distributed_strategy.py 63.8 KB
Newer Older
1 2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import paddle
17
from paddle.distributed.fleet.proto import distributed_strategy_pb2
18
from paddle.fluid.framework import Variable, set_flags, core, _global_flags
19
from paddle.fluid.wrapped_decorator import wrap_decorator
20
import google.protobuf.text_format
21
import google.protobuf
22

23
__all__ = []
24

25 26 27 28 29 30 31 32 33 34 35 36 37 38
non_auto_func_called = True


def __non_auto_func_called__(func):
    def __impl__(*args, **kwargs):
        global non_auto_func_called
        non_auto_func_called = False
        return func(*args, **kwargs)

    return __impl__


is_strict_auto = wrap_decorator(__non_auto_func_called__)

39

40 41 42 43 44 45 46 47 48 49 50 51 52
def get_msg_dict(msg):
    res_dict = {}
    fields = msg.DESCRIPTOR.fields
    for f in fields:
        res_dict[f.name] = getattr(msg, f.name)
    return res_dict


def assign_configs_value(msg, config):
    fields = msg.DESCRIPTOR.fields
    for key in config:
        for f in fields:
            if key == f.name:
53 54 55
                # LABEL_OPTIONAL = 1
                # LABEL_REPEATED = 3
                # LABEL_REQUIRED = 2
56 57 58 59 60 61 62 63 64 65 66 67
                if f.label == 3:
                    getattr(msg, f.name).extend(config[f.name])
                elif f.label == 1 or f.label == 2:
                    setattr(msg, f.name, config[f.name])


def check_configs_key(msg, config, field_name):
    key_list = msg.DESCRIPTOR.fields_by_name.keys()
    for key in config:
        assert key in key_list, "key:{} not in {}".format(key, field_name)


68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
class DistributedJobInfo(object):
    """
    DistributedJobInfo will serialize all distributed training information
    Just for inner use: 1) debug 2) replicate experiments
    """

    def __init__(self):
        self.job_info = distributed_strategy_pb2.DistributedJobInfo()

    def _set_worker_num(self, worker_num):
        self.job_info.worker_num = worker_num

    def _set_server_num(self, server_num):
        self.job_info.server_num = server_num

    def _set_worker_ips(self, worker_ips):
        self.job_info.worker_ips.extend(worker_ips)

    def _set_server_endpoints(self, server_endpoints):
        self.job_info.server_endpoints.extend(server_endpoints)

    def _set_origin_startup(self, origin_startup_prog):
        self.job_info.origin_startup = str(origin_startup_prog)

    def _set_origin_main(self, origin_main_prog):
        self.job_info.origin_main = str(origin_main_prog)

    def _distributed_main(self, distributed_main_prog):
        self.job_info.distributed_main = str(distributed_main_prog)

    def _optimizer_name(self, optimizer_name):
        self.job_info.optimizer_name = optimizer_name

    def _set_distributed_strategy(self, dist_strategy):
        self.job_info.strategy = dist_strategy


class DistributedStrategy(object):
106 107
    __lock_attr = False

108
    def __init__(self):
109 110 111 112 113
        """
        DistributedStrategy is the main configuration entry for distributed training of Paddle.
        All of the distributed training configurations can be configured in DistributedStrategy,
        such as automatic mixed precision (AMP), Layer-wise Adaptive Rate Scaling (LARS), 
        asynchronous update parameter server(ASGD), etc.
1
123malin 已提交
114

115 116 117 118 119 120
        DistributedStrategy can be serialized into protobuf file or deserialized from protobuf file

        Users who run local training usually configure BuildStrategy and ExecutionStrategy, and 
        DistributedStrategy supports configurations from BuildStrategy and ExecutionStrategy

        """
121
        self.strategy = distributed_strategy_pb2.DistributedStrategy()
122 123 124

        # Set the default values of the following flags to the ones set by users
        key = 'FLAGS_cudnn_batchnorm_spatial_persistent'
125
        if _global_flags().is_public(key):
126
            self.strategy.cudnn_batchnorm_spatial_persistent = bool(
127
                _global_flags()[key])
128
        key = 'FLAGS_conv_workspace_size_limit'
129 130
        if _global_flags().is_public(key):
            self.strategy.conv_workspace_size_limit = int(_global_flags()[key])
131
        key = 'FLAGS_cudnn_exhaustive_search'
132 133
        if _global_flags().is_public(key):
            self.strategy.cudnn_exhaustive_search = bool(_global_flags()[key])
134
        key = 'FLAGS_sync_nccl_allreduce'
135 136
        if _global_flags().is_public(key):
            self.strategy.sync_nccl_allreduce = bool(_global_flags()[key])
137

138 139 140 141 142 143 144
        self.__lock_attr = True

    def __setattr__(self, key, value):
        if self.__lock_attr and not hasattr(self, key):
            raise TypeError("%s is not a attribute of %s" %
                            (key, self.__class__.__name__))
        object.__setattr__(self, key, value)
145

146
    def save_to_prototxt(self, output):
147 148 149 150
        """
        Serialize current DistributedStrategy to string and save to output file

        Examples:
1
123malin 已提交
151

152
          .. code-block:: python
1
123malin 已提交
153

154
            import paddle.distributed.fleet as fleet
155 156 157
            strategy = fleet.DistributedStrategy()
            strategy.dgc = True
            strategy.recompute = True
M
mapingshuo 已提交
158
            strategy.recompute_configs = {"checkpoints": ["x"]}
159 160
            strategy.save_to_prototxt("dist_strategy.prototxt")
        """
161 162 163 164
        with open(output, "w") as fout:
            fout.write(str(self.strategy))

    def load_from_prototxt(self, pb_file):
165 166 167 168
        """
        Load from prototxt file for DistributedStrategy initialization

        Examples:
1
123malin 已提交
169

170 171
          .. code-block:: python

172
            import paddle.distributed.fleet as fleet
173
            strategy = fleet.DistributedStrategy()
M
mapingshuo 已提交
174
            strategy.load_from_prototxt("dist_strategy.prototxt")
175 176 177 178 179 180 181 182 183 184 185
        """
        with open(pb_file, 'r') as f:
            self.strategy = google.protobuf.text_format.Merge(
                str(f.read()), self.strategy)

    @property
    def execution_strategy(self):
        """
        Configure ExecutionStrategy for DistributedStrategy

        Examples:
1
123malin 已提交
186

187 188
          .. code-block:: python

M
mapingshuo 已提交
189
            import paddle
1
123malin 已提交
190
            exe_strategy = paddle.static.ExecutionStrategy()
191 192 193 194
            exe_strategy.num_threads = 10
            exe_strategy.num_iteration_per_drop_scope = 10
            exe_strategy.num_iteration_per_run = 10

195
            strategy = paddle.distributed.fleet.DistributedStrategy()
196 197 198 199 200 201 202 203 204 205
            strategy.execution_strategy = exe_strategy
        """
        execution_strategy = paddle.fluid.ExecutionStrategy()
        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            setattr(execution_strategy, f.name,
                    getattr(self.strategy.execution_strategy, f.name))
        return execution_strategy

    @execution_strategy.setter
206
    @is_strict_auto
207 208 209 210 211 212 213 214 215 216 217 218 219 220
    def execution_strategy(self, strategy):
        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            setattr(self.strategy.execution_strategy, f.name,
                    getattr(strategy, f.name))

    @property
    def build_strategy(self):
        """
        Configure BuildStrategy for DistributedStrategy
        Note that the properties of BuildStrategy are valid in DistributedStrategy
        only if the property is non-distributed strategy.

        Examples:
1
123malin 已提交
221

222 223
          .. code-block:: python

M
mapingshuo 已提交
224
            import paddle
1
123malin 已提交
225
            build_strategy = paddle.static.BuildStrategy()
226 227 228 229 230 231 232 233
            build_strategy.enable_sequential_execution = True
            build_strategy.fuse_elewise_add_act_ops = True
            build_strategy.fuse_bn_act_ops = True
            build_strategy.enable_auto_fusion = True
            build_strategy.fuse_relu_depthwise_conv = True
            build_strategy.fuse_broadcast_ops = True
            build_strategy.fuse_all_optimizer_ops = True
            build_strategy.enable_inplace = True
1
123malin 已提交
234

235
            strategy = paddle.distributed.fleet.DistributedStrategy()
236 237 238 239 240 241 242 243 244 245 246
            strategy.build_strategy = build_strategy
        """

        build_strategy = paddle.fluid.BuildStrategy()
        fields = self.strategy.build_strategy.DESCRIPTOR.fields
        for f in fields:
            setattr(build_strategy, f.name,
                    getattr(self.strategy.build_strategy, f.name))
        return build_strategy

    @build_strategy.setter
247
    @is_strict_auto
248 249 250 251 252 253 254 255 256 257 258
    def build_strategy(self, strategy):
        fields = self.strategy.build_strategy.DESCRIPTOR.fields
        for f in fields:
            if f.label == 1 or f.label == 2:  # optional and required field
                setattr(self.strategy.build_strategy, f.name,
                        getattr(strategy, f.name))
            elif f.label == 3:  # repeated field
                getattr(self.strategy.build_strategy,
                        f.name).extend(getattr(strategy, f.name))

    @property
Y
Yuang Liu 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    def gradient_scale_configs(self):
        """
        Set the strategy of gradient scale
        Examples:

          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.gradient_scale_configs = {'scale_strategy': 'avg'}

        Note that, strategy must be in 'avg', 'sum' or 'customized'
        """
        return get_msg_dict(self.strategy.gradient_scale_configs)

    @gradient_scale_configs.setter
    @is_strict_auto
    def gradient_scale_configs(self, config):
        check_configs_key(self.strategy.gradient_scale_configs, config,
                          'gradient_scale_configs')
        assign_configs_value(self.strategy.gradient_scale_configs, config)

    @property
D
Dong Daxiang 已提交
281
    def a_sync(self):
282 283 284 285 286 287 288
        """
        Indicating whether we are using asynchronous stocastic gradient descent updates
        for training. This property is valid when we are using parameter server training, 
        which is implied by setting approperate RoleMaker
        Default value: True

        Examples:
1
123malin 已提交
289

290 291
          .. code-block:: python

292
            import paddle.distributed.fleet as fleet
293 294 295 296
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)

            strategy = fleet.DistributedStrategy()
D
Dong Daxiang 已提交
297
            strategy.a_sync = True  # by default this is True
1
123malin 已提交
298

299 300 301
            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
        """
D
Dong Daxiang 已提交
302
        return self.strategy.a_sync
303

D
Dong Daxiang 已提交
304
    @a_sync.setter
305
    @is_strict_auto
D
Dong Daxiang 已提交
306
    def a_sync(self, flag):
307
        if isinstance(flag, bool):
D
Dong Daxiang 已提交
308
            self.strategy.a_sync = flag
309
            self.a_sync_configs = {"k_steps": 0}
310
        else:
311
            raise ValueError(
Z
zhangchunle 已提交
312
                "The type of `flag` is invalid, expected type is bool, but received {}".
313
                format(type(flag)))
314 315

    @property
D
Dong Daxiang 已提交
316
    def a_sync_configs(self):
317
        """
D
Dong Daxiang 已提交
318
        Set a_sync update configurations. In general, asynchronous parameter server
319 320
        training has serveral configurable settings that can be configured through
        a dict.
321

322
        **Notes**:
M
mapingshuo 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335
            k_step(int): number of local optimization updates before communication

            max_merge_var_num(int): maximum number of merged gradients before communication

            send_queue_size(int): a buffer size of worker communication

            independent_recv_thread(bool): if we are using independent recv thread for communication

            thread_pool_size(int): number of thread pool

            send_wait_times(int): waiting time for sending gradients

            runtime_split_send_recv(bool): if we are using Tensor split for send and recv during runtime
336

337
        Examples:
1
123malin 已提交
338

339
          .. code-block:: python
340

341
            import paddle.distributed.fleet as fleet
342 343
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)
344

345
            strategy = fleet.DistributedStrategy()
D
Dong Daxiang 已提交
346
            strategy.a_sync = True  # by default this is True
M
mapingshuo 已提交
347
            configs = {"k_steps": 1024, "send_queue_size": 32}
D
Dong Daxiang 已提交
348
            strategy.a_sync_configs = configs
349

350 351
            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)
M
mapingshuo 已提交
352

353
        """
D
Dong Daxiang 已提交
354
        return get_msg_dict(self.strategy.a_sync_configs)
355

D
Dong Daxiang 已提交
356
    @a_sync_configs.setter
357
    @is_strict_auto
D
Dong Daxiang 已提交
358 359 360 361
    def a_sync_configs(self, configs):
        check_configs_key(self.strategy.a_sync_configs, configs,
                          "a_sync_configs")
        assign_configs_value(self.strategy.a_sync_configs, configs)
362

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
    @property
    def trainer_desc_configs(self):
        """
        Set trainer desc configurations. 

        **Notes**:
            dump_fields_path(str): the path of dump fields

            dump_fields(list(str)): the fields that you want to dump

            dump_param(list(str)): the param that you want to dump

            stat_var_names(list(str)): 

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            role_maker = fleet.PaddleCloudRoleMaker()
            fleet.init(role_maker)

            strategy = fleet.DistributedStrategy()
            configs = {"dump_fields_path": "./dump_data", "dump_fields": ["xxx", "yyy"]}
            strategy.trainer_desc_configs = configs

            # code block for defining loss and local optimizer
            # sgd = fleet.distributed_optimizer(optimizer, strategy)

        """
        return get_msg_dict(self.strategy.trainer_desc_configs)

    @trainer_desc_configs.setter
    @is_strict_auto
    def trainer_desc_configs(self, configs):
        check_configs_key(self.strategy.trainer_desc_configs, configs,
                          "trainer_desc_configs")
        assign_configs_value(self.strategy.trainer_desc_configs, configs)

402
    @property
403 404 405 406
    def amp(self):
        """
        Indicating whether we are using automatic mixed precision training
        Default Value: False
407

408
        Examples:
1
123malin 已提交
409

410
          .. code-block:: python
411

412
            import paddle.distributed.fleet as fleet
413 414
            strategy = fleet.DistributedStrategy()
            strategy.amp = True # by default this is false
415

416 417
        """
        return self.strategy.amp
418

419
    @amp.setter
420
    @is_strict_auto
421
    def amp(self, flag):
422
        if isinstance(flag, bool):
423
            self.strategy.amp = flag
424
        else:
425
            print("WARNING: amp should have value of bool type")
426 427

    @property
428
    def amp_configs(self):
429 430 431 432 433
        """
        Set automatic mixed precision training configurations. In general, amp has serveral configurable
        settings that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
            init_loss_scaling(float): The initial loss scaling factor. Default 32768.

            use_dynamic_loss_scaling(bool): Whether to use dynamic loss scaling. Default True.

            incr_every_n_steps(int): Increases loss scaling every n consecutive steps with finite gradients. Default 1000.

            decr_every_n_nan_or_inf(int): Decreases loss scaling every n accumulated steps with nan or inf gradients. Default 2.

            incr_ratio(float): The multiplier to use when increasing the loss scaling. Default 2.0.

            decr_ratio(float): The less-than-one-multiplier to use when decreasing the loss scaling. Default 0.5.

            custom_white_list(list[str]): Users' custom white list which always execution fp16.

            custom_black_list(list[str]): Users' custom black list which forbidden execution fp16.
449

450 451 452 453 454 455 456 457
            custom_black_varnames(list[str]): Users' custom black varibles' names.

            use_pure_fp16(bool): Whether to use the pure fp16 training. Default False.

            use_fp16_guard(bool): Whether to use `fp16_guard` when constructing the program.
                   Default True. Only takes effect when `use_pure_fp16` is turned on.

        Examples 1:
1
123malin 已提交
458

459 460 461 462 463 464 465 466
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.amp = True
            strategy.amp_configs = {
                "init_loss_scaling": 32768,
                "custom_white_list": ['conv2d']}
467 468 469 470 471 472 473 474 475 476 477 478 479

        Examples 2:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.amp = True
            # pure fp16
            strategy.amp_configs = {
                "init_loss_scaling": 32768,
                "use_pure_fp16": True
            }
480
        """
481
        return get_msg_dict(self.strategy.amp_configs)
482

483
    @amp_configs.setter
484
    @is_strict_auto
485 486 487
    def amp_configs(self, configs):
        check_configs_key(self.strategy.amp_configs, configs, "amp_configs")
        assign_configs_value(self.strategy.amp_configs, configs)
488

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
    @property
    def asp(self):
        """
        Indicating whether we are using automatic sparsity training
        Default Value: False

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.asp = True # by default this is false

        """
        return self.strategy.asp

    @asp.setter
    @is_strict_auto
    def asp(self, flag):
        if isinstance(flag, bool):
            self.strategy.asp = flag
        else:
            print("WARNING: asp should have value of bool type")

514
    @property
515 516 517 518 519 520
    def recompute(self):
        """
        Indicating whether we are using forward recomputation for memory optimization
        Default value: False

        Examples:
1
123malin 已提交
521

522 523
          .. code-block:: python

524
            import paddle.distributed.fleet as fleet
525 526 527 528 529 530
            strategy = fleet.DistributedStrategy()
            strategy.recompute = True
            # suppose x and y are names of checkpoint tensors for recomputation
            strategy.recompute_configs = {"checkpoints": ["x", "y"]}
        """
        return self.strategy.recompute
531

532 533
    @property
    def sync_nccl_allreduce(self):
534 535 536 537 538
        """
        Indicating whether we are using synchronized all reduce in each communication thread
        We note that system overhead is usually lower when sync_nccl_allreduce = True

        Examples:
1
123malin 已提交
539

540 541 542 543 544 545
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sync_nccl_allreduce = True
        """
546 547 548
        return self.strategy.sync_nccl_allreduce

    @sync_nccl_allreduce.setter
549
    @is_strict_auto
550 551 552 553
    def sync_nccl_allreduce(self, flag):
        if isinstance(flag, bool):
            self.strategy.sync_nccl_allreduce = flag
        else:
554
            print("WARNING: sync_nccl_allreduce should have value of bool type")
555

556
    @property
557
    def use_hierarchical_allreduce(self):
558 559 560 561 562 563
        """
        Indicating whether we are using hierarchical allreduce in collective communication
        Hierarchical allreduce often does allreduce within a certain node group and then do
        allreduce among the leaders of each group

        Examples:
1
123malin 已提交
564

565 566 567 568 569 570
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.use_hierarchical_allreduce = True
        """
571
        return self.strategy.use_hierarchical_allreduce
572

573
    @use_hierarchical_allreduce.setter
574
    @is_strict_auto
575
    def use_hierarchical_allreduce(self, flag):
576
        if isinstance(flag, bool):
577
            self.strategy.use_hierarchical_allreduce = flag
578 579
        else:
            print(
580
                "WARNING: use_hierarchical_allreduce should have value of bool type"
581 582 583
            )

    @property
584
    def hierarchical_allreduce_inter_nranks(self):
585 586 587 588 589
        """
        Number of ranks for low level node groups in hierarchical allreduce
        Default value: number of GPU cards on each single GPU machine

        Example:
1
123malin 已提交
590

591 592 593 594 595 596
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.hierarchical_allreduce_inter_nranks = 8
        """
597
        return self.strategy.hierarchical_allreduce_inter_nranks
598

599
    @hierarchical_allreduce_inter_nranks.setter
600
    @is_strict_auto
601 602 603
    def hierarchical_allreduce_inter_nranks(self, value):
        if isinstance(value, int):
            self.strategy.hierarchical_allreduce_inter_nranks = value
604 605
        else:
            print(
606
                "WARNING: hierarchical_allreduce_inter_nranks should have value of int type"
607 608
            )

609
    @property
610
    def sync_batch_norm(self):
611 612
        """
        Indicating whether we are using sync_batch_norm to do synchronous batch normalization among all training nodes.
1
123malin 已提交
613

614 615 616
        Default value: False

        Examples:
1
123malin 已提交
617

618 619 620 621 622 623 624
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sync_batch_norm = True
        """

625
        return self.strategy.sync_batch_norm
626

627
    @sync_batch_norm.setter
628
    @is_strict_auto
629
    def sync_batch_norm(self, flag):
630
        if isinstance(flag, bool):
631
            self.strategy.sync_batch_norm = flag
632
        else:
633
            print("WARNING: sync_batch_norm should have value of bool type")
634 635 636

    @property
    def fuse_all_reduce_ops(self):
637 638 639 640 641
        """
        Indicating whether we are using fuse_all_reduce_ops for gradient fusion during backward phase of training
        Default value: True

        Examples:
1
123malin 已提交
642

643 644 645 646 647 648
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_all_reduce_ops = False
        """
649 650 651
        return self.strategy.fuse_all_reduce_ops

    @fuse_all_reduce_ops.setter
652
    @is_strict_auto
653 654 655 656 657 658
    def fuse_all_reduce_ops(self, flag):
        if isinstance(flag, bool):
            self.strategy.fuse_all_reduce_ops = flag
        else:
            print("WARNING: fuse_all_reduce_ops should have value of bool type")

659 660
    @property
    def fuse_grad_size_in_MB(self):
661 662 663 664 665 666
        """
        Specifying the size of gradient to fuse in Mega-Bytes

        Default value: 32

        Examples:
1
123malin 已提交
667

668
          .. code-block:: python
1
123malin 已提交
669

670 671 672 673
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_grad_size_in_MB = 50
        """
674 675 676
        return self.strategy.fuse_grad_size_in_MB

    @fuse_grad_size_in_MB.setter
677
    @is_strict_auto
678 679 680 681 682 683
    def fuse_grad_size_in_MB(self, value):
        if isinstance(value, int):
            self.strategy.fuse_grad_size_in_MB = value
        else:
            print("WARNING: fuse_grad_size_in_MB should have value of int type")

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
    @property
    def last_comm_group_size_MB(self):
        """
        Specifying the size of gradient to fuse in Mega-Bytes when 
        the last group of each batch communicates. Making the last group 
        small is useful to improve performance. 

        Default value: 1

        Examples:
          .. code-block:: python
        
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.last_comm_group_size_MB = 2
        """
        return self.strategy.last_comm_group_size_MB

    @last_comm_group_size_MB.setter
    @is_strict_auto
    def last_comm_group_size_MB(self, value):
        if value > 0:
            self.strategy.last_comm_group_size_MB = value
        else:
            raise ValueError("last_comm_group_size_MB should be greater than 0")

710 711 712 713 714 715
    @property
    def find_unused_parameters(self):
        """
        Indicating whether we are using find_unused_parameters to 
        find unused parameters in DataParallel.

716
        Default value: False
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.find_unused_parameters = True
        """

        return self.strategy.find_unused_parameters

    @find_unused_parameters.setter
    @is_strict_auto
    def find_unused_parameters(self, flag):
        if isinstance(flag, bool):
            self.strategy.find_unused_parameters = flag
        else:
            print(
                "WARNING: find_unused_parameters should have value of bool type")

738 739 740 741 742
    @property
    def _fuse_grad_size_in_TFLOPS(self):
        return self.strategy.fuse_grad_size_in_TFLOPS

    @_fuse_grad_size_in_TFLOPS.setter
743
    @is_strict_auto
744 745 746 747 748 749 750 751
    def _fuse_grad_size_in_TFLOPS(self, value):
        if isinstance(value, float):
            self.strategy.fuse_grad_size_in_TFLOPS = value
        else:
            print(
                "WARNING: fuse_grad_size_in_TFLOPS should have value of float type"
            )

752
    @property
753
    def nccl_comm_num(self):
754 755 756 757 758 759
        """
        Specifying the number of NCCL communicator

        Default value: 1

        Examples:
1
123malin 已提交
760

761
          .. code-block:: python
1
123malin 已提交
762

763 764 765 766 767
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.nccl_comm_num = 2
        """

768
        return self.strategy.nccl_comm_num
769

770
    @nccl_comm_num.setter
771
    @is_strict_auto
772
    def nccl_comm_num(self, value):
773
        if isinstance(value, int):
774
            self.strategy.nccl_comm_num = value
775
        else:
776
            print("WARNING: nccl_comm_num should have value of int type")
777

778
    @recompute.setter
779
    @is_strict_auto
780
    def recompute(self, flag):
781
        if isinstance(flag, bool):
782
            self.strategy.recompute = flag
783
        else:
784
            print("WARNING: recompute should have value of bool type")
785 786

    @property
787 788
    def recompute_configs(self):
        """
J
JZ-LIANG 已提交
789 790 791 792 793 794 795 796 797 798 799 800 801 802
        Set recompute configurations. 
        
        **Note**:
        checkpoints(list): list of string name of checkpoints. In general, the recompute
        strategy of current implementation should have some manually assign checkpoints.

        enable_offload(bool): enable recompute checkpoints offload feature. this feature 
        will offload the checkpoint to host memory to allow even larger batch size. since
        the memcpy from host to device takes time, it is a trade off between larger batch
        size and training speed.

        checkpoint_shape(list): list of int that specific the shape of checkpoint. so far
        recompute-offload requires that all checkpoint to be same shape, and every dimension
        specific here should be determined ("-1" is not allowed). 
803

804
        Examples:
1
123malin 已提交
805

806
          .. code-block:: python
1
123malin 已提交
807

808
            import paddle.distributed.fleet as fleet
809 810
            strategy = fleet.DistributedStrategy()
            strategy.recompute = True
J
JZ-LIANG 已提交
811 812 813 814
            strategy.recompute_configs = {
                "checkpoints": ["x", "y"],
                "enable_offload": True,
                "checkpoint_shape": [100, 512, 1024] }
815 816 817 818 819

        """
        return get_msg_dict(self.strategy.recompute_configs)

    @recompute_configs.setter
820
    @is_strict_auto
821 822 823 824
    def recompute_configs(self, configs):
        check_configs_key(self.strategy.recompute_configs, configs,
                          "checkpoint_configs")
        assign_configs_value(self.strategy.recompute_configs, configs)
825

826 827 828 829
    @property
    def sharding(self):
        """
        Indicating whether we are using sharding Optimizer for memory
J
JZ-LIANG 已提交
830 831 832
        optimization. We implement the sharding optimizer following the ZeRO-DP 
        idea from [ZeRO: Memory Optimizations Toward Training Trillion Parameter Models](https://arxiv.org/abs/1910.02054).
        Model parameters and Optimizer State are sharded into different ranks allowing to fit larger model.
833

834 835
        In Hybrid parallelism scenario, we use sharding config as uniform API to set each parallelism.

836 837 838
        Default value: False

        Examples:
1
123malin 已提交
839

840
          .. code-block:: python
1
123malin 已提交
841

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
            import paddle.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sharding = True
        """
        return self.strategy.sharding

    @sharding.setter
    @is_strict_auto
    def sharding(self, flag):
        if isinstance(flag, bool):
            self.strategy.sharding = flag
        else:
            print("WARNING: sharding should have value of bool type")

    @property
    def sharding_configs(self):
        """
J
JZ-LIANG 已提交
859
        Set sharding configurations. 
860 861

        **Note**:
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
            sharding_segment_strategy(string, optional): strategy used to segment the program(forward & backward operations). two strategise are 
            available: "segment_broadcast_MB" and "segment_anchors". segment is a concept used in sharding to overlap computation and 
            communication. Default is segment_broadcast_MB.

            segment_broadcast_MB(float, optional): segment by the parameters broadcast volume. sharding will introduce parameter broadcast operations into program, and 
            after every segment_broadcast_MB size parameter being broadcasted, the program will be cutted into one segment.
            This configuration will affect the communication speed in sharding training, and should be an empirical value decided by your model size and network topology.
            Only enable when sharding_segment_strategy = segment_broadcast_MB. Default is 32.0 .

            segment_anchors(list): list of anchors used to segment the program, which allows a finner control of program segmentation. 
            this strategy is experimental by now. Only enable when sharding_segment_strategy = segment_anchors.

            sharding_degree(int, optional): specific the number of gpus within each sharding parallelism group; and sharding will be turn off if sharding_degree=1.  Default is 8.

            gradient_merge_acc_step(int, optional): specific the accumulation steps in gradient merge; and gradient merge will be turn off if gradient_merge_acc_step=1.  Default is 1.

            optimize_offload(bool, optional): enable the optimizer offload which will offload the moment vars to Host memory in order to saving GPU memory for fitting larger model. 
            the moment var will be prefetch from and offloaded to Host memory during update stage. it is a stragtegy that trades off between training speed and GPU memory, and is recommened to be turn on only when gradient_merge_acc_step large, where
            the number of time of update stage will be relatively small compared with forward&backward's.  Default is False.

            dp_degree(int, optional): specific the number of data parallelism group; when dp_degree >= 2, it will introduce dp_degree ways data parallelism as the outer parallelsim for the inner parallelsim. User is responsible to ensure global_world_size = mp_degree * sharding_degree * pp_degree * dp_degree. Default is 1.

            mp_degree(int, optional): [Hybrid parallelism ONLY] specific the the number of gpus within each megatron parallelism group; and megatron parallelism will turn be off if mp_degree=1.  Default is 1.

            pp_degree(int, optional): [Hybrid parallelism ONLY] specific the the number of gpus within each pipeline parallelism group; and pipeline parallelism will turn be off if pp_degree=1.  Default is 1.
887

888 889
            pp_allreduce_in_optimize(bool, optional): [Hybrid parallelism ONLY] move the allreduce operations from backward stage to update(optimize) stage when pipeline parallelsim is on. 
            This configuration will affect the communication speed of Hybrid parallelism training depeneded on network topology. this strategy is experimental by now..  Default is False.
J
JZ-LIANG 已提交
890

891 892 893
            optimize_cast(bool, optional): [Hybrid parallelism ONLY] Move the cast op of AMP which cast fp32 param to fp16 param to optimizer. optimize_cast will persist fp16 param, it
            will take more memory, but will be faster, trade space for time. Recommend to turn on only when using pipeline or gradient_merge_acc_step large.

J
JZ-LIANG 已提交
894

895
        Examples:
1
123malin 已提交
896

897
          .. code-block:: python
1
123malin 已提交
898

899
            # sharding-DP, 2 nodes with 8 gpus per node
900 901 902
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.sharding = True
J
JZ-LIANG 已提交
903
            strategy.sharding_configs = {
904 905 906
                "sharding_segment_strategy": "segment_broadcast_MB",
                "segment_broadcast_MB": 32,
                "sharding_degree": 8,
907
                "dp_degree": 2,
908 909
                "gradient_merge_acc_step": 4,
                }
910 911 912 913 914 915 916 917 918 919
        """
        return get_msg_dict(self.strategy.sharding_configs)

    @sharding_configs.setter
    @is_strict_auto
    def sharding_configs(self, configs):
        check_configs_key(self.strategy.sharding_configs, configs,
                          "sharding_configs")
        assign_configs_value(self.strategy.sharding_configs, configs)

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
    @property
    def without_graph_optimization(self):
        """
        Run program using Executor other than ParallelExecutor.

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.without_graph_optimization = True

        """
        return self.strategy.without_graph_optimization

    @without_graph_optimization.setter
    @is_strict_auto
    def without_graph_optimization(self, flag):
        if isinstance(flag, bool):
            self.strategy.without_graph_optimization = flag
        else:
            print(
                "WARNING: without_graph_optimization should have value of bool type"
            )

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
    @property
    def _calc_comm_same_stream(self):
        """
        This based on raw_program_optimizer program
        Set whether use same stream for calc and comm when fuse allreduce
        The default value for the calc_comm_same_stream is False
        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.calc_comm_same_stream = True
        """
        return self.strategy.calc_comm_same_stream

    @_calc_comm_same_stream.setter
    @is_strict_auto
    def _calc_comm_same_stream(self, same):
        if isinstance(same, bool):
            self.strategy.calc_comm_same_stream = same
        else:
            print(
                "WARNING: calc_comm_same_stream should have value of boolean type"
            )

970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
    @property
    def fuse_grad_merge(self):
        """
        Set whether fuse the grad for gradient merge.
        Note: this flag will only effect the gradient merge under pipeline mode
        The default value for the fuse_grad_merge is False
        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_param_grad = True
        """
        return self.strategy.fuse_grad_merge

    @fuse_grad_merge.setter
    @is_strict_auto
    def fuse_grad_merge(self, fuse_grad_merge):
        if isinstance(fuse_grad_merge, bool):
            self.strategy.fuse_grad_merge = fuse_grad_merge
        else:
            print("WARNING: fuse_grad_merge should have value of boolean type")

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
    @property
    def fuse_grad_size_in_num(self):
        """
        This based on raw_program_optimizer program and allreduce the num of the fused op
        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fuse_grad_size_in_num = 2
        """
        return self.strategy.fuse_grad_size_in_num

    @fuse_grad_size_in_num.setter
    @is_strict_auto
    def fuse_grad_size_in_num(self, num):
        if isinstance(num, int):
            self.strategy.fuse_grad_size_in_num = num
        else:
            print(
                "WARNING: fuse_grad_size_in_num should have value of int32 type")

1013
    @property
1014 1015 1016 1017 1018 1019 1020 1021
    def pipeline(self):
        """
        Indicating whether we are using pipeline parallelism for distributed training.
        Current implementation mainly focus on single GPU machine pipeline parallelism and
        data parallelism across GPU machine. The pipeline information is indicated through
        device_guard information in user-defined program.

        Examples:
1
123malin 已提交
1022

1023
          .. code-block:: python
1
123malin 已提交
1024

1025
            import paddle.distributed.fleet as fleet
1026 1027 1028 1029 1030
            strategy = fleet.DistributedStrategy()
            strategy.pipeline = True

        """
        return self.strategy.pipeline
1031

1032
    @pipeline.setter
1033
    @is_strict_auto
1034
    def pipeline(self, flag):
1035
        if isinstance(flag, bool):
1036
            self.strategy.pipeline = flag
1037
        else:
1038
            print("WARNING: pipeline should have value of bool type")
1039 1040

    @property
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
    def pipeline_configs(self):
        """
        Set pipeline parallelism configurations. In pipeline parallelism,
        different parts of neural networks are running on different GPUS.
        There are Tensor queue buffer between each pair of neighborhood GPUS 
        that are responsible for synchronizing hidden Tensor results between
        GPUs. Pipeline parallelism consists of serveral producer-consumer style
        hardware pairs, such as GPU-GPU, CPU-GPU, GPU-XPU. The best way to speedup
        pipeline parallelism is to make the size of Tensor in Tensor queue smaller, 
        so that we will have a faster producer for downstream consumers.
1051

1052 1053
        **Notes**:
            **Detailed arguments for pipeline_configs**
M
mapingshuo 已提交
1054

1055
            **micro_batch_size**: the number of small batches in each user defined batch
1056

1057
        Examples:
1
123malin 已提交
1058

1059
          .. code-block:: python
1
123malin 已提交
1060

1061
            import paddle.distributed.fleet as fleet
1062 1063
            strategy = fleet.DistributedStrategy()
            strategy.pipeline = True
1064
            strategy.pipeline_configs = {"micro_batch_size": 12}
1065

1066
        """
1067

1068
        return get_msg_dict(self.strategy.pipeline_configs)
1069

1070
    @pipeline_configs.setter
1071
    @is_strict_auto
1072 1073 1074 1075
    def pipeline_configs(self, configs):
        check_configs_key(self.strategy.pipeline_configs, configs,
                          "pipeline_configs")
        assign_configs_value(self.strategy.pipeline_configs, configs)
1076

L
lilong12 已提交
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
    @property
    def tensor_parallel(self):
        """
        Indicating whether we are using tensor parallel for distributed training.

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.tensor_parallel = True

        """
        return self.strategy.tensor_parallel

    @tensor_parallel.setter
    @is_strict_auto
    def tensor_parallel(self, flag):
        if isinstance(flag, bool):
            self.strategy.tensor_parallel = flag
        else:
            print("WARNING: tensor_parallel should have value of bool type")

    @property
    def tensor_parallel_configs(self):
        """
        Set tensor_parallel configurations.

        **Notes**:
            **Detailed arguments for tensor_parallel_configs**
            **tensor_parallel_degree**: degree of tensor parallel
1109 1110
            **tensor_init_seed**: parameter initialization random seed

L
lilong12 已提交
1111 1112 1113 1114 1115 1116 1117 1118

        Examples:

          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.tensor_parallel = True
1119 1120
            strategy.tensor_parallel_configs = {"tensor_parallel_degree": 4,
                                                "tensor_init_seed": 123}
L
lilong12 已提交
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131

        """
        return get_msg_dict(self.strategy.tensor_parallel_configs)

    @tensor_parallel_configs.setter
    @is_strict_auto
    def tensor_parallel_configs(self, configs):
        check_configs_key(self.strategy.tensor_parallel_configs, configs,
                          "tensor_parallel_configs")
        assign_configs_value(self.strategy.tensor_parallel_configs, configs)

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
    @property
    def hybrid_configs(self):
        """
        Dynamic graph hybrid parallel strategy configuration. Three-way hybrid parallelism 
        needs to meet the following relationships

        total_number_GPUs = dp_degree * mp_degree * pp_degree

        **Note**:
            dp_degree(int): set number of GPUs in a data parallel group. Default -1.
                                    This value should be an integer greater than 0.
                                    If it is not set, or set to -1, its value will be inferred 
                                    based on the total number of cards.
            mp_degree(int): set number of GPUs in a model parallel group. Default 1
            pp_degree(int): set number of GPUs in a pipeline parallel group. Default 1


        Examples:
          .. code-block:: python
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.hybrid_configs = {
                "dp_degree": 1,
                "mp_degree": 2,
                "pp_degree": 1}
        """
        return get_msg_dict(self.strategy.hybrid_configs)

    @hybrid_configs.setter
    def hybrid_configs(self, configs):
        check_configs_key(self.strategy.hybrid_configs, configs,
                          "hybrid_configs")
        assign_configs_value(self.strategy.hybrid_configs, configs)

1166
    @property
1167
    def localsgd(self):
1168
        """
M
mapingshuo 已提交
1169 1170 1171
        Indicating whether we are using Local SGD training. Default Value: False
        For more details, please refer to
        `Don't Use Large Mini-Batches, Use Local SGD <https://arxiv.org/pdf/1808.07217.pdf>`_.
1172 1173 1174


        Examples:
1
123malin 已提交
1175

1176 1177 1178 1179 1180 1181 1182
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.localsgd = True # by default this is false

        """
1183
        return self.strategy.localsgd
1184

1185
    @localsgd.setter
1186
    @is_strict_auto
1187 1188 1189
    def localsgd(self, flag):
        if isinstance(flag, bool):
            self.strategy.localsgd = flag
1190
        else:
1191
            print("WARNING: localsgd should have value of bool type")
1192 1193

    @property
1194
    def localsgd_configs(self):
1195 1196 1197 1198 1199
        """
        Set LocalSGD training configurations. LocalSGD has a configurable
        setting that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
1200
            k_steps(int) The local steps for training before parameter synchronization. Default 1.
1201
            begin_step(int) The step of begining training by localsgd. Default 1.
1202 1203

        Examples:
1
123malin 已提交
1204

1205 1206 1207 1208 1209
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.localsgd = True
1210 1211
            strategy.localsgd_configs = {"k_steps": 4,
                                         "begin_step": 30}
1212 1213
        """

1214
        return get_msg_dict(self.strategy.localsgd_configs)
1215

1216
    @localsgd_configs.setter
1217
    @is_strict_auto
1218 1219 1220 1221
    def localsgd_configs(self, configs):
        check_configs_key(self.strategy.localsgd_configs, configs,
                          "localsgd_configs")
        assign_configs_value(self.strategy.localsgd_configs, configs)
1222

1223 1224 1225 1226 1227 1228 1229 1230 1231
    @property
    def adaptive_localsgd(self):
        """
        Indicating whether we are using Adaptive Local SGD training. Default Value: False
        For more details, please refer to `Adaptive Communication Strategies to Achieve 
        the Best Error-Runtime Trade-off in Local-Update SGD <https://arxiv.org/pdf/1810.08313.pdf>`_.


        Examples:
1
123malin 已提交
1232

1233 1234 1235 1236 1237 1238 1239
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.adaptive_localsgd = True # by default this is false

        """
1240
        return self.strategy.adaptive_localsgd
1241 1242 1243 1244 1245

    @adaptive_localsgd.setter
    @is_strict_auto
    def adaptive_localsgd(self, flag):
        if isinstance(flag, bool):
1246
            self.strategy.adaptive_localsgd = flag
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
        else:
            print("WARNING: adaptive_localsgd should have value of bool type")

    @property
    def adaptive_localsgd_configs(self):
        """
        Set AdaptiveLocalSGD training configurations. AdaptiveLocalSGD has a configurable
        setting that can be configured through a dict.

        **Notes**:
            init_k_steps(int) The initial steps for training before adaptive localsgd.
                              Then, the adaptive localsgd method will modify init_k_steps automatically.
                              Default 1.
            begin_step(int) The step of begining training by adaptive localsgd. Default 1.

        Examples:
1
123malin 已提交
1263

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.adaptive_localsgd = True
            strategy.adaptive_localsgd_configs = {"init_k_steps": 1,
                                                  "begin_step": 30}
        """

        return get_msg_dict(self.strategy.adaptive_localsgd_configs)

    @adaptive_localsgd_configs.setter
    @is_strict_auto
    def adaptive_localsgd_configs(self, configs):
        check_configs_key(self.strategy.adaptive_localsgd_configs, configs,
                          "adaptive_localsgd_configs")
        assign_configs_value(self.strategy.adaptive_localsgd_configs, configs)

1282
    @property
1283
    def dgc(self):
1284 1285 1286 1287 1288 1289 1290
        """
        Indicating whether we are using Deep Gradient Compression training. For more details, please refer to
        [Deep Gradient Compression](https://arxiv.org/abs/1712.01887).

        Default Value: False

        Examples:
1
123malin 已提交
1291

1292 1293 1294 1295 1296 1297 1298
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.dgc = True # by default this is false

        """
1299
        return self.strategy.dgc
1300

1301
    @dgc.setter
1302
    @is_strict_auto
1303 1304 1305
    def dgc(self, flag):
        if isinstance(flag, bool):
            self.strategy.dgc = flag
1306
        else:
1307
            print("WARNING: dgc should have value of bool type")
1308 1309

    @property
1310
    def dgc_configs(self):
1311
        r"""
1312 1313 1314 1315
        Set Deep Gradient Compression training configurations. In general, dgc has serveral configurable
        settings that can be configured through a dict.

        **Notes**:
M
mapingshuo 已提交
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
            rampup_begin_step(int): The beginning step from which gradient compression is implemented. Default 0.

            rampup_step(int): Time steps used in sparsity warm-up periods. Default is 1. \
                    For example, if the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 100, \
                    it will use 0.75 at 0~19 steps, and 0.9375 at 20~39 steps, and so on. And when reach sparsity array \
                    ends, it will use 0.999 then and after.

            sparsity(list[float]): Get top important element from gradient tensor, the ratio is (1 - sparsity). \
                    Default is [0.999]. For example, if the sparsity is [0.99, 0.999], the top [1%, 0.1%] important \
                    element will be transmitted.
1326 1327

        Examples:
1
123malin 已提交
1328

1329 1330 1331 1332 1333 1334 1335
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.dgc = True
            strategy.dgc_configs = {"rampup_begin_step": 1252}
        """
1336
        return get_msg_dict(self.strategy.dgc_configs)
1337

1338
    @dgc_configs.setter
1339
    @is_strict_auto
1340 1341 1342
    def dgc_configs(self, configs):
        check_configs_key(self.strategy.dgc_configs, configs, "dgc_configs")
        assign_configs_value(self.strategy.dgc_configs, configs)
1343

1344 1345 1346 1347 1348 1349 1350
    @property
    def fp16_allreduce(self):
        """
        Indicating whether we are using fp16 gradient allreduce training
        Default Value: False

        Examples:
1
123malin 已提交
1351

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.fp16_allreduce = True # by default this is false

        """
        return self.strategy.fp16_allreduce

    @fp16_allreduce.setter
    @is_strict_auto
    def fp16_allreduce(self, flag):
        if not isinstance(flag, bool):
            raise TypeError('fp16_allreduce must be value of bool type')
        self.strategy.fp16_allreduce = flag

1368
    @property
1369
    def gradient_merge(self):
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
        """
        Gradient Merge, also called as Gradient Accumulation,
        is a strategy for large batch training. With this strategy,
        model parameter will not be updated until user-defined steps.
        For each step, the forward network and the backward network
        will run to calculate the gradient of model parameters.
        For every k step, the optimization network will run,
        applying a specific optimization method (such as SGD, Adam)
        to model parameters.

        Examples:
1
123malin 已提交
1381

M
mapingshuo 已提交
1382 1383
          .. code-block:: python

1384
            import paddle.distributed.fleet as fleet
1385 1386 1387 1388
            strategy = fleet.DistributedStrategy()
            strategy.gradient_merge = True
            strategy.gradient_merge_configs = {"k_steps": 4, "avg": True}
        """
1389
        return self.strategy.gradient_merge
1390

1391
    @gradient_merge.setter
1392
    @is_strict_auto
1393
    def gradient_merge(self, flag):
1394
        if isinstance(flag, bool):
1395
            self.strategy.gradient_merge = flag
1396
        else:
1397 1398 1399 1400
            print("WARNING: gradient_merge should have value of bool type")

    @property
    def gradient_merge_configs(self):
1401 1402
        """
        the key-value configs of distribute_strategy
M
mapingshuo 已提交
1403 1404 1405 1406 1407 1408 1409

        **Note**:
            k_steps(int): the update period of the parameters.

            avg(bool): whether to average the gradients of each mini-batch, the default value is `True`

        Examples:
1
123malin 已提交
1410

M
mapingshuo 已提交
1411 1412
          .. code-block:: python

1413
            import paddle.distributed.fleet as fleet
1414 1415 1416 1417
            strategy = fleet.DistributedStrategy()
            strategy.gradient_merge = True
            strategy.gradient_merge_configs = {"k_steps": 4, "avg": True}
        """
1418 1419 1420
        return get_msg_dict(self.strategy.gradient_merge_configs)

    @gradient_merge_configs.setter
1421
    @is_strict_auto
1422 1423 1424 1425
    def gradient_merge_configs(self, configs):
        check_configs_key(self.strategy.gradient_merge_configs, configs,
                          "gradient_configs")
        assign_configs_value(self.strategy.gradient_merge_configs, configs)
1426 1427

    @property
1428
    def lars(self):
1429 1430 1431 1432 1433 1434 1435 1436
        """
        Set lars configurations. lars is used to deal with the convergence problems when the global 
        batch size is larger than 8k.  For more details, please refer to 
        [Large Batch Training of Convolutional Networks](https://arxiv.org/abs/1708.03888).

        Default Value: False

        Examples:
1
123malin 已提交
1437

1438 1439 1440 1441 1442 1443
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lars = True # by default this is false
        """
1444
        return self.strategy.lars
1445

1446
    @lars.setter
1447
    @is_strict_auto
1448
    def lars(self, flag):
1449
        if isinstance(flag, bool):
1450
            self.strategy.lars = flag
1451
        else:
1452
            print("WARNING: lars should have value of bool type")
1453

1454 1455
    @property
    def lars_configs(self):
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
        """
        Set Lars training configurations.

        **Notes**:
        **lars_coeff (float)**: trust ratio in lars formula.
        **lars_weight_decay** (float): weight decay coefficient in lars formula.
        **epsilon (float)**: argument is used to avoid potential devision-by-zero 
        when compute the local lr; 
        **exclude_from_weight_decay ([string])**: is a list of name strings of layers which
        will be exclude from weight decay in lars formula.

        Examples:
1
123malin 已提交
1468

1469
          .. code-block:: python
M
mapingshuo 已提交
1470

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lars = True
            strategy.lars_configs = {
                        "lars_coeff": 0.01,
                        "lars_weight_decay": 0.0005,
                        "epsilon": 0,
                        "exclude_from_weight_decay": ['batch_norm', '.b_0']
                    }
        """
1481 1482 1483
        return get_msg_dict(self.strategy.lars_configs)

    @lars_configs.setter
1484
    @is_strict_auto
1485 1486 1487 1488
    def lars_configs(self, configs):
        check_configs_key(self.strategy.lars_configs, configs, "lars_configs")
        assign_configs_value(self.strategy.lars_configs, configs)

1489
    @property
1490
    def lamb(self):
1491 1492 1493 1494 1495 1496 1497
        """
        Set lamb configurations. lamb is used to deal with the convergence problems for large 
        batch size training, specially for attention-related model like BERT. For more details, 
        please refer to 
        [Large Batch Optimization for Deep Learning: Training BERT in 76 minutes](https://arxiv.org/abs/1904.00962).

        Default Value: False
1
123malin 已提交
1498

1499
        Examples:
1
123malin 已提交
1500

1501 1502 1503 1504 1505 1506 1507
          .. code-block:: python

            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lamb = True # by default this is false
        """

1508
        return self.strategy.lamb
1509

1510
    @lamb.setter
1511
    @is_strict_auto
1512
    def lamb(self, flag):
1513
        if isinstance(flag, bool):
1514
            self.strategy.lamb = flag
1515
        else:
1516
            print("WARNING: lamb should have value of bool type")
1517

1518 1519
    @property
    def lamb_configs(self):
1520 1521 1522 1523 1524 1525 1526 1527 1528
        """
        Set Lars training configurations.

        **Notes**:
        **lamb_weight_decay** (float): weight decay coefficient in lamb formula.
        **exclude_from_weight_decay ([string])**: is a list of name strings of layers which
        will be exclude from weight decay in lamb formula.

        Examples:
1
123malin 已提交
1529

1530
          .. code-block:: python
M
mapingshuo 已提交
1531

1532 1533 1534 1535 1536 1537 1538 1539
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.lamb = True
            strategy.lamb_configs = {
                    'lamb_weight_decay': 0.01,
                    'exclude_from_weight_decay': [],
                }
        """
1540 1541 1542
        return get_msg_dict(self.strategy.lamb_configs)

    @lamb_configs.setter
1543
    @is_strict_auto
1544 1545 1546 1547
    def lamb_configs(self, configs):
        check_configs_key(self.strategy.lamb_configs, configs, "lamb_configs")
        assign_configs_value(self.strategy.lamb_configs, configs)

1548 1549
    @property
    def elastic(self):
1550 1551 1552 1553
        """
        Indicating whether we want to do current distributed training on clusters with elastic resources.
        Currently, this is configuration is not valid.
        """
1554 1555 1556
        return self.strategy.elastic

    @elastic.setter
1557
    @is_strict_auto
1558 1559 1560 1561 1562 1563 1564 1565
    def elastic(self, flag):
        if isinstance(flag, bool):
            self.strategy.elastic = flag
        else:
            print("WARNING: elastic should have value of bool type")

    @property
    def auto(self):
1566 1567 1568 1569 1570 1571 1572 1573 1574
        """
        Indicating whether we are using auto-parallel configuration
        This feature is currently an experimental feature. Currently, 
        auto-parallelism can be used only when a user does not set any other
        strategy configs except auto. For details, please reference the following
        code example
        Default Value: False

        Examples:
1
123malin 已提交
1575

1576 1577 1578
          .. code-block:: python

            import paddle
1579
            paddle.enable_static()
1
123malin 已提交
1580
            import paddle.distributed.fleet as fleet
1581

1582 1583
            strategy = fleet.DistributedStrategy()
            strategy.auto = True
1584 1585
            # if set other strategy at the same time, auto will not apply
            # strategy.amp = True
1586 1587 1588 1589

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
        """
1590 1591 1592 1593 1594 1595 1596 1597 1598
        return self.strategy.auto

    @auto.setter
    def auto(self, flag):
        if isinstance(flag, bool):
            self.strategy.auto = flag
        else:
            print("WARNING: auto should have value of bool type")

1599 1600
    @property
    def cudnn_exhaustive_search(self):
1601 1602 1603 1604 1605 1606 1607 1608
        """
        Indicating whether to use exhaustive search method to choose convolution algorithms.
        Exhaustive search attempts all cuDNN algorithms to choose the fastest algorithm.
        This method is time-consuming, the choosed algorithm will be cached for the given layer specifications.
        Once the layer specifications (like batch size, feature map size) are changed, it will search again.
        Default Value: True

        Examples:
1
123malin 已提交
1609

1610 1611
          .. code-block:: python

1
123malin 已提交
1612 1613
            import paddle
            paddle.enable_static()
1614 1615 1616 1617 1618 1619 1620
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.cudnn_exhaustive_search = False

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
        """
1621 1622 1623
        return self.strategy.cudnn_exhaustive_search

    @cudnn_exhaustive_search.setter
1624
    @is_strict_auto
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
    def cudnn_exhaustive_search(self, flag):
        if isinstance(flag, bool):
            self.strategy.cudnn_exhaustive_search = flag
        else:
            print(
                "WARNING: cudnn_exhaustive_search should have value of bool type"
            )

    @property
    def conv_workspace_size_limit(self):
1635 1636 1637 1638 1639 1640 1641 1642
        """
        The workspace limit size in MB unit for choosing cuDNN convolution algorithms.
        The inner funciton of cuDNN obtain the fastest suited algorithm that fits within this memory limit.
        Usually, large workspace size may lead to choose faster algorithms,
        but significant increasing memory workspace. Users need to trade-off between memory and speed.
        Default Value: 4000

        Examples:
1
123malin 已提交
1643

1644 1645
          .. code-block:: python

1
123malin 已提交
1646 1647
            import paddle
            paddle.enable_static()
1648 1649 1650 1651 1652 1653
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.conv_workspace_size_limit = 1024

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)
1
123malin 已提交
1654

1655
        """
1656 1657 1658
        return self.strategy.conv_workspace_size_limit

    @conv_workspace_size_limit.setter
1659
    @is_strict_auto
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
    def conv_workspace_size_limit(self, value):
        if isinstance(value, int):
            self.strategy.conv_workspace_size_limit = value
        else:
            print(
                "WARNING: conv_workspace_size_limit should have value of int type"
            )

    @property
    def cudnn_batchnorm_spatial_persistent(self):
1670 1671 1672 1673 1674 1675
        """
        Indicates whether to use the mode CUDNN_BATCHNORM_SPATIAL_PERSISTENT function in batchnorm.
        This is only useful in cudnn.
        Default Value: True

        Examples:
1
123malin 已提交
1676

1677 1678
          .. code-block:: python

1
123malin 已提交
1679 1680
            import paddle
            paddle.enable_static()
1681 1682 1683 1684 1685 1686 1687 1688
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
            strategy.cudnn_batchnorm_spatial_persistent = True

            optimizer = paddle.optimizer.SGD(learning_rate=0.01)
            optimizer = fleet.distributed_optimizer(optimizer, strategy)

        """
1689 1690 1691
        return self.strategy.cudnn_batchnorm_spatial_persistent

    @cudnn_batchnorm_spatial_persistent.setter
1692
    @is_strict_auto
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
    def cudnn_batchnorm_spatial_persistent(self, flag):
        if isinstance(flag, bool):
            self.strategy.cudnn_batchnorm_spatial_persistent = flag
        else:
            print(
                "WARNING: cudnn_batchnorm_spatial_persistent should have value of bool type"
            )

    def _enable_env(self):
        strategy = self.strategy
        keys = [
            "FLAGS_cudnn_batchnorm_spatial_persistent",
            "FLAGS_conv_workspace_size_limit",
            "FLAGS_cudnn_exhaustive_search",
            "FLAGS_sync_nccl_allreduce",
            "FLAGS_fuse_parameter_memory_size",
            "FLAGS_fuse_parameter_groups_size",
        ]
        values = [
            bool(strategy.cudnn_batchnorm_spatial_persistent),
            int(strategy.conv_workspace_size_limit),
            bool(strategy.cudnn_exhaustive_search),
            bool(strategy.sync_nccl_allreduce),
            int(strategy.fuse_grad_size_in_MB),
            int(strategy.fuse_grad_size_in_TFLOPS),
        ]

        for i, key in enumerate(keys):
1721 1722
            if _global_flags().is_public(key):
                _global_flags()[key] = values[i]
1723

1724 1725 1726 1727 1728 1729
    def _is_strict_auto(self):
        global non_auto_func_called
        if self.strategy.auto and non_auto_func_called:
            return True
        return False

1730
    def __repr__(self):
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
        spacing = 2
        max_k = 38
        max_v = 38

        length = max_k + max_v + spacing

        h1_format = "    " + "|{{:^{}s}}|\n".format(length)
        h2_format = "    " + "|{{:>{}s}}{}{{:^{}s}}|\n".format(max_k, " " *
                                                               spacing, max_v)

        border = "    +" + "".join(["="] * length) + "+"
        line = "    +" + "".join(["-"] * length) + "+"

        draws = border + "\n"
        draws += h1_format.format("")
        draws += h1_format.format("DistributedStrategy Overview")
        draws += h1_format.format("")

D
Dong Daxiang 已提交
1749
        fields = self.strategy.DESCRIPTOR.fields
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
        str_res = ""

        env_draws = line + "\n"
        for f in fields:
            if "build_strategy" in f.name or "execution_strategy" in f.name:
                continue
            if "_configs" in f.name:
                continue
            else:
                if isinstance(getattr(self.strategy, f.name), bool):
                    if hasattr(self.strategy, f.name + "_configs"):
                        if getattr(self.strategy, f.name):
                            draws += border + "\n"
                            draws += h1_format.format(
D
Dong Daxiang 已提交
1764
                                "{}=True <-> {}_configs".format(f.name, f.name))
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
                            draws += line + "\n"
                            my_configs = getattr(self.strategy,
                                                 f.name + "_configs")
                            config_fields = my_configs.DESCRIPTOR.fields
                            for ff in config_fields:
                                if isinstance(
                                        getattr(my_configs, ff.name),
                                        google.protobuf.pyext._message.
                                        RepeatedScalarContainer):
                                    values = getattr(my_configs, ff.name)
                                    for i, v in enumerate(values):
                                        if i == 0:
                                            draws += h2_format.format(ff.name,
                                                                      str(v))
                                        else:
                                            draws += h2_format.format("",
                                                                      str(v))
                                else:
                                    draws += h2_format.format(
                                        ff.name,
                                        str(getattr(my_configs, ff.name)))
                    else:
                        env_draws += h2_format.format(
                            f.name, str(getattr(self.strategy, f.name)))
                else:
                    env_draws += h2_format.format(
                        f.name, str(getattr(self.strategy, f.name)))

        result_res = draws + border + "\n" + h1_format.format(
            "Environment Flags, Communication Flags")
        result_res += env_draws

        build_strategy_str = border + "\n"
        build_strategy_str += h1_format.format("Build Strategy")
        build_strategy_str += line + "\n"

        fields = self.strategy.build_strategy.DESCRIPTOR.fields
D
Dong Daxiang 已提交
1802
        for f in fields:
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
            build_strategy_str += h2_format.format(
                f.name, str(getattr(self.strategy.build_strategy, f.name)))
        build_strategy_str += border + "\n"

        execution_strategy_str = h1_format.format("Execution Strategy")
        execution_strategy_str += line + "\n"

        fields = self.strategy.execution_strategy.DESCRIPTOR.fields
        for f in fields:
            execution_strategy_str += h2_format.format(
                f.name, str(getattr(self.strategy.execution_strategy, f.name)))
        execution_strategy_str += border + "\n"

        result_res += build_strategy_str + execution_strategy_str
        return result_res