test_understand_sentiment.py 5.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import unittest
16
import paddle.v2.fluid as fluid
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
import paddle.v2 as paddle
import contextlib


def convolution_net(data, label, input_dim, class_dim=2, emb_dim=32,
                    hid_dim=32):
    emb = fluid.layers.embedding(input=data, size=[input_dim, emb_dim])
    conv_3 = fluid.nets.sequence_conv_pool(
        input=emb,
        num_filters=hid_dim,
        filter_size=3,
        act="tanh",
        pool_type="sqrt")
    conv_4 = fluid.nets.sequence_conv_pool(
        input=emb,
        num_filters=hid_dim,
        filter_size=4,
        act="tanh",
        pool_type="sqrt")
    prediction = fluid.layers.fc(input=[conv_3, conv_4],
                                 size=class_dim,
                                 act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_cost = fluid.layers.mean(x=cost)
    adam_optimizer = fluid.optimizer.Adam(learning_rate=0.002)
    adam_optimizer.minimize(avg_cost)
    accuracy = fluid.layers.accuracy(input=prediction, label=label)
    return avg_cost, accuracy
Q
QI JUN 已提交
45 46


Y
Yu Yang 已提交
47 48 49
def stacked_lstm_net(data,
                     label,
                     input_dim,
Q
QI JUN 已提交
50 51 52 53 54 55
                     class_dim=2,
                     emb_dim=128,
                     hid_dim=512,
                     stacked_num=3):
    assert stacked_num % 2 == 1

56
    emb = fluid.layers.embedding(input=data, size=[input_dim, emb_dim])
Q
QI JUN 已提交
57 58 59
    # add bias attr

    # TODO(qijun) linear act
60 61
    fc1 = fluid.layers.fc(input=emb, size=hid_dim)
    lstm1, cell1 = fluid.layers.dynamic_lstm(input=fc1, size=hid_dim)
Q
QI JUN 已提交
62 63 64 65

    inputs = [fc1, lstm1]

    for i in range(2, stacked_num + 1):
66 67
        fc = fluid.layers.fc(input=inputs, size=hid_dim)
        lstm, cell = fluid.layers.dynamic_lstm(
Q
QI JUN 已提交
68 69 70
            input=fc, size=hid_dim, is_reverse=(i % 2) == 0)
        inputs = [fc, lstm]

71 72
    fc_last = fluid.layers.sequence_pool(input=inputs[0], pool_type='max')
    lstm_last = fluid.layers.sequence_pool(input=inputs[1], pool_type='max')
Q
QI JUN 已提交
73

74 75 76 77 78 79
    prediction = fluid.layers.fc(input=[fc_last, lstm_last],
                                 size=class_dim,
                                 act='softmax')
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_cost = fluid.layers.mean(x=cost)
    adam_optimizer = fluid.optimizer.Adam(learning_rate=0.002)
Y
Yu Yang 已提交
80
    adam_optimizer.minimize(avg_cost)
81 82
    accuracy = fluid.layers.accuracy(input=prediction, label=label)
    return avg_cost, accuracy
Q
QI JUN 已提交
83

84 85 86 87 88 89 90

def main(word_dict, net_method, use_cuda):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

    BATCH_SIZE = 128
    PASS_NUM = 5
Q
QI JUN 已提交
91 92 93
    dict_dim = len(word_dict)
    class_dim = 2

Y
Yu Yang 已提交
94 95 96
    data = fluid.layers.data(
        name="words", shape=[1], dtype="int64", lod_level=1)
    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
97
    cost, acc_out = net_method(
Y
Yu Yang 已提交
98
        data, label, input_dim=dict_dim, class_dim=class_dim)
Q
QI JUN 已提交
99 100 101 102 103

    train_data = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.imdb.train(word_dict), buf_size=1000),
        batch_size=BATCH_SIZE)
104
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
105
    exe = fluid.Executor(place)
Y
Yu Yang 已提交
106
    feeder = fluid.DataFeeder(feed_list=[data, label], place=place)
Q
QI JUN 已提交
107

108
    exe.run(fluid.default_startup_program())
Q
QI JUN 已提交
109 110 111

    for pass_id in xrange(PASS_NUM):
        for data in train_data():
Y
Yu Yang 已提交
112 113 114
            cost_val, acc_val = exe.run(fluid.default_main_program(),
                                        feed=feeder.feed(data),
                                        fetch_list=[cost, acc_out])
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
            print("cost=" + str(cost_val) + " acc=" + str(acc_val))
            if cost_val < 0.4 and acc_val > 0.8:
                return
    raise AssertionError("Cost is too large for {0}".format(
        net_method.__name__))


class TestUnderstandSentiment(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.word_dict = paddle.dataset.imdb.word_dict()

    @contextlib.contextmanager
    def new_program_scope(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
                yield

    def test_conv_cpu(self):
        with self.new_program_scope():
            main(self.word_dict, net_method=convolution_net, use_cuda=False)

    def test_stacked_lstm_cpu(self):
        with self.new_program_scope():
            main(self.word_dict, net_method=stacked_lstm_net, use_cuda=False)

    def test_conv_gpu(self):
        with self.new_program_scope():
            main(self.word_dict, net_method=convolution_net, use_cuda=True)

    def test_stacked_lstm_gpu(self):
        with self.new_program_scope():
            main(self.word_dict, net_method=stacked_lstm_net, use_cuda=True)
Q
QI JUN 已提交
151 152 153


if __name__ == '__main__':
154
    unittest.main()