNORM_OPS_BN,
                    /*xDesc=*/data_desc_,
                    /*yDesc=*/data_desc_,
                    /*dyDesc=*/data_desc_,
                    /*dzDesc=*/nullptr,
                    /*dxDesc=*/data_desc_,
                    /*bnScaleBiasMeanVarDesc=*/bn_param_desc_,
                    /*activationDesc=*/nullptr,
                    /*sizeInBytes=*/&workspace_size));

        workspace_tensor.Resize({static_cast<int64_t>(workspace_size)});
        workspace_ptr =
            static_cast<void *>(ctx.template Alloc<uint8_t>(&workspace_tensor));
H
hong 已提交
1021

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
        PADDLE_ENFORCE_GPU_SUCCESS(
            paddle::platform::dynload::cudnnBatchNormalizationBackwardEx(
                /*handle=*/ctx.cudnn_handle(),
                /*mode=*/mode_,
                /*bnOps=*/CUDNN_BATCHNORM_OPS_BN,
                /*alphaDataDiff=*/CudnnDataType<T>::kOne(),
                /*betaDataDiff=*/CudnnDataType<T>::kZero(),
                /*alphaParamDiff=*/CudnnDataType<T>::kOne(),
                /*betaParamDiff=*/CudnnDataType<T>::kZero(),
                /*xDesc=*/data_desc_,
                /*xData=*/transformed_x.template data<T>(),
                /*yDesc=*/nullptr,
                /*yData=*/nullptr,
                /*dyDesc=*/data_desc_,
                /*dyData=*/transformed_d_y.template data<T>(),
                /*dzDesc=*/nullptr,
                /*dzData=*/nullptr,
                /*dxDesc=*/data_desc_,
                /*dxData=*/ctx.template Alloc<T>(&transformed_d_x),
                /*dBnScaleBiasDesc=*/bn_param_desc_,
                /*bnScaleData=*/scale.template data<BatchNormParamType<T>>(),
                /*bnBiasData=*/nullptr,
                /*dBnScaleData=*/
                ctx.template Alloc<BatchNormParamType<T>>(d_scale),
                /*dBnBiasData=*/
                ctx.template Alloc<BatchNormParamType<T>>(d_bias),
                /*epsilon=*/epsilon,
                /*savedMean=*/saved_mean_data,
                /*savedInvVariance=*/saved_var_data,
                /*activationDesc=*/nullptr,
                /*workspace=*/workspace_ptr,
                /*workSpaceSizeInBytes=*/workspace_size,
                /*reserveSpace=*/
                const_cast<uint8_t *>(reserve_space->template data<uint8_t>()),
                /*reserveSpaceSizeInBytes=*/reserve_space_size));
H
hong 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
#else
        PADDLE_ENFORCE_GPU_SUCCESS(
            paddle::platform::dynload::cudnnBatchNormalizationBackward(
                ctx.cudnn_handle(),
                mode_,
                CudnnDataType<T>::kOne(),
                CudnnDataType<T>::kZero(),
                CudnnDataType<T>::kOne(),
                CudnnDataType<T>::kZero(),
                data_desc_,
                transformed_x.template data<T>(),
                data_desc_,
                transformed_d_y.template data<T>(),
                data_desc_,
                ctx.template Alloc<T>(&transformed_d_x),
                bn_param_desc_,
                scale.template data<BatchNormParamType<T>>(),
H
hong 已提交
1074 1075
                ctx.template Alloc<BatchNormParamType<T>>(d_scale),
                ctx.template Alloc<BatchNormParamType<T>>(d_bias),
H
hong 已提交
1076 1077 1078
                epsilon,
                saved_mean_data,
                saved_var_data));
1079
#endif  // CUDNN_VERSION_MIN(7, 4, 1)
H
hong 已提交
1080
      }
1081
#endif
H
hong 已提交
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091

      if (data_layout == DataLayout::kNHWC &&
          compute_format == DataLayout::kNCHW) {
        VLOG(3) << "Transform batchnorm output from NCHW to NHWC";
        TransToChannelLast<Context, T>(ctx, &transformed_d_x, d_x);
      }
    } else {
      // This branch call CUDA kernels
      if (compute_format == DataLayout::kNCHW) {
        if (d_x) {
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
          BNBackwardData<T, block, phi::DataLayout::kNCHW>
              <<<grid2, block, 0, ctx.stream()>>>(
                  d_y->data<T>(),
                  scale.data<BatchNormParamType<T>>(),
                  saved_mean_data,
                  x.data<T>(),
                  saved_var_data,
                  C,
                  N,
                  H * W * D,
                  d_x->data<T>());
H
hong 已提交
1103 1104
        }
        if (d_scale && d_bias) {
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
          KeBNBackwardScaleBias<T, block, phi::DataLayout::kNCHW>
              <<<grid2, block, 0, stream>>>(
                  d_y->data<T>(),
                  x.data<T>(),
                  saved_mean_data,
                  saved_var_data,
                  epsilon,
                  N,
                  C,
                  H * W * D,
                  d_scale->data<BatchNormParamType<T>>(),
                  d_bias->data<BatchNormParamType<T>>());
H
hong 已提交
1117 1118 1119
        }
      } else {
        if (d_x) {
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
          BNBackwardData<T, block, phi::DataLayout::kNHWC>
              <<<grid2, block, 0, ctx.stream()>>>(
                  d_y->data<T>(),
                  scale.data<BatchNormParamType<T>>(),
                  saved_mean_data,
                  x.data<T>(),
                  saved_var_data,
                  C,
                  N,
                  H * W * D,
                  d_x->data<T>());
H
hong 已提交
1131 1132
        }
        if (d_scale && d_bias) {
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
          KeBNBackwardScaleBias<T, block, phi::DataLayout::kNHWC>
              <<<grid2, block, 0, stream>>>(
                  d_y->data<T>(),
                  x.data<T>(),
                  saved_mean_data,
                  saved_var_data,
                  epsilon,
                  N,
                  C,
                  H * W * D,
                  d_scale->data<BatchNormParamType<T>>(),
                  d_bias->data<BatchNormParamType<T>>());
H
hong 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
        }
      }
    }

#ifdef PADDLE_WITH_HIP
// TODO(wangran16): wait for MIOpen to improve the performance of BN
// clean when exit.
// PADDLE_ENFORCE_GPU_SUCCESS(
//     platform::dynload::miopenDestroyTensorDescriptor(data_desc_));
// PADDLE_ENFORCE_GPU_SUCCESS(
//     platform::dynload::miopenDestroyTensorDescriptor(bn_param_desc_));
#else
    // clean when exit.
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::cudnnDestroyTensorDescriptor(data_desc_));
    PADDLE_ENFORCE_GPU_SUCCESS(
        paddle::platform::dynload::cudnnDestroyTensorDescriptor(
            bn_param_desc_));
#endif
  } else {
    const auto *running_mean = mean.get_ptr();
    const auto *running_var = variance.get_ptr();

    const auto *running_mean_data =
        running_mean->template data<BatchNormParamType<T>>();
    const auto *running_var_data =
        running_var->template data<BatchNormParamType<T>>();

    if (is_inplace) {
      auto px = x;
      inplace_functor(data_layout,
                      ctx.template Alloc<T>(&px),
                      scale.template data<BatchNormParamType<T>>(),
                      bias.template data<BatchNormParamType<T>>(),
                      running_mean_data,
                      running_var_data,
                      epsilon,
                      C,
                      H * W * D,
                      num,
                      x.data<T>(),
                      grid2,
                      block,
                      stream);
    }

    if (compute_format == DataLayout::kNCHW) {
      if (d_x) {
1193 1194 1195 1196 1197 1198 1199 1200 1201
        KeBNBackwardData<T, phi::DataLayout::kNCHW>
            <<<grid1, block, 0, stream>>>(d_y->data<T>(),
                                          scale.data<BatchNormParamType<T>>(),
                                          running_var_data,
                                          epsilon,
                                          C,
                                          H * W,
                                          num,
                                          d_x->data<T>());
H
hong 已提交
1202 1203
      }
      if (d_scale && d_bias) {
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
        KeBNBackwardScaleBias<T, block, phi::DataLayout::kNCHW>
            <<<grid2, block, 0, stream>>>(
                d_y->data<T>(),
                x.data<T>(),
                running_mean_data,
                running_var_data,
                epsilon,
                N,
                C,
                H * W * D,
                d_scale->data<BatchNormParamType<T>>(),
                d_bias->data<BatchNormParamType<T>>());
H
hong 已提交
1216 1217 1218
      }
    } else {
      if (d_x) {
1219 1220 1221 1222 1223 1224 1225 1226 1227
        KeBNBackwardData<T, phi::DataLayout::kNHWC>
            <<<grid1, block, 0, stream>>>(d_y->data<T>(),
                                          scale.data<BatchNormParamType<T>>(),
                                          running_var_data,
                                          epsilon,
                                          C,
                                          H * W,
                                          num,
                                          d_x->data<T>());
H
hong 已提交
1228 1229
      }
      if (d_scale && d_bias) {
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
        KeBNBackwardScaleBias<T, block, phi::DataLayout::kNHWC>
            <<<grid2, block, 0, stream>>>(
                d_y->data<T>(),
                x.data<T>(),
                running_mean_data,
                running_var_data,
                epsilon,
                N,
                C,
                H * W * D,
                d_scale->data<BatchNormParamType<T>>(),
                d_bias->data<BatchNormParamType<T>>());
H
hong 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
      }
    }
  }
}

template <typename T, typename Context>
void BatchNormGradKernel(const Context &dev_ctx,
                         const DenseTensor &x,
                         const DenseTensor &scale,
                         const DenseTensor &bias,
1252 1253
                         const paddle::optional<DenseTensor> &mean,
                         const paddle::optional<DenseTensor> &variance,
H
hong 已提交
1254 1255
                         const DenseTensor &saved_mean,
                         const DenseTensor &saved_variance,
1256
                         const paddle::optional<DenseTensor> &reserve_space,
H
hong 已提交
1257
                         const DenseTensor &y_grad,
H
hong 已提交
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
                         float momentum,
                         float epsilon,
                         const std::string &data_layout,
                         bool is_test,
                         bool use_global_stats,
                         bool trainable_statistics,
                         DenseTensor *x_grad,
                         DenseTensor *scale_grad,
                         DenseTensor *bias_grad) {
  BatchNormGradRawKernel<T, Context>(dev_ctx,
                                     x,
                                     scale,
                                     bias,
H
hong 已提交
1271 1272
                                     mean,
                                     variance,
H
hong 已提交
1273 1274 1275
                                     saved_mean,
                                     saved_variance,
                                     reserve_space,
H
hong 已提交
1276
                                     y_grad,
H
hong 已提交
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
                                     momentum,
                                     epsilon,
                                     data_layout,
                                     is_test,
                                     use_global_stats,
                                     trainable_statistics,
                                     false,
                                     x_grad,
                                     scale_grad,
                                     bias_grad);
}

template <typename T, typename Context>
void BatchNormDoubleGradKernel(const Context &ctx,
                               const DenseTensor &x,
                               const DenseTensor &scale,
1293 1294
                               const paddle::optional<DenseTensor> &mean,
                               const paddle::optional<DenseTensor> &variance,
1295 1296 1297 1298 1299 1300
                               const DenseTensor &saved_mean,
                               const DenseTensor &saved_variance,
                               const DenseTensor &y_grad,
                               const DenseTensor &x_grad_grad,
                               const DenseTensor &scale_grad_grad,
                               const DenseTensor &bias_grad_grad,
H
hong 已提交
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
                               float momentum,
                               float epsilon,
                               const std::string &data_layout_str,
                               bool is_test,
                               bool use_global_stats,
                               bool trainable_statistics,
                               DenseTensor *x_grad,
                               DenseTensor *scale_grad,
                               DenseTensor *y_grad_grad) {
  PADDLE_ENFORCE_EQ(is_test,
                    false,
                    phi::errors::InvalidArgument(
                        "`is_test = True` CANNOT be used in train program. If "
                        "you want to use global status in pre_train model, "
                        "please set `use_global_stats = True`"));

1317
  const DataLayout data_layout = phi::StringToDataLayout(data_layout_str);
H
hong 已提交
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368

  const DenseTensor *running_mean = nullptr;
  const DenseTensor *running_variance = nullptr;
  if (use_global_stats) {
    running_mean = mean.get_ptr();
    running_variance = variance.get_ptr();
  }
  paddle::operators::NormDoubleGradFunctor<Context, T>(ctx,
                                                       data_layout,
                                                       &x,
                                                       &scale,
                                                       &y_grad,
                                                       &saved_mean,
                                                       &saved_variance,
                                                       running_mean,
                                                       running_variance,
                                                       epsilon,
                                                       use_global_stats,
                                                       &x_grad_grad,
                                                       &scale_grad_grad,
                                                       &bias_grad_grad,
                                                       x_grad,
                                                       scale_grad,
                                                       y_grad_grad);
}

}  // namespace phi

#ifdef PADDLE_WITH_HIP
PD_REGISTER_KERNEL(batch_norm_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::BatchNormGradKernel,
                   float,
                   phi::dtype::float16) {}

PD_REGISTER_KERNEL(batch_norm_grad_raw,
                   GPU,
                   ALL_LAYOUT,
                   phi::BatchNormGradRawKernel,
                   float,
                   phi::dtype::float16) {}
#else
PD_REGISTER_KERNEL(batch_norm_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::BatchNormGradKernel,
                   float,
                   double,
                   phi::dtype::float16) {
  if (kernel_key.dtype() == phi::DataType::FLOAT16) {
1369 1370 1371
    kernel->OutputAt(0).SetDataType(phi::DataType::FLOAT32);  // x_grad
    kernel->OutputAt(1).SetDataType(phi::DataType::FLOAT32);  // scale_grad
    kernel->OutputAt(2).SetDataType(phi::DataType::FLOAT32);  // bias_grad
H
hong 已提交
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
  }
}

PD_REGISTER_KERNEL(batch_norm_grad_raw,
                   GPU,
                   ALL_LAYOUT,
                   phi::BatchNormGradRawKernel,
                   float,
                   double,
                   phi::dtype::float16) {
  if (kernel_key.dtype() == phi::DataType::FLOAT16) {
1383 1384 1385
    kernel->OutputAt(0).SetDataType(phi::DataType::FLOAT32);  // x_grad
    kernel->OutputAt(1).SetDataType(phi::DataType::FLOAT32);  // scale_grad
    kernel->OutputAt(2).SetDataType(phi::DataType::FLOAT32);  // bias_grad
H
hong 已提交
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
  }
}

#endif

#ifdef PADDLE_WITH_HIP
PD_REGISTER_KERNEL(batch_norm_grad_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::BatchNormDoubleGradKernel,
                   float,
                   double) {}
#else
PD_REGISTER_KERNEL(batch_norm_grad_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::BatchNormDoubleGradKernel,
                   float,
                   double) {}
#endif