ir.cc 16.6 KB
Newer Older
F
flame 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/pybind/ir.h"
16

17
#include <Python.h>
W
WangZhen 已提交
18
#include <algorithm>
19
#include <memory>
F
flame 已提交
20 21
#include <string>
#include <unordered_map>
W
WangZhen 已提交
22
#include <unordered_set>
23
#include <utility>
24

25 26
#include "paddle/fluid/pybind/pybind_variant_caster.h"

27
#include "paddle/fluid/framework/program_desc.h"
28 29 30 31 32
#include "paddle/fluid/ir/dialect/paddle_dialect/interface/op_yaml_info.h"
#include "paddle/fluid/ir/dialect/paddle_dialect/ir/api_builder.h"
#include "paddle/fluid/ir/dialect/paddle_dialect/ir/pd_dialect.h"
#include "paddle/fluid/ir/dialect/paddle_dialect/ir/pd_type.h"
#include "paddle/fluid/ir/dialect/paddle_dialect/utils/utils.h"
33
#include "paddle/fluid/ir_adaptor/translator/translate.h"
34
#include "paddle/ir/core/block.h"
35
#include "paddle/ir/core/builtin_attribute.h"
36
#include "paddle/ir/core/program.h"
37 38 39
#include "paddle/ir/core/type.h"
#include "paddle/ir/core/value.h"
#include "paddle/phi/core/enforce.h"
F
flame 已提交
40 41 42
#include "pybind11/stl.h"

namespace py = pybind11;
43 44
using ir::Block;
using ir::Operation;
45 46
using ir::OpOperand;
using ir::OpResult;
47
using ir::Program;
48 49
using ir::Type;
using ir::Value;
50
using paddle::dialect::APIBuilder;
51
using paddle::dialect::DenseTensorType;
F
flame 已提交
52 53 54 55 56
using pybind11::return_value_policy;

namespace paddle {
namespace pybind {

57 58 59 60
PyTypeObject *g_ir_opresult_pytype = nullptr;

void BindOpsAPI(pybind11::module *module);

61
void BindProgram(py::module *m) {
62
  py::class_<Program, std::shared_ptr<Program>> program(*m, "Program", R"DOC(
Y
YuanRisheng 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    Create Python Program. Program is an abstraction of model structure, divided into
    computational graphs and weights. The Program has a main block that stores the computational
    graphs.

    A set of Program usually contains startup program and main program.
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

    **Notes**:
        **we have** :ref:`api_paddle_static_default_startup_program` **and** :ref:`api_paddle_static_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_static_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_static_default_main_program` **run in every mini batch and adjust the weights.**

    Returns:
        Program: An empty Program.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.static as static

            paddle.enable_static()

            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
  )DOC");
102 103 104 105 106
  program
      .def(
          "__init__",
          [](Program &self) { new (&self) Program(ir::IrContext::Instance()); })
      .def("__str__",
107
           [](const std::shared_ptr<Program> &self) {
108
             std::ostringstream print_stream;
109
             self->Print(print_stream);
110 111
             return print_stream.str();
           })
112 113 114 115 116 117 118 119 120 121 122 123
      .def("parameters_num",
           [](const std::shared_ptr<Program> &self) {
             return self->parameters_num();
           })
      .def(
          "block",
          [](std::shared_ptr<Program> self) { return self->block(); },
          return_value_policy::reference)
      .def(
          "block",
          [](const std::shared_ptr<Program> &self) { return self->block(); },
          return_value_policy::reference);
F
flame 已提交
124
}
125

126
void BindBlock(py::module *m) {
Y
YuanRisheng 已提交
127 128 129 130 131 132 133
  py::class_<Block> block(*m, "Block", R"DOC(
    In IR, a Block has a list of Operation and can represent a sub computational graph.

    Notes:
        The constructor of Block should not be invoked directly. You can
        use `Program.block()` to get a block.
  )DOC");
134
  block.def("front", &Block::front, return_value_policy::reference)
135 136
      .def("get_parent_program",
           [](Block &self) { return self.GetParentOp()->GetParentProgram(); })
137 138 139 140 141 142 143 144 145
      .def_property_readonly(
          "ops",
          [](Block &self) -> py::list {
            py::list op_list;
            for (auto iter = self.begin(); iter != self.end(); iter++) {
              op_list.append(*iter);
            }
            return op_list;
          })
Y
YuanRisheng 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
      .def(
          "remove_op",
          [](Block &self, Operation *op) {
            auto op_iter = std::find(self.begin(), self.end(), op);
            self.erase(op_iter);
          },
          R"DOC(
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None

      )DOC");
162 163
}

164
void BindOperation(py::module *m) {
Y
YuanRisheng 已提交
165 166 167 168 169 170 171 172 173 174
  py::class_<Operation> op(*m, "Operation", R"DOC(
    In IR, all the operation are represented by Operation, and Operation
    is regarded as a build in an instruction of a Block. Users can call
    python api to describe their neural network.

    Notes:
        The constructor of operator should not be invoked directly. Use
        python api, for example: paddle.mean for building mean operation.

  )DOC");
175
  op.def("name", &Operation::name)
176
      .def("get_parent_block",
177 178
           py::overload_cast<>(&Operation::GetParent),
           return_value_policy::reference)
179
      .def("get_parent_block",
180 181
           py::overload_cast<>(&Operation::GetParent, py::const_),
           return_value_policy::reference)
182
      .def("num_operands", &Operation::num_operands)
183
      .def("num_results", &Operation::num_results)
184
      .def("operand", &Operation::operand)
185
      .def("result", &Operation::result)
186
      .def("operand_source", &Operation::operand_source)
187 188
      .def("operands", &Operation::operands)
      .def("results", &Operation::results)
189 190 191 192 193 194 195 196 197
      .def("attrs",
           [](Operation &self) -> py::dict {
             py::dict attrs_dict;
             for (auto &pair : self.attributes()) {
               attrs_dict[pair.first.c_str()] =
                   paddle::dialect::GetAttributeData(pair.second);
             }
             return attrs_dict;
           })
198 199 200 201 202 203 204 205
      .def("operands_source",
           [](Operation &self) -> py::list {
             py::list op_list;
             for (uint32_t i = 0; i < self.num_operands(); i++) {
               op_list.append(self.operand_source(i));
             }
             return op_list;
           })
206 207 208 209 210 211
      .def("get_input_names",
           [](Operation &self) -> py::list {
             py::list op_list;
             paddle::dialect::OpYamlInfoInterface yaml_interface =
                 self.dyn_cast<paddle::dialect::OpYamlInfoInterface>();
             auto inputs_info = std::get<0>(yaml_interface.GetOpInfo());
212
             for (auto &input_info : inputs_info) {
213 214 215 216 217 218 219 220 221 222
               op_list.append(input_info.name);
             }
             return op_list;
           })
      .def("get_attr_names",
           [](Operation &self) -> py::list {
             py::list op_list;
             paddle::dialect::OpYamlInfoInterface yaml_interface =
                 self.dyn_cast<paddle::dialect::OpYamlInfoInterface>();
             auto attrs_info = std::get<1>(yaml_interface.GetOpInfo());
223
             for (auto &attr_info : attrs_info) {
224 225 226 227 228 229 230 231 232 233
               op_list.append(attr_info.name);
             }
             return op_list;
           })
      .def("get_output_names",
           [](Operation &self) -> py::list {
             py::list op_list;
             paddle::dialect::OpYamlInfoInterface yaml_interface =
                 self.dyn_cast<paddle::dialect::OpYamlInfoInterface>();
             auto outputs_info = std::get<2>(yaml_interface.GetOpInfo());
234
             for (auto &output_info : outputs_info) {
235 236 237 238 239 240 241 242 243 244 245
               op_list.append(output_info.name);
             }
             return op_list;
           })
      .def("replace_all_uses_with",
           [](Operation &self, const std::vector<OpResult> &op_results) {
             self.ReplaceAllUsesWith(op_results);
           });
}

void BindValue(py::module *m) {
Y
YuanRisheng 已提交
246 247 248 249 250 251 252 253 254
  py::class_<Value> value(*m, "Value", R"DOC(
    Value class represents the SSA value in the IR system. It is a directed edge
    and a base class.

    Notes:
        The constructor of Value should not be invoked directly. Value can be automatically constructed
        when build network.

  )DOC");
255 256 257 258
  value
      .def("get_defining_op",
           &Value::GetDefiningOp,
           return_value_policy::reference)
259
      .def("first_use", &Value::first_use, return_value_policy::reference)
X
xiaoguoguo626807 已提交
260 261 262 263 264 265 266
      .def("__eq__", &Value::operator==)
      .def("__eq__",
           [](Value &self, OpResult &other) {
             return self.impl() == other.value_impl();
           })
      .def("__hash__",
           [](const Value &self) { return std::hash<ir::Value>{}(self); });
267 268 269
}

void BindOpOperand(py::module *m) {
Y
YuanRisheng 已提交
270 271 272 273 274 275 276 277 278 279
  py::class_<OpOperand> op_operand(*m,
                                   "OpOperand",
                                   R"DOC(
    OpOperand class represents the op_operand (input) of operation.

    Notes:
        The constructor of OpOperand should not be invoked directly. OpOperand can be automatically constructed
        when build network.

  )DOC");
280 281 282
  op_operand
      .def("source",
           [](OpOperand &self) { return self.source().dyn_cast<OpResult>(); })
283 284 285 286 287
      .def("set_source",
           [](OpOperand &self, const OpResult &result) {
             self.set_source(result);
           })
      .def("owner", &OpOperand::owner, return_value_policy::reference);
288 289
}

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
bool GetStopGradient(const OpResult &self) {
  auto *defining_op = self.owner();
  if (defining_op->HasAttribute(kAttrStopGradients)) {
    auto stop_gradients = defining_op->attribute(kAttrStopGradients)
                              .dyn_cast<ir::ArrayAttribute>()
                              .AsVector();
    return stop_gradients[self.GetResultIndex()]
        .dyn_cast<ir::BoolAttribute>()
        .data();
  } else {
    return false;
  }
}

void SetStopGradient(const OpResult &self, bool stop_gradient) {
  auto *defining_op = self.owner();
  std::vector<ir::Attribute> stop_gradients;
  if (defining_op->HasAttribute(kAttrStopGradients)) {
    stop_gradients = defining_op->attribute(kAttrStopGradients)
                         .dyn_cast<ir::ArrayAttribute>()
                         .AsVector();
  } else {
    stop_gradients = std::vector<ir::Attribute>(
        defining_op->num_results(),
        ir::BoolAttribute::get(ir::IrContext::Instance(), false));
  }
  stop_gradients[self.GetResultIndex()] =
      ir::BoolAttribute::get(ir::IrContext::Instance(), stop_gradient);
  defining_op->set_attribute(
      kAttrStopGradients,
      ir::ArrayAttribute::get(ir::IrContext::Instance(), stop_gradients));
}

323
void BindOpResult(py::module *m) {
Y
YuanRisheng 已提交
324 325 326 327 328 329 330
  py::class_<OpResult> op_result(*m, "OpResult", R"DOC(
    OpResult class represents the value(output) defined by a result of operation.

    Notes:
        The constructor of OpResult should not be invoked directly. OpResult can be automatically constructed
        when build network.
  )DOC");
331
  g_ir_opresult_pytype = reinterpret_cast<PyTypeObject *>(op_result.ptr());
332 333 334 335 336 337 338 339 340
  op_result.def("__eq__", &OpResult::operator==)
      .def("__eq__",
           [](OpResult &self, Value &other) {
             return self.value_impl() == other.impl();
           })
      .def("__hash__",
           [](OpResult &self) {
             return std::hash<ir::Value>{}(self.dyn_cast<ir::Value>());
           })
341 342 343
      .def("get_defining_op",
           &OpResult::GetDefiningOp,
           return_value_policy::reference)
344
      .def("first_use", &OpResult::first_use, return_value_policy::reference)
345 346
      .def("use_empty", &OpResult::use_empty)
      .def("type", &OpResult::type)
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
      .def_property(
          "stop_gradient",
          [](OpResult &self) { return GetStopGradient(self); },
          [](OpResult &self, bool stop_gradient) {
            SetStopGradient(self, stop_gradient);
          })
      .def_property(
          "shape",
          [](OpResult &self) {
            if (self.type().isa<DenseTensorType>()) {
              return phi::vectorize(
                  self.type().dyn_cast<DenseTensorType>().dims());
            } else {
              PADDLE_THROW(phi::errors::InvalidArgument(
                  "Currently, we can only get shape for dense tensor."));
            }
          },
          [](OpResult &self, const std::vector<int> &shape) {
            PADDLE_THROW(phi::errors::InvalidArgument(
                "can't set shape when building static graph"));
          })
      .def_property(
          "dtype",
          [](OpResult &self) {
            if (self.type().isa<DenseTensorType>()) {
              return paddle::dialect::TransToPhiDataType(
                  self.type().dyn_cast<DenseTensorType>().dtype());
            } else {
              PADDLE_THROW(phi::errors::InvalidArgument(
                  "Currently, we can only get dtype for dense tensor."));
            }
          },
          [](OpResult &self, phi::DataType dtype) {
            PADDLE_THROW(phi::errors::InvalidArgument(
                "can't set dtype when building static graph"));
          });
383 384 385 386 387
}

void BindType(py::module *m) {
  py::class_<Type> ir_type(*m, "Type");
  ir_type.def("__eq__", [](Type &self, Type &other) { return self == other; })
388 389 390 391 392
      .def("__str__", [](Type &self) {
        std::ostringstream print_stream;
        print_stream << self;
        return print_stream.str();
      });
393 394 395
}

void BindUtils(pybind11::module *m) {
396 397 398 399 400 401 402 403
  m->def("set_global_program",
         [](Program *program) { APIBuilder::Instance().SetProgram(program); });
  m->def("set_insertion_point",
         [](Operation *op) { APIBuilder::Instance().SetInsertionPoint(op); });
  m->def("reset_insertion_point_to_start",
         []() { APIBuilder::Instance().ResetInsertionPointToStart(); });
  m->def("reset_insertion_point_to_end",
         []() { APIBuilder::Instance().ResetInsertionPointToEnd(); });
404 405 406 407 408 409 410 411
  m->def(
      "translate_to_new_ir",
      [](const ::paddle::framework::ProgramDesc &legacy_program) {
        std::shared_ptr<Program> ret =
            std::move(paddle::TranslateLegacyProgramToProgram(legacy_program));
        return ret;
      },
      R"DOC(
Y
YuanRisheng 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
        Convert Fluid Program to New IR Program.

        Args:

            legacy_program (ProgramDesc): The Fluid Program that will be converted.

        Returns:
            Program: The New IR Program

        Raises:
            PreconditionNotMet: If legacy_program has multi block will raise error.

        Examples:
            .. code-block:: python

                import paddle
                from paddle import ir
                paddle.enable_static()

                x = paddle.randn([4, 4])
                main_program, start_program = (
                    paddle.static.Program(),
                    paddle.static.Program(),
                )
                with paddle.static.program_guard(main_program, start_program):
                    x_s = paddle.static.data('x', [4, 4], x.dtype)
                    x_s.stop_gradient = False
                    y_s = paddle.matmul(x_s, x_s)
                    z_s = paddle.add(y_s, y_s)
                    k_s = paddle.tanh(z_s)
                newir_program = ir.translate_to_new_ir(main_program.desc)

                print(newir_program)

      )DOC");
447 448
}

449 450 451 452 453 454 455 456 457 458 459 460
void BindNewIR(pybind11::module *module) {
  auto ir_module = module->def_submodule("ir");
  BindProgram(&ir_module);
  BindBlock(&ir_module);
  BindOperation(&ir_module);
  BindValue(&ir_module);
  BindOpOperand(&ir_module);
  BindOpResult(&ir_module);
  BindType(&ir_module);
  BindUtils(&ir_module);
  auto ops_modules = ir_module.def_submodule("ops");
  BindOpsAPI(&ops_modules);
461 462
}

F
flame 已提交
463 464
}  // namespace pybind
}  // namespace paddle