MKLDNNFcLayer.cpp 8.8 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "MKLDNNFcLayer.h"
T
tensor-tang 已提交
16
#include "paddle/utils/Logging.h"
T
tensor-tang 已提交
17

T
tensor-tang 已提交
18 19 20
using namespace mkldnn;  // NOLINT
typedef memory::format format;

T
tensor-tang 已提交
21 22
namespace paddle {

23
REGISTER_LAYER(mkldnn_fc, MKLDNNFcLayer);
T
tensor-tang 已提交
24

25
bool MKLDNNFcLayer::init(const LayerMap& layerMap,
T
tensor-tang 已提交
26
                         const ParameterMap& parameterMap) {
27
  if (!MKLDNNLayer::init(layerMap, parameterMap)) {
T
tensor-tang 已提交
28 29 30
    return false;
  }

31
  CHECK_EQ(inputLayers_.size(), 1UL) << "Only support one input layer yet";
T
tensor-tang 已提交
32 33 34 35 36 37 38
  CHECK_EQ(inputLayers_.size(), parameters_.size());
  CHECK(!parameters_[0]->isSparse()) << "Do not support sparse yet";

  // output size, cat not be changed
  oc_ = getSize();
  oh_ = 1;
  ow_ = 1;
39 40
  ih_ = 1;
  iw_ = 1;
T
tensor-tang 已提交
41 42 43 44 45 46 47 48 49 50 51

  // input size can not change in FC
  iLayerSize_ = inputLayers_[0]->getSize();
  CHECK_EQ(parameters_[0]->getSize(), iLayerSize_ * oc_);

  // create weight
  weight_ =
      std::unique_ptr<Weight>(new Weight(oc_, iLayerSize_, parameters_[0], 0));

  // create biases
  if (biasParameter_.get() != NULL) {
T
tensor-tang 已提交
52
    biases_ = std::unique_ptr<Weight>(new Weight(1, oc_, biasParameter_, 0));
T
tensor-tang 已提交
53 54 55 56
  }
  return true;
}

57
void MKLDNNFcLayer::convertWeightsFromPaddle() {
T
tensor-tang 已提交
58
  if (hasInitedWgt_) {
T
tensor-tang 已提交
59 60 61
    return;
  }

T
tensor-tang 已提交
62 63 64
  CHECK(wgtVal_) << "should have been initialized";
  bool hasNoSpatial_ = ih_ == 1 && iw_ == 1;
  auto targetDim = wgtVal_->getDims();
65
  auto srcFmt = hasNoSpatial_ ? format::io : format::ihwo;
T
tensor-tang 已提交
66
  wgtVal_->reorderDataFrom(wgtVal_, srcFmt, targetDim);
T
tensor-tang 已提交
67 68 69
  hasInitedWgt_ = true;
}

70
void MKLDNNFcLayer::convertWeightsToPaddle() {
T
tensor-tang 已提交
71 72 73
  CHECK(wgtVal_) << "should have been initialized";
  bool hasNoSpatial_ = ih_ == 1 && iw_ == 1;
  auto targetDim = wgtVal_->getDims();
74
  auto dstFmt = hasNoSpatial_ ? format::io : format::ihwo;
T
tensor-tang 已提交
75
  wgtVal_->reorderDataTo(wgtVal_, dstFmt, targetDim);
T
tensor-tang 已提交
76 77
}

78 79 80
void MKLDNNFcLayer::reshape(
    int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) {
  reshapeInput(bs, ih, iw);
81

T
tensor-tang 已提交
82
  CHECK_EQ(iLayerSize_, inputLayers_[0]->getSize());
83 84 85
  ic = iLayerSize_ / (ih * iw);
  CHECK_EQ(size_t(ic * ih * iw), iLayerSize_) << "not divisible";
  CHECK_EQ(size_t(oc), getSize());
T
tensor-tang 已提交
86

87 88
  reshapeOutput(oh, ow);
  resizeOutput(bs, oc);
T
tensor-tang 已提交
89

90
  printSizeInfo();
T
tensor-tang 已提交
91 92
}

93
void MKLDNNFcLayer::resetFwd(std::vector<primitive>& pipeline,
94 95 96 97
                             MKLDNNMatrixPtr& in,
                             MKLDNNMatrixPtr& wgt,
                             MKLDNNMatrixPtr& bias,
                             MKLDNNMatrixPtr& out) {
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
  resetFwdBuffers(in, wgt, bias, out);

  resetFwdPD(fwdPD_, in, wgt, bias, out);

  resetFwdPipeline(pipeline, fwdPD_, in, wgt, bias, out);
}

void MKLDNNFcLayer::resetBwd(std::vector<primitive>& pipeline,
                             MKLDNNMatrixPtr& in,
                             MKLDNNMatrixPtr& wgt,
                             MKLDNNMatrixPtr& bias,
                             MKLDNNMatrixPtr& out) {
  std::shared_ptr<fc_bwdWgt::primitive_desc> bwdWgtPD;
  std::shared_ptr<fc_bwdData::primitive_desc> bwdDataPD;

  resetBwdBuffers(in, wgt, bias, out);

  resetBwdWgtPD(bwdWgtPD, wgt, bias, out);

  resetBwdDataPD(bwdDataPD, in, out);

  resetBwdPipeline(pipeline, bwdWgtPD, bwdDataPD, in, wgt, bias, out);
}
T
tensor-tang 已提交
121

122 123 124 125 126 127 128 129 130 131 132 133
void MKLDNNFcLayer::updateWeights(const UpdateCallback& callback) {
  weight_->getParameterPtr()->incUpdate(callback);
  if (biases_ && biases_->getWGrad()) {
    biases_->getParameterPtr()->incUpdate(callback);
  }
}

void MKLDNNFcLayer::resetFwdBuffers(MKLDNNMatrixPtr& in,
                                    MKLDNNMatrixPtr& wgt,
                                    MKLDNNMatrixPtr& bias,
                                    MKLDNNMatrixPtr& out) {
  resetInValue(in);
134 135
  CHECK(in);
  in->downSpatial();
136

137 138 139
  //  if (extInVal_) {
  //    extInVal_->downSpatial();
  //  }
140

141 142 143
  auto outPD =
      MKLDNNMatrix::createPrimitiveDesc({bs_, oc_}, format::nc, engine_);
  resetOutValue(out, outPD);
144

T
tensor-tang 已提交
145
  format wgtFmt = format::oihw;
146
  if (in->getFormat() == format::nChw8c) {
T
tensor-tang 已提交
147
    wgtFmt = format::oIhw8i;
148
  } else if (in->getFormat() == format::nChw16c) {
T
tensor-tang 已提交
149 150
    wgtFmt = format::oIhw16i;
  }
151 152 153
  auto wgtPD =
      MKLDNNMatrix::createPrimitiveDesc({oc_, ic_, ih_, iw_}, wgtFmt, engine_);
  resetWithMatrix(wgt, weight_->getW(), wgtPD);
154
  wgt->downSpatial();
155

156 157
  if (biases_ == nullptr || biases_->getW() == nullptr) {
    return;
158
  }
159 160
  auto biasPD = MKLDNNMatrix::createPrimitiveDesc({oc_}, format::x, engine_);
  resetWithMatrix(bias, biases_->getW(), biasPD);
161
}
T
tensor-tang 已提交
162

163 164 165 166 167 168 169 170
void MKLDNNFcLayer::resetFwdPD(std::shared_ptr<fc_fwd::primitive_desc>& pd,
                               MKLDNNMatrixPtr in,
                               MKLDNNMatrixPtr wgt,
                               MKLDNNMatrixPtr bias,
                               MKLDNNMatrixPtr out) {
  CHECK(in);
  CHECK(wgt);
  CHECK(out);
T
tensor-tang 已提交
171
  prop_kind pk = prop_kind::forward;
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
  fc_fwd::desc fwdDesc = bias != nullptr ? fc_fwd::desc(pk,
                                                        in->getMemoryDesc(),
                                                        wgt->getMemoryDesc(),
                                                        bias->getMemoryDesc(),
                                                        out->getMemoryDesc())
                                         : fc_fwd::desc(pk,
                                                        in->getMemoryDesc(),
                                                        wgt->getMemoryDesc(),
                                                        out->getMemoryDesc());
  pd.reset(new fc_fwd::primitive_desc(fwdDesc, engine_));
}

void MKLDNNFcLayer::resetFwdPipeline(
    std::vector<primitive>& pipeline,
    std::shared_ptr<fc_fwd::primitive_desc>& pd,
    MKLDNNMatrixPtr& in,
    MKLDNNMatrixPtr& wgt,
    MKLDNNMatrixPtr& bias,
    MKLDNNMatrixPtr& out) {
  if (bias) {
    fwd_.reset(new fc_fwd(*pd, *in, *wgt, *bias, *out));
T
tensor-tang 已提交
193
  } else {
194
    fwd_.reset(new fc_fwd(*pd, *in, *wgt, *out));
T
tensor-tang 已提交
195
  }
196
  pipeline.push_back(*fwd_);
T
tensor-tang 已提交
197 198
}

199 200 201 202
void MKLDNNFcLayer::resetBwdBuffers(MKLDNNMatrixPtr& in,
                                    MKLDNNMatrixPtr& wgt,
                                    MKLDNNMatrixPtr& bias,
                                    MKLDNNMatrixPtr& out) {
203 204 205
  CHECK(inVal_ && outVal_);
  resetOutGrad(out, outVal_->getPrimitiveDesc());
  resetInGrad(in, inVal_->getPrimitiveDesc());
206 207

  CHECK(wgtVal_);
208
  resetWithMatrix(wgt, weight_->getWGrad(), wgtVal_->getPrimitiveDesc());
209 210 211 212

  bias = nullptr;
  if (biasVal_ == nullptr) {
    return;
T
tensor-tang 已提交
213
  }
214
  resetWithMatrix(bias, biases_->getWGrad(), biasVal_->getPrimitiveDesc());
215
}
T
tensor-tang 已提交
216

217 218 219 220 221 222 223 224 225 226 227 228 229 230
void MKLDNNFcLayer::resetBwdWgtPD(
    std::shared_ptr<fc_bwdWgt::primitive_desc>& pd,
    MKLDNNMatrixPtr& wgt,
    MKLDNNMatrixPtr& bias,
    MKLDNNMatrixPtr& out) {
  CHECK(inVal_);
  fc_bwdWgt::desc bwdWgtDesc = bias ? fc_bwdWgt::desc(inVal_->getMemoryDesc(),
                                                      wgt->getMemoryDesc(),
                                                      bias->getMemoryDesc(),
                                                      out->getMemoryDesc())
                                    : fc_bwdWgt::desc(inVal_->getMemoryDesc(),
                                                      wgt->getMemoryDesc(),
                                                      out->getMemoryDesc());
  pd.reset(new fc_bwdWgt::primitive_desc(bwdWgtDesc, engine_, *fwdPD_));
T
tensor-tang 已提交
231 232
}

233 234 235 236 237 238 239 240 241 242 243 244
void MKLDNNFcLayer::resetBwdDataPD(
    std::shared_ptr<fc_bwdData::primitive_desc>& pd,
    MKLDNNMatrixPtr& in,
    MKLDNNMatrixPtr& out) {
  pd = nullptr;
  if (in == nullptr) {
    return;
  }
  CHECK(wgtVal_);
  fc_bwdData::desc bwdDataDesc = fc_bwdData::desc(
      in->getMemoryDesc(), wgtVal_->getMemoryDesc(), out->getMemoryDesc());
  pd.reset(new fc_bwdData::primitive_desc(bwdDataDesc, engine_, *fwdPD_));
T
tensor-tang 已提交
245 246
}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
void MKLDNNFcLayer::resetBwdPipeline(
    std::vector<primitive>& pipeline,
    std::shared_ptr<fc_bwdWgt::primitive_desc>& bwdWgtPD,
    std::shared_ptr<fc_bwdData::primitive_desc>& bwdDataPD,
    MKLDNNMatrixPtr& in,
    MKLDNNMatrixPtr& wgt,
    MKLDNNMatrixPtr& bias,
    MKLDNNMatrixPtr& out) {
  CHECK(inVal_);
  if (bias) {
    bwdWgt_.reset(new fc_bwdWgt(*bwdWgtPD, *inVal_, *out, *wgt, *bias));
  } else {
    bwdWgt_.reset(new fc_bwdWgt(*bwdWgtPD, *inVal_, *out, *wgt));
  }
  pipeline.push_back(*bwdWgt_);

  if (bwdDataPD == nullptr) {
    return;
T
tensor-tang 已提交
265
  }
266 267 268
  CHECK(wgtVal_) << "Should have weight memory";
  bwdData_.reset(new fc_bwdData(*bwdDataPD, *out, *wgtVal_, *in));
  pipeline.push_back(*bwdData_);
T
tensor-tang 已提交
269
}
270

T
tensor-tang 已提交
271
}  // namespace paddle