engine.py 67.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
16
import logging
17
import numbers
18 19
import os
import random
20 21
from collections import defaultdict

22 23
import numpy as np

24
import paddle
25
import paddle.distributed.auto_parallel.utils as auto_utils
26
import paddle.utils as utils
Z
zhaoyingli 已提交
27
from paddle import fluid, static
28 29 30 31 32 33
from paddle.distributed import fleet
from paddle.fluid import Variable, core
from paddle.fluid.dygraph.parallel import ParallelEnv
from paddle.fluid.executor import _to_name_str, global_scope
from paddle.fluid.framework import Operator
from paddle.fluid.framework import _current_expected_place as _get_device
34
from paddle.fluid.framework import in_dygraph_mode
35
from paddle.fluid.layers.utils import flatten
36
from paddle.metric import Metric
37 38
from paddle.static import InputSpec

39
from ..utils.log_utils import get_logger
Z
zhaoyingli 已提交
40
from .callbacks import config_callbacks
41
from .cluster import Cluster, get_default_cluster
42 43 44
from .converter import Converter
from .cost.estimate_cost import get_cost_from_engine
from .dist_context import DistributedContext, get_default_distributed_context
45 46
from .dist_loader import (
    DistributedDataLoader,
47
    DistributedDataLoaderFromGenerator,
48
)
49 50 51
from .dist_op import DistributedOperator
from .dist_saver import DistributedSaver
from .helper import ProgramHelper
52
from .interface import CollectionNames, get_collection
53 54 55 56
from .parallelizer_v2 import Parallelizer
from .planner_v2 import Planner
from .process_group import get_all_process_groups, new_process_group
from .strategy import Strategy
57

58 59

class Engine:
60
    """
61 62
    An Engine object can provide the full power of auto parallel to users.
    With the help of it, users can easily obtain the abilities of the
63 64 65 66 67 68 69
    distributed training and inference. It also support the dynamic graph and
    static graph at the same time.

    Args:
        model (paddle.nn.Layer, optional): The model is an instance of
            paddle.nn.Layer.
        loss (Loss|Callable|None, optional): The loss can be a `paddle.nn.Layer`
70 71
            instance or any callable function taken the predicted values and
            ground truth values as input. It can be None when there is no loss.
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
            Default: None.
        optimizer (Optimizer|None, optional): The optimizer need to be set in training
            and should be None in eval and predict mode. Default: None.
        metrics (Metric|list[Metric]|None, optional): If metrics is set, all
            metrics will be calculated and output in train/eval mode. Default: None.
        cluster (Cluster|None, optional): The cluster represents the topology information
            about the used physical devices. Default: None. (Unused for now)
        strategy (Strategy|None, optional): The strategy is used to configure the
        parallelization and optimization behaviors. Default: None.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.vision.transforms as T
88
            from paddle.distributed.fleet import auto
89 90 91 92 93 94 95 96 97 98
            from paddle.vision.datasets import MNIST

            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            train_dataset = MNIST(mode='train', transform=transform)
            valid_dataset = MNIST(mode='test', transform=transform)

            model = paddle.vision.models.LeNet()
99
            loss = paddle.nn.CrossEntropyLoss()
100 101 102 103
            optimizer = paddle.optimizer.Adam(
                learning_rate=0.001, parameters=model.parameters())
            metrics = paddle.metric.Accuracy(topk=(1, 2))

104 105
            engine = auto.Engine(model, loss, optimizer, metrics)
            # fit
106 107 108
            engine.fit(train_dataset,
                       epochs=2,
                       batch_size=64)
109
            # evaluate
110 111 112 113 114 115 116
            engine.evaluate(valid_dataset,
                            batch_size=64)
            # predict
            engine.predict(valid_dataset,
                           batch_size=64)
            # save
            engine.save("./my_model")
117
            # load
118 119 120
            engine.load("./my_model")

    """
121

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
    def __init__(
        self,
        model=None,
        loss=None,
        optimizer=None,
        metrics=None,
        cluster=None,
        strategy=None,
    ):

        if (
            model
            and not isinstance(model, paddle.nn.Layer)
            and not callable(model)
        ):
137 138 139 140
            raise TypeError(
                "'model must be sub classes of `paddle.nn.Layer` or any callable function."
            )
        self._model = model
141 142 143 144 145 146 147 148 149

        if (
            loss
            and not isinstance(loss, (paddle.nn.Layer, Variable))
            and not callable(loss)
        ):
            raise TypeError(
                "'loss' must be sub classes of `paddle.nn.Layer` or any callable function or a Variable."
            )
150 151 152
        self._loss = loss

        if optimizer and not isinstance(
153 154 155
            optimizer,
            (paddle.optimizer.Optimizer, paddle.fluid.optimizer.Optimizer),
        ):
156 157
            raise TypeError(
                "'optimizer' must be object of class `paddle.optimizer.Optimizer`"
158 159
                " or `paddle.fluid.optimizer.Optimizer`."
            )
160
        self._optimizer = auto_utils.validate_opt(optimizer)
161
        self._orig_optimizer = copy.deepcopy(self._optimizer)
162 163

        metrics = metrics or []
164
        for metric in auto_utils.to_list(metrics):
165 166 167 168 169 170
            if metric and not isinstance(metric, Metric):
                raise TypeError(
                    "{} is not sub class of Metric".format(
                        metric.__class__.__name__
                    )
                )
171
        self._metrics = auto_utils.to_list(metrics)
172 173 174 175 176 177 178 179 180 181 182 183 184

        if cluster and not isinstance(cluster, Cluster):
            raise TypeError(
                "'cluster' must be the object or class `paddle.distributed.auto_parallel.Cluster`"
            )
        self._cluster = cluster or get_default_cluster()

        if strategy and not isinstance(strategy, Strategy):
            raise TypeError(
                "'strategy' must be object of class `paddle.distributed.auto_parallel.Strategy`"
            )
        self._strategy = strategy or Strategy()

185
        self._logger = get_logger(logging.INFO)
186
        if os.getenv("POD_NAME"):
187 188
            self._logger.info(
                "Distribute training by paddle.distributed.launch"
189
            )
190
            fleet.init(is_collective=True)
191

192
        self._executor = None
193 194 195
        self._cur_rank = paddle.distributed.get_rank()
        self._nranks = paddle.distributed.get_world_size()
        self._saver = DistributedSaver()
196

197 198
        self._orig_main_prog = static.default_main_program()
        self._orig_startup_prog = static.default_startup_program()
199
        self._orig_dist_context = get_default_distributed_context()
200
        self._dist_contexts = {}
201 202
        self._fwd_main_progs = {}
        self._fwd_dist_contexts = {}
203 204
        self._serial_main_progs = {}
        self._serial_startup_progs = {}
205 206 207 208
        self._dist_main_progs = defaultdict(dict)  # dist main programs
        self._dist_startup_progs = defaultdict(dict)  # dist startup programs
        self._feed_vars = {}
        self._fetch_vars = {}
209
        self._planners = {}
210 211
        self._has_prepared = {"train": False, "eval": False, "predict": False}
        self._has_prepared_reader = {
212 213
            "train": False,
            "eval": False,
214
            "predict": False,
215
        }
216 217 218 219
        self._inputs_spec = []
        self._labels_spec = []
        self._inputs = []
        self._labels = []
220
        self._losses = []
221

222
        self._mode = None
223 224
        self._skip_build = False
        self._outside_dataloader = False
225
        self._planned_mode = None
226 227
        self._dygraph_mode = False
        self._tuning = self._strategy.tuning
228

Z
zhaoyingli 已提交
229 230
        self.history = None

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
    def _prepare_data_spec(self, data, split, batch_size):
        inputs_spec = []
        labels_spec = []
        if isinstance(data, paddle.io.IterableDataset):
            if split is None:
                inputs, labels = next(iter(data))
            else:
                sample = next(iter(data))
                inputs = sample[:split]
                labels = sample[split:]
        elif isinstance(data, paddle.io.Dataset):
            if split is None:
                inputs, labels = data[0]
            else:
                sample = data[0]
                inputs = sample[:split]
                labels = sample[split:]
        else:
249
            raise TypeError(
250 251 252 253
                "Data should be a Dataset or IterableDatset, but received {}.".format(
                    type(data).__name__
                )
            )
254 255
        inputs = auto_utils.to_list(inputs)
        labels = auto_utils.to_list(labels)
256 257

        num_shards = self._strategy.dataset.num_shards
258

259 260 261 262 263 264 265 266 267 268 269 270 271 272
        def _adjust_item_spec(num_shards, spec):
            if num_shards > 1 and len(spec.shape) > 1:
                spec.shape[0] = spec.shape[0] * num_shards

        def _infer_item_spec(item, name, batch_size, specs):
            if isinstance(item, np.ndarray):
                spec = InputSpec.from_numpy(item, name)
                if batch_size is None:
                    _adjust_item_spec(num_shards, spec)
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
            elif isinstance(item, (Variable, core.VarBase, core.eager.Tensor)):
                spec = InputSpec.from_tensor(item, name)
273
                _adjust_item_spec(num_shards, spec)
274 275 276 277
                if batch_size is None:
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
278
            elif isinstance(item, numbers.Number):
279
                specs.append(InputSpec([batch_size], type(item), name))
280 281 282 283 284 285
            else:
                raise TypeError(
                    "The sample's dtype returned of dataset should be number, np.ndarray or Tensor, but got {}".format(
                        type(item).__name__
                    )
                )
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301

        if inputs is not None:
            for i, item in enumerate(inputs):
                assert item is not None, "Receive None input."
                name = "input" + str(i)
                _infer_item_spec(item, name, batch_size, inputs_spec)
        if labels is not None:
            for i, item in enumerate(labels):
                assert item is not None, "Receive None input."
                name = "label" + str(i)
                _infer_item_spec(item, name, batch_size, labels_spec)

        inputs_spec = self._validate_spec(inputs_spec)
        labels_spec = self._validate_spec(labels_spec)
        return inputs_spec, labels_spec

302
    def _prepare_data_tensor(self, inputs_spec, labels_spec, inputs, labels):
303
        if in_dygraph_mode() or self._dygraph_mode:
304 305
            raise ValueError("Only support static graph mode.")

306
        if inputs_spec:
307 308 309 310 311
            assert isinstance(
                inputs_spec, list
            ), "inputs should be list, but received {}".format(
                type(inputs_spec)
            )
312 313 314 315 316 317 318 319 320
            assert isinstance(
                inputs, list
            ), "inputs should be list, but received {}".format(type(inputs))
            assert len(inputs_spec) == len(
                inputs
            ), "the number of `inputs_spec` should be equal to `inputs`'s."
            for input_spec, input in zip(inputs_spec, inputs):
                if input_spec.shape != input.shape:
                    input.desc.set_shape(input_spec.shape)
321
        if labels_spec:
322 323 324 325 326
            assert isinstance(
                labels_spec, list
            ), "labels should be list, but received {}".format(
                type(labels_spec)
            )
327 328 329 330 331 332 333 334 335 336
            assert isinstance(
                labels, list
            ), "labels should be list, but received {}".format(type(labels))
            assert len(labels_spec) == len(
                labels
            ), "the number of `labels_spec` should be equal to `labels`'s."
            for label_spec, label in zip(labels_spec, labels):
                if label_spec.shape != label.shape:
                    label.desc.set_shape(label_spec.shape)

337 338 339 340 341 342 343 344 345
        return inputs, labels

    def _prepare_reader(self):
        dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
        dist_context = self._dist_contexts[self._mode]
        dist_main_block = dist_main_prog.global_block()

        # NOTE: this list may be changed if Paddle changes the existing rules.
        related_reader_ops = [
346 347 348
            "create_py_reader",
            "create_double_buffer_reader",
            "read",
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
        ]
        # remove the first three ops if multiple run fit/evaluate/predict
        if dist_main_block.ops[0].type == 'create_py_reader':
            for i in range(len(related_reader_ops)):
                if dist_main_block.ops[0].type in related_reader_ops:
                    dist_main_block._remove_op(0, sync=False)
        dist_main_block._sync_with_cpp()
        # Step 1: find the reader ops
        reader_op_indices = []
        for idx, op in enumerate(dist_main_block.ops):
            if op.type in related_reader_ops:
                reader_op_indices.append(idx)
        # Step 2: insert the new reader ops to cpp
        new_reader_ops = []
        for idx in reversed(reader_op_indices):
            new_op_desc = dist_main_block.desc._prepend_op()
            new_op_desc.copy_from(dist_main_block.ops[idx].desc)
366 367 368
            new_op = Operator(
                dist_main_block, new_op_desc, type=new_op_desc.type()
            )
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
            new_reader_ops.append(new_op)
            dist_op = DistributedOperator(new_op)
            dist_context.add_dist_op_for_program(dist_op)
        # Step 3: insert the new reader ops to python
        for new_op in new_reader_ops:
            dist_main_block.ops.insert(0, new_op)
        for i in range(len(reader_op_indices)):
            reader_op_indices[i] += len(reader_op_indices)
        # Step 4: remove the old reader ops from python and cpp
        for idx in reversed(reader_op_indices):
            op = dist_main_block.ops.pop(idx)
            dist_main_block.desc._remove_op(idx, idx + 1)
        dist_main_block._sync_with_cpp()
        self._has_prepared_reader[self._mode] = True

    def _prepare_feed(self, data, user_feeds, mode):
        feeds = {}
        if data is not None:
            if isinstance(data, (list, tuple)):
                if len(data) == 1 and isinstance(data[0], dict):
                    for name, data in data[0].items():
                        feeds[name] = data
                else:
                    raise ValueError("Unsupported data {}".format(data))
            elif isinstance(data, dict):
                for name, data in data.items():
                    feeds[name] = data
            else:
                raise ValueError("Unsupported data {}".format(data))
398
        if user_feeds is not None:
399 400 401 402 403
            assert isinstance(
                user_feeds, dict
            ), "user_feeds must be a dict, but receive {}".format(
                type(user_feeds).__name__
            )
404 405
            for name, data in user_feeds.items():
                feeds[name] = data
406 407
        return feeds

408
    def _prepare_fetch(self, user_fetches, mode):
409
        if user_fetches is not None:
410 411 412 413 414
            assert isinstance(
                user_fetches, list
            ), "user_fetches must be a list, but receive {}".format(
                type(user_fetches).__name__
            )
415
        fetch_names = []
416
        fetch_indices = []
417

418 419
        def _process_fetch_group(group_name, var_list):
            group_indices = []
420
            for var in var_list:
421 422 423 424 425 426
                # Remove duplicate var_names
                if self._is_local_var(var):
                    var_name = _to_name_str(var)
                    if var_name not in fetch_names:
                        fetch_names.append(var_name)
                    group_indices.append(fetch_names.index(var_name))
427 428
            if not group_indices:
                fetch_names.append([])
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
            fetch_indices.append(group_indices)

        if mode != "predict":
            _process_fetch_group("loss", self._fetch_vars[mode]["loss"])
        if mode != "predict":
            metrics = self._fetch_vars[mode]["metrics"]
            for i, var_list in enumerate(metrics):
                _process_fetch_group("metrics_" + str(i), var_list)
        if mode == "predict":
            _process_fetch_group("outputs", self._fetch_vars[mode]["outputs"])
        user_fetches_collection = [
            item[1] for item in get_collection(CollectionNames.FETCHES)
        ]
        var_list = (user_fetches_collection or []) + (user_fetches or [])
        _process_fetch_group("fetches", var_list)
        return fetch_names, fetch_indices

446 447 448 449 450 451 452 453 454 455
    def _prepare_logger(
        self,
        outs,
        epoch=None,
        step=None,
        lr=None,
        fetch_names=None,
        fetch_indices=None,
        mode=None,
    ):
Z
zhaoyingli 已提交
456
        logs = {}
457
        if epoch is not None:
Z
zhaoyingli 已提交
458
            logs["epoch"] = epoch
459
        if step is not None:
Z
zhaoyingli 已提交
460
            logs["step"] = step + 1
461
        if lr is not None:
Z
zhaoyingli 已提交
462
            logs["lr"] = lr
463 464
        group_idx = 0
        if mode != "predict":
Z
zhaoyingli 已提交
465
            # logging loss
466
            loss_indices = fetch_indices[group_idx]
Z
zhaoyingli 已提交
467
            assert len(loss_indices) <= 1
468
            for idx in loss_indices:
Z
zhaoyingli 已提交
469
                logs["loss"] = outs[idx][0]
470
            group_idx += 1
Z
zhaoyingli 已提交
471
            # logging metrics
472 473 474 475 476 477 478 479 480 481
            metric_vars = self._fetch_vars[mode]["metrics"]
            if metric_vars:
                for metric in self._metrics:
                    metrics_indices = fetch_indices[group_idx]
                    metric_out = []
                    for idx in metrics_indices:
                        metric_out.append(outs[idx])
                    if metric_out:
                        metric.update(*metric_out)
                        results = metric.accumulate()
482
                        for i, res in enumerate(auto_utils.to_list(results)):
Z
zhaoyingli 已提交
483
                            logs[metric.name()[i]] = res
484
                    group_idx += 1
Z
zhaoyingli 已提交
485 486 487 488 489 490 491
        # logging outputs
        elif mode == "predict":
            outputs_indices = fetch_indices[group_idx]
            logs_out = {}
            for idx in outputs_indices:
                logs_out["out%d" % (idx)] = outs[idx]
            logs["outputs"] = logs_out
492 493
            group_idx += 1
        # logging user fetches
Z
zhaoyingli 已提交
494 495
        collect_fetches = get_collection(CollectionNames.FETCHES)
        logs_fetch = {}
496 497 498 499
        for name, var_name in collect_fetches:
            if var_name in fetch_names:
                idx = fetch_names.index(var_name)
                logs_fetch[name or var_name] = outs[idx]
Z
zhaoyingli 已提交
500 501
        logs["fetches"] = logs_fetch
        return logs
502

503 504 505 506 507 508 509 510 511 512 513
    def _prepare_program(self, mode):
        # Do the build process
        self._build(mode)
        # Do the planning process
        self._plan(mode)
        # Do the parallel process
        self._parallel(mode)
        # Init comm and startup program
        self._initialize(mode)
        self._has_prepared[mode] = True

514
    def _build(self, mode):
515
        if in_dygraph_mode() or self._dygraph_mode:
516
            paddle.disable_static()
517 518 519
            self._dygraph_mode = True
            self._logger.info("Building model with 'to_static' method.")

520
            self.program_helper = ProgramHelper(
521 522 523 524 525
                self._model,
                self._loss,
                self._metrics,
                self._inputs_spec,
                self._labels_spec,
526
            )
527
            # build forward main program
528
            self.program_helper.build_program(mode)
529

530 531 532
            self.concrete_program = self.program_helper.concrete_program
            serial_main_prog = self.program_helper.main_program
            serial_startup_prog = self.program_helper.startup_program
533

534 535
            self._inputs = self.program_helper.input_vars
            self._labels = self.program_helper.label_vars
536
            outputs = self.program_helper.output_vars
537
            self._losses = self.program_helper.loss_vars
538
            metrics = self.program_helper.metric_vars
539

540
            paddle.enable_static()
541 542 543 544 545 546
        else:
            # build program in static mode
            serial_main_prog = self._serial_main_progs.get(mode, None)
            if serial_main_prog is not None:
                return

547
            outputs = []
548
            metrics = []
549
            self._losses = []
550 551
            serial_main_prog = self._orig_main_prog.clone()
            serial_startup_prog = self._orig_startup_prog.clone()
552
            if not self._skip_build:
553 554 555
                with static.program_guard(
                    serial_main_prog, serial_startup_prog
                ), utils.unique_name.guard():
556 557 558 559 560 561 562
                    self._inputs = [
                        s._create_feed_layer() for s in self._inputs_spec
                    ]
                    self._labels = [
                        s._create_feed_layer() for s in self._labels_spec
                    ]

563
                    outputs = auto_utils.to_list(self._model(*self._inputs))
564

565
                    if mode != "predict" and self._loss:
566 567 568 569 570
                        assert isinstance(
                            self._loss, paddle.nn.Layer
                        ) or callable(
                            self._loss
                        ), "the type of `loss` of the Engine arguments should be sub classes of `paddle.nn.Layer` or any callable function."
571
                        self._losses = auto_utils.to_list(
572 573
                            self._loss(*(outputs + self._labels))
                        )
574

575
                    if mode != "predict" and (outputs or self._labels):
576 577
                        for metric in self._metrics:
                            metrics.append(
578
                                auto_utils.to_list(
579 580
                                    metric.compute(*(outputs + self._labels))
                                )
581
                            )
Z
zhaoyingli 已提交
582
            elif mode == "train":
583 584 585
                assert isinstance(
                    self._loss, Variable
                ), "the type of `loss` of the Engine arguments should be Variable."
586
                self._losses = auto_utils.to_list(self._loss)
587 588 589 590 591 592 593

        default_ctx = get_default_distributed_context()
        if not default_ctx.has_annotation:
            # We build the world process group because the data parallel
            # needs all ranks by default.
            new_process_group(list(range(self._nranks)))
            default_ctx.data_parallel = True
594 595 596 597 598 599
            self._inputs = [
                auto_utils.set_data_parallel(var) for var in self._inputs
            ]
            self._labels = [
                auto_utils.set_data_parallel(var) for var in self._labels
            ]
600

601
        feed_vars = {"inputs": self._inputs, "labels": self._labels}
602 603 604

        fetch_vars = {
            "outputs": flatten(outputs),
605
            "loss": self._losses,
606
            "metrics": metrics,
607 608
        }

609 610 611
        if mode != "train":
            serial_main_prog = serial_main_prog.clone(for_test=True)

612 613 614
        auto_utils.set_recompute_segments(
            self._model, self._losses, self._strategy, serial_main_prog
        )
615
        self._dist_contexts[mode] = DistributedContext(
616 617 618
            serial_main_prog,
            serial_startup_prog,
            self._optimizer,
619 620 621 622 623 624 625 626 627 628 629
            self._losses,
            feed_vars,
            fetch_vars,
            self._cluster,
            self._strategy,
        )
        self._fwd_dist_contexts[mode] = DistributedContext(
            serial_main_prog,
            serial_startup_prog,
            self._optimizer,
            self._losses,
630 631 632 633 634
            feed_vars,
            fetch_vars,
            self._cluster,
            self._strategy,
        )
635
        self._dist_contexts[mode].gradient_scale = self._strategy.gradient_scale
636
        self._fwd_main_progs[mode] = serial_main_prog.clone()
637

638 639 640
    def _optimization_tuning(self, mode, dataset, batch_size):
        if not self._tuning.enable:
            raise ValueError("Please set `tuning.enable=True`.")
641

642 643 644 645 646 647 648 649
        assert mode == "train"
        # Do the build process
        self._build(mode)
        # Do the planning process
        self._plan(mode)

        dataset.dp_world_size = self._dp_world_sizes
        dataset.dp_rank = self._dp_ranks
650 651

        from .tuner.optimization_tuner import OptimizationTuner
652 653 654 655 656 657 658 659 660

        self._optimization_tuner = OptimizationTuner(
            self._dist_contexts[mode],
            dataset,
            self._inputs_spec,
            self._labels_spec,
            batch_size=batch_size,
            rank=self._cur_rank,
        )
661 662 663

        self._optimization_tuner.tune()

664
        if self._tuning.run_after_tuning:
665 666
            # update the strategy
            self._dist_contexts[
667 668
                mode
            ]._strategy = self._optimization_tuner.get_best_config()
669

670 671 672 673 674 675
    def _plan(self, mode):
        if self._planned_mode is None:
            self._planned_mode = mode
        else:
            self._init_dist_context(mode)

676 677
        self._planners[mode] = Planner(mode, self._dist_contexts[mode])
        self._planners[mode].plan()
678

679 680 681 682
        # infer data parallel info
        inputs_var = self._dist_contexts[mode].serial_feed_vars["inputs"]
        labels_var = self._dist_contexts[mode].serial_feed_vars["labels"]
        block = self._dist_contexts[mode].serial_main_program.global_block()
683
        # TODO: check this feed_list
684 685 686 687 688
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in block.vars:
                feed_list.append(block.vars[var.name])

689 690
        self._dp_world_sizes = []
        self._dp_ranks = []
691
        for feed_var in feed_list:
692
            dp_world_size, dp_rank = auto_utils.get_input_split_info(
693
                self._cur_rank, feed_var, self._dist_contexts[mode]
694
            )
695 696
            self._dp_world_sizes.append(dp_world_size)
            self._dp_ranks.append(dp_rank)
697

698
    def _parallel(self, mode, all_ranks=False):
699 700 701
        # Parallelize program based on the planner's results
        # For now, the completer has to be passed to the planner,
        # because we may use it to complete the annotation of the backwarkward and update.
702 703 704
        parallelizer = Parallelizer(
            mode, self._planners[mode].completer, self._dist_contexts[mode]
        )
705 706 707 708
        if not all_ranks:
            parallelizer.parallel(self._cur_rank)
        else:
            parallelizer.parallel_all()
709 710

    def _init_dist_context(self, mode):
711
        # Init dist_context['mode'] with the first planned dist_context
712 713 714 715 716 717 718 719 720 721
        # to guarantee that train/eval/predict mode have same parallel strategy
        dist_context = self._dist_contexts[mode]
        origin_main_prog = dist_context._original_serial_main_program
        ref_mode = self._planned_mode
        ref_dist_context = self._dist_contexts[ref_mode]
        ref_origin_main_prog = ref_dist_context._original_serial_main_program
        ref_blocks = ref_origin_main_prog.blocks
        for ib, block in enumerate(origin_main_prog.blocks):
            for iop, op in enumerate(block.ops):
                ref_op = ref_blocks[ib].ops[iop]
722 723 724 725 726 727 728 729
                assert (
                    op.type == ref_op.type
                ), "'{}' mode op '{}' is different with '{}' op '{}'. ".format(
                    mode, op.type, ref_mode, ref_op.type
                )
                ref_op_dist_attr = (
                    ref_dist_context.get_op_dist_attr_for_program(ref_op)
                )
730 731 732
                dist_context.set_op_dist_attr_for_program(op, ref_op_dist_attr)

    def _initialize(self, mode):
733
        # Get the current content from the distributed context
734
        self._serial_main_progs[mode] = self._dist_contexts[
735 736
            mode
        ].serial_main_program
737
        self._serial_startup_progs[mode] = self._dist_contexts[
738 739
            mode
        ].serial_startup_program
740
        self._dist_main_progs[mode] = self._dist_contexts[
741 742
            mode
        ].dist_main_programs
743
        self._dist_startup_progs[mode] = self._dist_contexts[
744 745
            mode
        ].dist_startup_programs
746 747
        self._feed_vars[mode] = self._dist_contexts[mode].serial_feed_vars
        self._fetch_vars[mode] = self._dist_contexts[mode].serial_fetch_vars
Z
zhaoyingli 已提交
748
        self._optimizer = self._dist_contexts[mode]._serial_optimizer
749

750 751 752 753
        if self._nranks > 1:
            # Traverse different rank programs and traverse each op of them,
            # instantiate communication by process_mapping.
            all_process_groups = get_all_process_groups()
C
caozhou 已提交
754 755
            cur_rank = self._cur_rank
            # NOTE: After the implementation of the unified dynamic and static communication group initialization mode in the future, the initialization logic of full mode will be removed because port occupation error may occur.
756
            if self._strategy.auto_mode == "full":
757 758 759
                auto_utils.initialize_pg_in_full_mode(
                    all_process_groups, cur_rank
                )
760 761
            else:
                for process_group in all_process_groups:
C
caozhou 已提交
762
                    if cur_rank not in process_group.ranks:
763 764
                        continue
                    process_group.instantiate()
765

766 767 768
        place = _get_device()
        if isinstance(place, fluid.CUDAPlace):
            place = fluid.CUDAPlace(ParallelEnv().dev_id)
769

770 771 772 773 774
        if self._strategy.seed:
            paddle.seed(self._strategy.seed + self._dp_ranks[0])
            np.random.seed(self._strategy.seed + self._dp_ranks[0])
            random.seed(self._strategy.seed + self._dp_ranks[0])

775
        if self._dygraph_mode:
776 777 778
            dist_context = self._dist_contexts[mode]
            dist_main_program = self._dist_main_progs[mode][self._cur_rank]
            self.program_helper.init(dist_main_program, place, dist_context)
779

780
        if self._executor is None:
781
            self._executor = paddle.static.Executor(place)
782 783 784 785 786 787 788 789 790 791
            uninitialized = []
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            for var in dist_startup_prog.list_vars():
                scope_var = global_scope().find_var(var.name)
                if scope_var and scope_var.get_tensor()._is_initialized():
                    continue
                uninitialized.append(var)
            if uninitialized:
                prune_startup_prog = dist_startup_prog._prune(uninitialized)
                self._executor.run(prune_startup_prog)
792

793
            if hasattr(self, "_state_dict") and hasattr(self, "_dist_attr"):
794 795 796
                self._set_state_dict(
                    mode, self._strict, self._state_dict, self._dist_attr
                )
797 798

        if self._strategy.reinit:
Z
zhaoyingli 已提交
799
            self._logger.info("NOTE: parameters will be re-initialized.")
800 801 802
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            self._executor.run(dist_startup_prog)

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
    def fit(
        self,
        train_data,
        train_sample_split=None,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        log_freq=10,
        save_dir=None,
        save_freq=1,
        valid_data=None,
        valid_sample_split=None,
        valid_freq=1,
        valid_steps=None,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
821 822 823 824 825 826 827 828
        """
        Trains the model for a fixed number of epochs. If `valid_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
            train_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            train_sample_split (int, optional): Each sample of the train dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
829
                more than two items, train_sample_split specifies how to split these items into
830
                input and label. The items before it are input and the left are label. Default: None.
831
            batch_size (int, optional): The batch size of train_data and valid_data if provided.
832 833 834
                The user's data will be used directly without batching if set to None. Default: 1.
            epochs (int, optional): The number of epochs to train the model. Default: 1.
            steps_per_epoch (int, optional): The total number of steps (batches of samples)
835
                is executed in one epoch before stating the next one. If None, it is equal to
836 837
                the number samples in your dataset divided by the batch size. Default: None.
            valid_data (Dataset, optional): An instance of paddle paddle.io.Dataset used for
838
                evaluation at the end of epoch. No evaluation will be done if set to None.
839
                Default: None. (Unsupported for now)
840
            valid_freq (int, optional): Only relevant if valid_data is provided. This specifies
841 842
                how many training epochs before a new evaluation is performed. Default: 1.
            valid_sample_split (int, optional): Only relevant if valid_data is provided.
843 844
                Each sample of the valid dataset is assumed to be a (input, label) pair
                by default and has two items. If each sample has more than two items,
845 846 847
                valid_sample_split specifies how to split these items into input and label.
                The items before it are input and the left are label. Default: None.
            valid_steps (int, optional): Only relevant if valid_data is provided.
848 849
                It is the total number of steps (batches of samples) to draw before
                stopping validation at the end of every epoch. If None, validation will run until the
850 851 852 853
                `valid_data` dataset is exhausted. The validation will start from the
                beginning of the dataset at each epoch. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
854
                0. Default None.
855 856 857 858 859 860 861 862 863 864 865 866
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during training. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
867
                from paddle.distributed.fleet import auto
868 869 870 871 872 873 874 875 876
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
877
                loss = paddle.nn.CrossEntropyLoss()
878 879 880 881
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

882
                engine = auto.Engine(model, loss, optimizer, metrics)
883 884 885 886
                engine.fit(train_dataset,
                           epochs=2,
                           batch_size=64)
        """
887 888
        self._mode = 'train'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
889 890
            train_data, train_sample_split, batch_size
        )
891 892
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
893
        else:
894
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
895

896 897 898 899 900 901 902
        train_dataloader = self._prepare_dataloader_from_generator(
            dataset=train_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
903 904
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
905

906
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
Z
zhaoyingli 已提交
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932

        cbks = config_callbacks(
            callbacks,
            engine=self,
            batch_size=batch_size,
            epochs=epochs,
            steps=train_dataloader._steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
            metrics=self._metrics_name(),
            acc_step=self._k_steps,
        )

        cbks.on_begin('train')
        for epoch in range(epochs):
            logs = {}
            cbks.on_epoch_begin(epoch)
            for step, _ in enumerate(train_dataloader):
                cbks.on_batch_begin('train', step, logs)
                try:
                    outs = self._executor.run(
                        self.main_program,
                        fetch_list=fetch_names,
                        use_program_cache=self._strategy.use_cache,
933 934
                        return_numpy=self._strategy.return_numpy,
                    )
Z
zhaoyingli 已提交
935 936
                except core.EOFException:
                    break
937
                lr = auto_utils.get_lr(self._optimizer)
938 939 940 941 942 943 944 945 946
                logs = self._prepare_logger(
                    outs,
                    epoch,
                    step,
                    lr,
                    fetch_names,
                    fetch_indices,
                    self._mode,
                )
Z
zhaoyingli 已提交
947 948 949
                cbks.on_batch_end('train', step, logs)

            if valid_data and (epoch + 1) % valid_freq == 0:
950 951 952 953 954 955 956 957 958 959
                val_logs = self.evaluate(
                    valid_data,
                    valid_sample_split,
                    batch_size,
                    valid_steps,
                    log_freq,
                    collate_fn,
                    callbacks,
                    verbose,
                )
Z
zhaoyingli 已提交
960
                val_logs = {
961
                    "val_" + name: val for name, val in val_logs.items()
Z
zhaoyingli 已提交
962 963 964 965 966 967 968 969 970 971
                }
                logs.update(val_logs)
                self._switch_mode("train")
            else:
                self._reset_metrics()

            cbks.on_epoch_end(epoch, logs)

        cbks.on_end('train', logs)
        return self.history
972

973 974 975 976 977 978 979 980 981 982 983
    def evaluate(
        self,
        valid_data,
        valid_sample_split=None,
        batch_size=1,
        steps=None,
        log_freq=10,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
984 985 986 987
        """
        Evaluate the loss and metrics of the model on evaluation data.

        Args:
988 989
            valid_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            valid_sample_split (int, optional): Each sample of the eval dataset is assumed
990
                to be a (input, label) pair by default and has two items. If each sample has
991
                more than two items, valid_sample_split specifies how to split these items into
992
                input and label. The items before it are input and the left are label. Default: None.
993
            batch_size (int, optional): The batch size of valid_data. The user's data will
994
                be used directly without batching if set to None. Default: 1.
995 996
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping evaluation. If None, evaluation will run until the `valid_data` dataset is exhausted.
997 998 999 1000 1001
                The evaluation will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
1002
                during evaluating. Default: None. (Unused for now)
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
1013
                from paddle.distributed.fleet import auto
1014 1015 1016 1017 1018 1019 1020 1021 1022
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                valid_dataset = MNIST(mode='test', transform=transform)

                model = paddle.vision.models.LeNet()
1023
                loss = paddle.nn.CrossEntropyLoss()
1024 1025
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1026
                engine = auto.Engine(model, loss, metrics=metrics)
1027 1028 1029
                engine.evaluate(valid_dataset, batch_size=64)

        """
1030 1031
        self._mode = 'eval'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1032 1033
            valid_data, valid_sample_split, batch_size
        )
1034 1035
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
1036
        else:
1037
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
1038

1039 1040 1041 1042 1043 1044
        valid_dataloader = self._prepare_dataloader_from_generator(
            dataset=valid_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            steps_per_epoch=steps,
1045 1046
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
1047

1048
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
1049

Z
zhaoyingli 已提交
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
        cbks = config_callbacks(
            callbacks,
            engine=self,
            batch_size=batch_size,
            log_freq=log_freq,
            verbose=verbose,
            metrics=self._metrics_name(),
        )

        eval_steps = valid_dataloader._steps
1060 1061 1062
        cbks.on_begin(
            'eval', {'steps': eval_steps, 'metrics': self._metrics_name()}
        )
Z
zhaoyingli 已提交
1063
        logs = {}
1064
        for step, _ in enumerate(valid_dataloader):
Z
zhaoyingli 已提交
1065
            cbks.on_batch_begin('eval', step, logs)
1066
            try:
1067 1068
                outs = self._executor.run(
                    self.main_program,
1069
                    fetch_list=fetch_names,
1070
                    use_program_cache=self._strategy.use_cache,
1071 1072
                    return_numpy=self._strategy.return_numpy,
                )
1073
            except core.EOFException:
1074
                break
1075 1076 1077
            logs = self._prepare_logger(
                outs, None, step, None, fetch_names, fetch_indices, self._mode
            )
Z
zhaoyingli 已提交
1078 1079
            cbks.on_batch_end('eval', step, logs)
        cbks.on_end('eval', logs)
1080
        self._reset_metrics()
Z
zhaoyingli 已提交
1081
        return logs
1082

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
    def predict(
        self,
        test_data,
        test_sample_split=None,
        batch_size=1,
        steps=None,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
1093 1094 1095 1096 1097 1098 1099
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            test_sample_split (int, optional): Each sample of the test dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
1100
                more than two items, test_sample_split specifies how to split these items into
1101 1102 1103
                input and label. The items before it are input and the left are label. Default: None.
            batch_size (int, optional): The batch size of test_data. The user's data will
                be used directly without batching if set to None. Default: 1.
1104 1105
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping predict. If None, predict will run until the `test_data` dataset is exhausted.
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
                The predict will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during testing. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
1122
                from paddle.distributed.fleet import auto
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                valid_dataset = MNIST(mode='test', transform=transform)

                model = paddle.vision.models.LeNet()

1133
                engine = auto.Engine(model)
1134 1135
                engine.predict(valid_dataset, batch_size=64)
        """
1136 1137
        self._mode = 'predict'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1138 1139
            test_data, test_sample_split, batch_size
        )
1140 1141
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
1142
        else:
1143
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
1144

1145 1146 1147 1148 1149 1150
        test_dataloader = self._prepare_dataloader_from_generator(
            dataset=test_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            steps_per_epoch=steps,
1151 1152
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
1153

1154
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
1155

Z
zhaoyingli 已提交
1156 1157 1158 1159 1160
        outputs = []
        cbks = config_callbacks(callbacks, engine=self, verbose=verbose)
        test_steps = test_dataloader._steps
        cbks.on_begin('predict', {'steps': test_steps})
        logs = {}
1161
        for step, _ in enumerate(test_dataloader):
Z
zhaoyingli 已提交
1162
            cbks.on_batch_begin('predict', step, logs)
1163
            try:
1164 1165
                outs = self._executor.run(
                    self.main_program,
1166
                    fetch_list=fetch_names,
1167
                    use_program_cache=self._strategy.use_cache,
1168 1169
                    return_numpy=self._strategy.return_numpy,
                )
1170
            except core.EOFException:
1171
                break
1172 1173 1174
            logs = self._prepare_logger(
                outs, None, step, None, fetch_names, fetch_indices, self._mode
            )
Z
zhaoyingli 已提交
1175 1176 1177 1178 1179
            cbks.on_batch_end('predict', step, logs)
            outputs.append(list(logs["outputs"].values()))
        cbks.on_end('predict', logs)
        return outputs

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
    def dataloader(
        self,
        dataset,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        epochs=1,
        steps_per_epoch=None,
        sample_split=1,
        mode=None,
    ):
1197 1198 1199
        if mode is not None:
            self.to_mode(mode)
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1200 1201
            dataset, sample_split, batch_size
        )
1202 1203
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
1204
        else:
1205
            self._switch_mode(self._mode)
1206

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
        dataloader = self._prepare_dataloader(
            dataset,
            return_list=False,
            batch_size=batch_size,
            shuffle=shuffle,
            drop_last=drop_last,
            collate_fn=collate_fn,
            num_workers=num_workers,
            use_buffer_reader=use_buffer_reader,
            use_shared_memory=use_shared_memory,
            timeout=timeout,
            worker_init_fn=worker_init_fn,
            epochs=epochs,
1220 1221
            steps_per_epoch=steps_per_epoch,
        )
1222 1223
        return dataloader

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
    def dataloader_from_generator(
        self,
        dataset,
        capacity=70,
        use_double_buffer=True,
        iterable=True,
        use_multiprocess=False,
        drop_last=True,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        collate_fn=None,
        sample_split=1,
        mode=None,
    ):
1239 1240 1241
        if mode is not None:
            self.to_mode(mode)
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1242 1243
            dataset, sample_split, batch_size
        )
1244 1245 1246 1247
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
        else:
            self._switch_mode(self._mode)
1248

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
        dataloader = self._prepare_dataloader_from_generator(
            dataset=dataset,
            capacity=capacity,
            use_double_buffer=use_double_buffer,
            iterable=iterable,
            return_list=False,
            use_multiprocess=use_multiprocess,
            drop_last=drop_last,
            batch_size=batch_size,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
1260 1261
            collate_fn=collate_fn,
        )
1262 1263
        return dataloader

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
    def prepare(
        self,
        inputs_spec=None,
        labels_spec=None,
        inputs=None,
        labels=None,
        main_program=None,
        startup_program=None,
        mode=None,
    ):
1274 1275
        if mode is not None:
            self.to_mode(mode)
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291

        if not self._mode:
            raise ValueError(
                "Please set mode to be prepared with `prepare(mode=...)`"
            )

        if self._has_prepared[self._mode]:
            return

        inputs_spec = self._validate_spec(inputs_spec)
        labels_spec = self._validate_spec(labels_spec)
        inputs = self._validate_vars(inputs)
        labels = self._validate_vars(labels)

        self._orig_main_prog = main_program
        self._orig_startup_prog = startup_program
1292 1293
        if inputs or labels:
            self._skip_build = True
1294 1295
            inputs, labels = self._prepare_data_tensor(
                inputs_spec, labels_spec, inputs, labels
1296
            )
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
            if self._orig_main_prog is None:
                self._orig_main_prog = static.default_main_program()
            if self._orig_startup_prog is None:
                self._orig_startup_prog = static.default_startup_program()
        elif inputs_spec or labels_spec:
            self._outside_dataloader = True
            if self._orig_main_prog is None:
                self._orig_main_prog = static.default_main_program()
            if self._orig_startup_prog is None:
                self._orig_startup_prog = static.default_startup_program()
        else:
1308 1309 1310
            assert (
                self._inputs_spec and self._labels_spec
            ), "Please call the dataloader(...) before calling prepare(...)"
1311

1312 1313 1314 1315 1316 1317 1318
        self._inputs_spec, self._labels_spec = inputs_spec, labels_spec
        self._inputs, self._labels = inputs, labels
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
        else:
            self._switch_mode(self._mode)

1319
    def run(self, data=None, feed=None, fetch_list=None, mode=None):
1320 1321 1322 1323
        if mode is not None:
            self.to_mode(mode)
        feed_dict = self._prepare_feed(data, feed, self._mode)
        fetch_names, fetch_indices = self._prepare_fetch(fetch_list, self._mode)
1324 1325 1326 1327
        if (
            self._outside_dataloader
            and not self._has_prepared_reader[self._mode]
        ):
1328
            self._prepare_reader()
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
        outs = self._executor.run(
            self.main_program,
            feed=feed_dict,
            fetch_list=fetch_names,
            use_program_cache=self._strategy.use_cache,
            return_numpy=self._strategy.return_numpy,
        )
        logs = self._prepare_logger(
            outs, None, None, None, fetch_names, fetch_indices, self._mode
        )
Z
zhaoyingli 已提交
1339
        return logs
1340

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
    def _prepare_dataloader(
        self,
        dataset,
        return_list=True,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        epochs=1,
        steps_per_epoch=None,
    ):
1357

1358
        if self._strategy.gradient_merge and batch_size is not None:
1359 1360 1361 1362 1363
            assert (
                batch_size % self._k_steps == 0
            ), "Requires batch_size:[{}] to be divisible by k_steps:[{}].".format(
                batch_size, self._k_steps
            )
1364
            batch_size //= self._k_steps
1365

1366 1367
        dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self._mode][self._cur_rank]
1368
        dist_main_block = dist_main_prog.global_block()
1369

1370 1371 1372 1373
        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
1374 1375
        inputs_var = self._feed_vars[self._mode]["inputs"]
        labels_var = self._feed_vars[self._mode]["labels"]
1376 1377 1378 1379
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
1380 1381 1382 1383
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)
1384 1385

        # insert read op at the end of program
1386
        places = paddle.static.cuda_places()
1387
        with static.program_guard(dist_main_prog, dist_startup_prog):
1388
            dataloader = DistributedDataLoader(
1389
                dataset,
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
                feed_list=feed_list,
                places=places,
                return_list=return_list,
                batch_size=batch_size,
                shuffle=shuffle,
                drop_last=drop_last,
                collate_fn=collate_fn,
                num_workers=num_workers,
                use_buffer_reader=use_buffer_reader,
                use_shared_memory=use_shared_memory,
                timeout=timeout,
                worker_init_fn=worker_init_fn,
                epochs=epochs,
                steps_per_epoch=steps_per_epoch,
                split_data=self._strategy.split_data,
1405
                data_parallel_world_size=self._dp_world_sizes,
1406 1407
                data_parallel_rank=self._dp_ranks,
            )
1408

1409 1410
        return dataloader

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
    def _prepare_dataloader_from_generator(
        self,
        dataset,
        capacity=None,
        use_double_buffer=True,
        iterable=True,
        return_list=False,
        use_multiprocess=False,
        drop_last=True,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        collate_fn=None,
    ):
1425 1426

        if self._strategy.gradient_merge and batch_size is not None:
1427 1428 1429 1430 1431
            assert (
                batch_size % self._k_steps == 0
            ), "Requires batch_size:[{}] to be divisible by k_steps:[{}].".format(
                batch_size, self._k_steps
            )
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
            batch_size //= self._k_steps

        dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self._mode][self._cur_rank]
        dist_main_block = dist_main_prog.global_block()

        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
        inputs_var = self._feed_vars[self._mode]["inputs"]
        labels_var = self._feed_vars[self._mode]["labels"]
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)

        places = paddle.static.cuda_places()
        with static.program_guard(dist_main_prog, dist_startup_prog):
            dataloader = DistributedDataLoaderFromGenerator(
                dataset=dataset,
                feed_list=feed_list,
                capacity=capacity,
                use_double_buffer=use_double_buffer,
                iterable=iterable,
                return_list=return_list,
                use_multiprocess=use_multiprocess,
                drop_last=drop_last,
                places=places,
                batch_size=batch_size,
                epochs=epochs,
                steps_per_epoch=steps_per_epoch,
                collate_fn=collate_fn,
                split_data=self._strategy.split_data,
                data_parallel_world_size=self._dp_world_sizes,
1471 1472
                data_parallel_rank=self._dp_ranks,
            )
1473 1474 1475 1476 1477 1478
        self._prepare_reader()
        return dataloader

    def _tune(self, tune_data, tune_sample_split=None, batch_size=1):
        self._mode = 'train'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1479 1480
            tune_data, tune_sample_split, batch_size
        )
1481 1482
        self._optimization_tuning(self._mode, tune_data, batch_size)

1483
    def _validate_spec(self, specs):
1484
        specs = auto_utils.to_list(specs)
1485
        self._k_steps = self._strategy.gradient_merge.k_steps
1486 1487
        if specs is not None:
            for i, spec in enumerate(specs):
1488 1489 1490 1491
                if not isinstance(spec, InputSpec):
                    raise TypeError(
                        "'spec' must be object of class `paddle.static.InputSpec`."
                    )
1492 1493
                if spec.name is None:
                    raise ValueError(
1494 1495 1496 1497
                        "Requires Input[{}].name != None, but receive `None` with {}.".format(
                            i, spec
                        )
                    )
1498
                if self._k_steps > 1:
1499
                    shape = list(spec.shape)
1500 1501 1502 1503 1504
                    assert (
                        shape[0] % self._k_steps == 0
                    ), "Requires batch_size[{}] to be divisible by k_steps[{}].".format(
                        spec.shape[0], self._k_steps
                    )
1505
                    shape[0] //= self._k_steps
1506
                    spec.shape = shape
1507 1508 1509
        return specs or []

    def _validate_vars(self, vars):
1510
        vars = auto_utils.to_list(vars)
1511 1512 1513 1514 1515
        if vars is not None:
            for i, var in enumerate(vars):
                if not isinstance(var, Variable):
                    raise TypeError("'var' must be a `Variable`.")
        return vars or []
1516

1517 1518 1519 1520
    def _is_local_var(self, var):
        var_name = _to_name_str(var)
        return var_name in self.main_program.global_block().vars

1521 1522 1523 1524
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

Z
zhaoyingli 已提交
1525 1526 1527
    def _metrics_name(self):
        metrics_name = ['loss'] if self._loss else []
        for m in self._metrics:
1528
            metrics_name.extend(auto_utils.to_list(m.name()))
Z
zhaoyingli 已提交
1529 1530
        return metrics_name

1531
    def _switch_mode(self, mode):
1532 1533 1534
        assert (
            mode in self._dist_main_progs
        ), "{} model is not ready, please call `prepare()` first.".format(mode)
1535
        self.to_mode(mode)
Z
zhaoyingli 已提交
1536
        self._optimizer = self._dist_contexts[mode]._serial_optimizer
1537

1538
    def to_mode(self, mode):
1539 1540 1541 1542 1543
        assert mode in [
            "train",
            "eval",
            "predict",
        ], "mode {} should be one of ['train', 'eval', 'predict']".format(mode)
1544 1545
        self._mode = mode

1546 1547 1548
    def _set_state_dict(self, mode, strict, state_dict, dist_attr):
        program = self._dist_main_progs[mode][self._cur_rank]
        dist_context = self._dist_contexts[mode]
1549
        cur_dist_attr = auto_utils.get_dist_attr(program, dist_context)
1550 1551 1552 1553 1554
        converter = Converter(state_dict, dist_attr, cur_dist_attr)
        state_dict = converter.convert(strict=strict)
        program.set_state_dict(state_dict)

    def save(self, path, training=True):
1555 1556
        """
        Saves the model, parameters, optimizer state to path.
1557 1558 1559 1560 1561 1562 1563
        If `training` is set to False, only inference model will be saved.

        Args:
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
            training (bool, optional): Whether to save for training. If not, save
1564
                for inference only. If `training` is set to True, the optimizer state
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
                will be saved. Otherwise, only the model and parameters are saved.
                This function will silently overwrite existing file at the target
                location. Default: True.

        Returns:
            None

        Examples:

            .. code-block:: python
                import paddle
                import paddle.vision.transforms as T
1577
                from paddle.distributed.fleet import auto
1578 1579 1580 1581 1582 1583 1584 1585 1586
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
1587
                loss = paddle.nn.CrossEntropyLoss()
1588 1589 1590 1591
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1592
                engine = auto.Engine(model, loss, optimizer, metrics)
1593 1594 1595 1596
                engine.fit(train_dataset,
                           epochs=1,
                           batch_size=64)
                engine.save("./my_model")
1597

1598
        """
1599
        if training:
Z
zhaoyingli 已提交
1600 1601 1602 1603
            assert self._mode in self._serial_main_progs
            serial_program = self._serial_main_progs[self._mode]
            dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
            dist_context = self._dist_contexts[self._mode]
1604 1605 1606 1607 1608 1609
            self._saver.save(
                path,
                serial_program=serial_program,
                dist_main_program=dist_main_prog,
                dist_context=dist_context,
            )
1610
        else:
Z
zhaoyingli 已提交
1611 1612 1613 1614
            assert "predict" in self._dist_main_progs
            feed_vars = self._feed_vars["predict"]['inputs']
            fetch_vars = self._fetch_vars["predict"]['outputs']
            dist_main_prog = self._dist_main_progs["predict"][self._cur_rank]
1615 1616 1617 1618 1619 1620 1621
            self._saver.save_inference_model(
                path,
                feed_vars,
                fetch_vars,
                self._executor,
                program=dist_main_prog,
            )
1622

1623 1624 1625 1626 1627 1628
    def load(self, path, strict=True, load_optimizer=True):
        """
        Load the stored model, parameters and optimizer states.

        Args:
            path (str): The prefix of files storing the model states and
1629
                optimizer states.
1630 1631 1632
            strict (bool, optional): Whether to skip the loading of mismatch
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
1633
                mismatch shape). Default: True.
1634
            load_optimizer (bool, optional): If True, the stored optimizer
1635
                states is restored. Otherwise, the optimizer states is initialized
1636
                from scratch. Default: True.
1637 1638 1639 1640 1641 1642 1643 1644 1645

        Returns:
            None

        Examples:

            .. code-block:: python
                import paddle
                import paddle.vision.transforms as T
1646
                from paddle.distributed.fleet import auto
1647 1648 1649 1650 1651 1652 1653 1654 1655
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
1656
                loss = paddle.nn.CrossEntropyLoss()
1657 1658 1659 1660
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1661
                engine = auto.Engine(model, loss, optimizer, metrics)
1662 1663 1664 1665 1666
                engine.fit(train_dataset,
                           epochs=1,
                           batch_size=64)
                engine.save("./my_model")
                engine.load("./my_model")
1667

1668 1669 1670
        """
        self._strict = strict
        self._state_dict, self._dist_attr = self._saver.load(
1671 1672
            path, load_optimizer
        )
1673
        return self._state_dict, self._dist_attr
1674

1675
    def cost(self, inputs_spec=None, labels_spec=None, mode=None):
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
        """
        Get and Print cost, including memory of every rank,
        max memory among all ranks, and the global cost of one step based on
        communication cost(computation cost is 0 by default).
        In the future, the flops information of every rank and global cost including
        computation cost will be added.

        Args:
            inputs_spec(InputSpec): The specification of inputs. Default: None.
            labels_spec(InputSpec): The specification of labels. Default: None.
1686
            mode (str): The engine mode must be in ["train", "predict", "eval"]. Default: None.
1687 1688 1689 1690 1691 1692 1693

        Returns:
            Return the global execution time (ms) and max memory (B).

        """
        # Check parallel mode
        if self._strategy.auto_mode == "full":
1694
            self._logger.info(
1695 1696 1697 1698 1699
                "The cost will be calcudated in the search process when the auto mode is full."
            )
            return

        # Check mode
1700 1701 1702
        mode = mode if mode is not None else self._mode
        assert mode is not None, "Please set mode."
        if mode not in self._has_prepared:
1703 1704
            raise ValueError(
                "The mode {} is not in accepted modes {}".format(
1705
                    mode, list(self._has_prepared.keys())
1706 1707
                )
            )
1708 1709
        self.to_mode(mode)

1710 1711 1712
        if inputs_spec is not None and not self._has_prepared[mode]:
            self._inputs_spec = self._validate_spec(inputs_spec)
            self._labels_spec = self._validate_spec(labels_spec)
1713 1714 1715
            self._build(mode)
            self._plan(mode)
        else:
1716
            if in_dygraph_mode() or self._dygraph_mode:
1717
                raise ValueError(
1718 1719 1720 1721 1722
                    "Please call `prepare()` or `fit()` or  `evaluate()` or  `predict()` before calling `cost()`."
                )
            else:
                self._logger.info(
                    "The program whose cost to be estimated must be static default program. Otherwise, please call `prepare()`before calling `cost()`."
1723
                )
1724 1725 1726 1727 1728 1729 1730 1731
                program = paddle.static.default_main_program()
                if (
                    not program.global_block().ops
                    or not program.global_block().ops
                ) and not self._has_prepared[mode]:
                    raise ValueError(
                        "Please call `prepare()` or `fit()` or  `evaluate()` or  `predict()` before calling `cost()`."
                    )
1732 1733 1734 1735 1736 1737

        # Estimate the exec cost and max memory
        global_cost, max_memory = get_cost_from_engine(self, mode)

        return global_cost.time, max_memory

1738 1739
    @property
    def main_program(self):
1740
        return self._dist_main_progs[self._mode][self._cur_rank]
1741 1742 1743

    @property
    def startup_program(self):
1744
        return self._dist_startup_progs[self._mode][self._cur_rank]
1745 1746 1747

    @property
    def dist_context(self):
1748
        return self._dist_contexts[self._mode]
1749 1750 1751

    @property
    def serial_main_program(self):
1752
        return self._serial_main_progs[self._mode]
1753 1754 1755

    @property
    def serial_startup_program(self):
1756
        return self._serial_startup_progs[self._mode]
1757 1758 1759

    @property
    def fetch_vars(self):
1760
        return self._fetch_vars[self._mode]
1761 1762 1763

    @property
    def inputs(self):
1764
        return self._inputs
1765 1766 1767

    @property
    def labels(self):
1768
        return self._labels