test_dist_base.py 62.1 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import argparse
16
import ast
X
Xin Pan 已提交
17
import os
W
Wu Yi 已提交
18
import pickle
19
import random
K
Kim Yann 已提交
20
import socket
21 22 23
import subprocess
import sys
import tempfile
24
import time
25
import unittest
K
Kim Yann 已提交
26
from contextlib import closing
27 28

import numpy as np
29 30

import paddle
31
from paddle import fluid
32 33 34
from paddle.distributed.fleet.meta_optimizers import (
    RawProgramOptimizer as RawProgram,
)
35
from paddle.fluid import compiler
36
from paddle.incubate.distributed.fleet import role_maker
meteor135's avatar
meteor135 已提交
37 38 39 40
from paddle.incubate.distributed.fleet.collective import (
    DistributedStrategy,
    fleet,
)
41

Y
Yan Xu 已提交
42
RUN_STEP = 5
43
DEFAULT_BATCH_SIZE = 2
44
DIST_UT_PORT = 0
45

T
typhoonzero 已提交
46

47
def print_to_out(out_losses):
T
tianshuo78520a 已提交
48
    sys.stdout.buffer.write(pickle.dumps(out_losses))
49 50 51


def print_to_err(class_name, log_str):
52 53
    localtime = time.asctime(time.localtime(time.time()))
    print_str = localtime + "\t" + class_name + "\t" + log_str
T
tianshuo78520a 已提交
54
    sys.stderr.buffer.write(pickle.dumps(print_str))
G
guru4elephant 已提交
55 56


57 58 59 60
def eprint(*args, **kwargs):
    print(*args, file=sys.stderr, **kwargs)


61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
def _insert_comm_op(opt, loss, build_strategy=None):
    opt = RawProgram(opt)
    role = paddle.distributed.fleet.base.role_maker.PaddleCloudRoleMaker(
        is_collective=True
    )
    strategy = paddle.distributed.fleet.DistributedStrategy()
    if build_strategy is not None:
        strategy.build_strategy = build_strategy
    opt._set_basic_info(loss, role, opt, strategy)

    # following code is a copy of RawProgramOptimizer.minimize except init_comm_group
    opt.endpoints = opt.role_maker._get_trainer_endpoints()
    opt.current_endpoint = opt.endpoints[opt.role_maker._worker_index()]
    opt.rank = opt.role_maker._worker_index()
    opt.nranks = opt.role_maker._worker_num()
    startup_program = paddle.static.default_startup_program()
    opt.startup_program = startup_program

    block = loss.block
    program = block.program
    opt.main_program = program

    optimize_ops, params_grads = opt.inner_opt.minimize(loss, startup_program)

    opt.main_program = program
    if opt.nranks > 1:
        opt._transpile_main_program(loss)


90
class TestDistRunnerBase:
91 92 93 94 95 96 97 98
    def get_model(
        self,
        batch_size=DEFAULT_BATCH_SIZE,
        lr=0.1,
        single_device=False,
        use_dgc=False,
        dist_strategy=None,
    ):
T
typhoonzero 已提交
99
        raise NotImplementedError(
100 101
            "get_model should be implemented by child classes."
        )
T
typhoonzero 已提交
102

103
    @staticmethod
104 105 106 107 108 109 110 111 112 113 114
    def get_transpiler(
        trainer_id,
        main_program,
        pserver_endpoints,
        trainers,
        sync_mode,
        dc_asgd=False,
        current_endpoint=None,
        nccl_comm_num=1,
        hogwild_mode=False,
    ):
T
typhoonzero 已提交
115
        # NOTE: import fluid until runtime, or else forking processes will cause error.
116
        config = paddle.distributed.transpiler.DistributeTranspilerConfig()
W
Wu Yi 已提交
117
        config.enable_dc_asgd = dc_asgd
118
        config.sync_mode = sync_mode
T
tangwei12 已提交
119 120
        config.runtime_split_send_recv = hogwild_mode

121 122
        if nccl_comm_num > 1:
            config.nccl_comm_num = nccl_comm_num
123
        # config.runtime_split_send_recv = True
124
        t = paddle.distributed.transpiler.DistributeTranspiler(config=config)
125 126 127 128 129 130 131 132
        t.transpile(
            trainer_id=trainer_id,
            program=main_program,
            pservers=pserver_endpoints,
            trainers=trainers,
            sync_mode=sync_mode,
            current_endpoint=current_endpoint,
        )
T
typhoonzero 已提交
133 134
        return t

135 136
    @staticmethod
    def get_lr_scheduler(program):
137 138
        lr_scheduler = None
        if hasattr(program, 'lr_scheduler'):
139
            from paddle.optimizer.lr import LRScheduler
140

141 142 143
            lr_scheduler = program.lr_scheduler
            assert isinstance(lr_scheduler, LRScheduler), "must be LRScheduler"
        return lr_scheduler
144

W
Wu Yi 已提交
145
    def run_pserver(self, args):
W
Wu Yi 已提交
146
        self.lr = args.lr
147
        self.get_model(batch_size=args.batch_size)
148
        # NOTE: pserver should not call memory optimize
T
tangwei12 已提交
149

150 151 152 153 154 155 156 157 158
        t = self.get_transpiler(
            trainer_id=args.trainer_id,
            main_program=fluid.default_main_program(),
            pserver_endpoints=args.endpoints,
            trainers=args.trainers,
            sync_mode=args.sync_mode,
            dc_asgd=args.dc_asgd,
            hogwild_mode=args.hogwild,
        )
W
Wu Yi 已提交
159
        pserver_prog = t.get_pserver_program(args.current_endpoint)
160 161 162
        startup_prog = t.get_startup_program(
            args.current_endpoint, pserver_prog
        )
Y
Yancey1989 已提交
163

T
typhoonzero 已提交
164 165 166
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
167
        print_to_err(type(self).__name__, "run pserver startup program done.")
T
typhoonzero 已提交
168
        exe.run(pserver_prog)
169
        print_to_err(type(self).__name__, "run pserver main program done.")
T
typhoonzero 已提交
170

171 172 173 174
    def run_pipeline_trainer(self, args):
        self.lr = args.lr

        dist_strategy = DistributedStrategy()
175 176 177 178 179 180 181 182 183 184 185
        (
            test_program,
            avg_cost,
            train_reader,
            test_reader,
            batch_acc,
            predict,
            data_loader,
        ) = self.get_model(
            batch_size=args.batch_size, dist_strategy=dist_strategy
        )
186 187 188 189 190 191 192 193 194 195 196 197 198

        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        eprint(type(self).__name__, "device_id: %d." % device_id)
        place = fluid.CUDAPlace(device_id)

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        data_loader.set_sample_list_generator(train_reader, place)
        data_loader.start()
        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
199 200

        main_program = fluid.default_main_program()
201
        lr_scheduler = self.get_lr_scheduler(main_program)
202
        for i in range(RUN_STEP):
203
            loss = exe.run(main_program, fetch_list=[avg_cost])
204 205 206
            loss = loss[0] if loss else None
            out_losses.append(loss)
            print_to_err(type(self).__name__, "run step %d finished" % i)
207 208
            if lr_scheduler is not None:
                lr_scheduler.step()
209

210
        data_loader.reset()
211 212
        print_to_err(type(self).__name__, "trainer run finished")

T
tianshuo78520a 已提交
213
        sys.stdout.buffer.write(pickle.dumps(out_losses))
214

215 216 217 218 219 220 221 222 223 224 225
    def run_use_fleet_api_20_trainer(self, args):
        """
        1. remove codes for DistributedStrategy and leave the DistributedStrategy part to get_model()
        2. to run with fleet 2.0 api, set flags _use_fleet_api and _use_fleet_api_20 to True
        3. for now, not support test for model save
        """
        assert args.update_method == "nccl2" or "bkcl"

        self.lr = args.lr
        print_to_err("use_fleet 2.0", "fleet.node_num:")

226 227 228 229 230 231 232 233
        (
            test_program,
            avg_cost,
            train_reader,
            test_reader,
            batch_acc,
            predict,
        ) = self.get_model(batch_size=args.batch_size)
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250

        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
251 252
            var
            for var in fluid.default_main_program().global_block().vars.values()
253 254 255 256 257 258 259 260 261 262 263 264 265
            if var.is_data
        ]

        eprint("feed_var_list:", feed_var_list)

        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
266 267 268 269
            if (
                paddle.distributed.get_world_size() == 1
                and args.update_method == 'gloo'
            ):  # Gloo single mode
X
xiongkun 已提交
270 271 272
                return origin_batch

            elif args.update_method != "local" and args.use_reader_alloc:
273 274 275 276 277 278 279 280 281 282
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
283
        for i in range(RUN_STEP):
284 285 286 287 288
            (loss,) = exe.run(
                fluid.default_main_program(),
                fetch_list=[avg_cost.name],
                feed=feeder.feed(get_data()),
            )
289 290 291
            out_losses.append(loss[0])
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
292
        print_to_err(type(self).__name__, f"dist losses: {out_losses}")
293

T
tianshuo78520a 已提交
294
        sys.stdout.buffer.write(pickle.dumps(out_losses))
295

296 297
    def run_use_fleet_api_trainer(self, args):
        assert args.update_method == "nccl2" or "bkcl"
298 299 300 301 302 303 304 305

        self.lr = args.lr

        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1

        dist_strategy = DistributedStrategy()
        dist_strategy.exec_strategy = exec_strategy
T
tangwei12 已提交
306
        dist_strategy.fuse_memory_size = 1  # MB
307
        dist_strategy.fuse_laryer_size = 1
308 309 310 311
        if args.use_local_sgd:
            dist_strategy.use_local_sgd = True
        if args.ut4grad_allreduce:
            dist_strategy._ut4grad_allreduce = True
312 313
        if args.sync_batch_norm:
            dist_strategy.sync_batch_norm = True
314 315 316

        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
317
        print_to_err("use_fleet", "fleet.node_num:")
T
tangwei12 已提交
318 319
        # "fleet.node_id:", fleet.node_id(),
        # "fleet.trainer_num:", fleet.worker_num())
320

321 322 323 324 325 326 327 328 329 330
        (
            test_program,
            avg_cost,
            train_reader,
            test_reader,
            batch_acc,
            predict,
        ) = self.get_model(
            batch_size=args.batch_size, dist_strategy=dist_strategy
        )
331 332 333 334

        trainer_prog = fleet._origin_program
        dist_prog = fleet.main_program

335 336 337 338 339 340 341 342 343 344
        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )
345 346 347 348 349 350

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
351 352
            var
            for var in trainer_prog.global_block().vars.values()
353 354 355
            if var.is_data
        ]

356 357 358 359 360 361 362
        eprint("feed_var_list:", feed_var_list)

        # tmp add this code to pass python35 gcc8 CI
        # Fixme(gongweibao, wangxi), need fix fleet api program order
        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

363 364 365 366 367 368 369 370 371 372 373 374 375 376
        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
            if args.update_method != "local" and args.use_reader_alloc:
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

377
        print_to_err(type(self).__name__, "begin to train on trainer")
378
        out_losses = []
379
        for i in range(RUN_STEP):
380 381 382 383 384
            (loss,) = exe.run(
                dist_prog,
                fetch_list=[avg_cost.name],
                feed=feeder.feed(get_data()),
            )
385
            out_losses.append(loss[0])
386 387
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
388

T
tianshuo78520a 已提交
389
        sys.stdout.buffer.write(pickle.dumps(out_losses))
390

391 392 393
        if args.save_model:
            model_save_dir = "/tmp"
            if fleet.worker_index() == 0:
394 395 396 397 398 399 400 401 402 403 404 405
                model_save_dir_fluid = os.path.join(
                    model_save_dir, "fluid_persistables"
                )
                model_save_dir_fleet = os.path.join(
                    model_save_dir, "fleet_persistables"
                )
                infer_save_dir_fluid = os.path.join(
                    model_save_dir, "fluid_infer"
                )
                infer_save_dir_fleet = os.path.join(
                    model_save_dir, "fleet_infer"
                )
406
            else:
407 408 409 410 411 412 413 414 415 416 417 418
                model_save_dir_fluid = os.path.join(
                    model_save_dir, "fluid_persistables_2"
                )
                model_save_dir_fleet = os.path.join(
                    model_save_dir, "fleet_persistables_2"
                )
                infer_save_dir_fluid = os.path.join(
                    model_save_dir, "fluid_infer_2"
                )
                infer_save_dir_fleet = os.path.join(
                    model_save_dir, "fleet_infer_2"
                )
419
            paddle.distributed.io.save_persistables(
420 421
                exe, model_save_dir_fluid, fleet._origin_program
            )
422 423
            fleet.save_persistables(executor=exe, dirname=model_save_dir_fleet)
            feeded_var_names = [var.name for var in feed_var_list]
424 425 426 427 428 429 430 431 432 433
            fluid.io.save_inference_model(
                infer_save_dir_fluid,
                feeded_var_names,
                [avg_cost],
                exe,
                fleet._origin_program,
            )
            fleet.save_inference_model(
                exe, infer_save_dir_fleet, feeded_var_names, [avg_cost]
            )
434

435
    def run_trainer(self, args):
436 437 438 439 440 441 442 443 444 445 446
        from io import StringIO

        old_stdout = sys.stdout
        sys.stdout = StringIO()

        build_stra = fluid.BuildStrategy()
        # FIXME force disable enable_inplace and memory_optimize
        build_stra.enable_inplace = False
        build_stra.memory_optimize = False

        if args.fuse_all_reduce is not None:
447
            sys.stderr.write(f'fuse_all_reduce={args.fuse_all_reduce}')
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
            build_stra.fuse_all_reduce_ops = args.fuse_all_reduce

        if args.hogwild:
            build_stra.async_mode = True

        if args.enable_backward_deps:
            build_stra.enable_backward_optimizer_op_deps = True

        if args.use_reduce:
            build_stra.reduce_strategy = (
                fluid.BuildStrategy.ReduceStrategy.Reduce
            )
        else:
            build_stra.reduce_strategy = (
                fluid.BuildStrategy.ReduceStrategy.AllReduce
            )
        pass_builder = None
        if args.batch_merge_repeat > 1:
            pass_builder = build_stra._finalize_strategy_and_create_passes()
            mypass = pass_builder.insert_pass(0, "multi_batch_merge_pass")
            mypass.set("num_repeats", args.batch_merge_repeat)

        if (
            args.update_method == "nccl2"
            or args.update_method == "nccl2_reduce_layer"
        ):
            build_stra.num_trainers = len(args.endpoints.split(","))
            build_stra.trainer_id = args.trainer_id
        else:
            # case args.update_method == "nccl2_reduce_layer":
            build_stra.num_trainers = 1
            build_stra.trainer_id = 0

W
Wu Yi 已提交
481
        self.lr = args.lr
W
Wu Yi 已提交
482
        if args.nccl2_reduce_layer_local_run:
483 484 485 486 487 488 489 490
            (
                test_program,
                avg_cost,
                train_reader,
                test_reader,
                batch_acc,
                predict,
            ) = self.get_model(batch_size=args.batch_size, single_device=True)
491
        elif args.use_dgc:
492 493 494 495 496 497 498
            (
                test_program,
                avg_cost,
                train_reader,
                test_reader,
                batch_acc,
                predict,
499 500 501 502 503
            ) = self.get_model(
                batch_size=args.batch_size,
                use_dgc=args.use_dgc,
                build_strategy=build_stra,
            )
W
Wu Yi 已提交
504
        else:
505 506 507 508 509 510 511 512
            (
                test_program,
                avg_cost,
                train_reader,
                test_reader,
                batch_acc,
                predict,
            ) = self.get_model(batch_size=args.batch_size)
513

W
Wu Yi 已提交
514
        if args.update_method == "pserver":
515
            print_to_err(
516
                type(self).__name__,
517 518 519 520 521 522 523 524 525 526 527
                "begin to run transpile on trainer with pserver mode",
            )
            t = self.get_transpiler(
                trainer_id=args.trainer_id,
                main_program=fluid.default_main_program(),
                pserver_endpoints=args.endpoints,
                trainers=args.trainers,
                sync_mode=args.sync_mode,
                dc_asgd=args.dc_asgd,
                hogwild_mode=args.hogwild,
            )
T
tangwei12 已提交
528

T
typhoonzero 已提交
529
            trainer_prog = t.get_trainer_program()
530
            print_to_err(
531
                type(self).__name__,
532 533 534 535 536 537
                "get trainer program done with pserver mode.",
            )
        elif (
            args.update_method == "nccl2"
            or args.update_method == "nccl2_reduce_layer"
        ):
W
Wu Yi 已提交
538
            # transpile for nccl2
539
            config = paddle.distributed.transpiler.DistributeTranspilerConfig()
W
Wu Yi 已提交
540
            config.mode = "nccl2"
541
            config.nccl_comm_num = args.nccl_comm_num
542 543
            if args.use_hallreduce:
                config.use_hierarchical_allreduce = True
544 545 546
                config.hierarchical_allreduce_inter_nranks = (
                    args.hallreduce_inter_nranks
                )
547
            print_to_err(
548
                type(self).__name__,
549 550
                "begin to run transpile on trainer with nccl2 mode",
            )
551 552 553
            nccl2_t = paddle.distributed.transpiler.DistributeTranspiler(
                config=config
            )
554 555 556 557 558 559 560
            nccl2_t.transpile(
                args.trainer_id,
                program=fluid.default_main_program(),
                startup_program=fluid.default_startup_program(),
                trainers=args.endpoints,
                current_endpoint=args.current_endpoint,
            )
561
            print_to_err(
562 563
                type(self).__name__, "get trainer program done. with nccl2 mode"
            )
W
Wu Yi 已提交
564
            trainer_prog = fluid.default_main_program()
T
typhoonzero 已提交
565
        else:
566
            print_to_err(
567
                type(self).__name__,
568 569
                "do nothing about main program, just use it",
            )
T
typhoonzero 已提交
570
            trainer_prog = fluid.default_main_program()
571
            print_to_err(type(self).__name__, "use main program done.")
T
typhoonzero 已提交
572

573 574 575
        # FIXME(gongwb):wait pserver initialization.
        time.sleep(1)

576
        if args.use_cuda:
577 578
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
579 580 581
        else:
            place = fluid.CPUPlace()

582 583
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
584
        print_to_err(type(self).__name__, "run worker startup program done.")
T
typhoonzero 已提交
585

W
Wu Yi 已提交
586 587
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1
588

589
        print_to_err(type(self).__name__, "begin to compile with data parallel")
590 591
        binary = compiler.CompiledProgram(
            trainer_prog, build_strategy=build_stra
592
        )
593
        print_to_err(type(self).__name__, "program compiled with data parallel")
T
typhoonzero 已提交
594 595

        feed_var_list = [
596 597
            var
            for var in trainer_prog.global_block().vars.values()
T
typhoonzero 已提交
598 599 600 601
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
602
        reader_generator = train_reader()
T
typhoonzero 已提交
603

604 605
        def get_data():
            origin_batch = next(reader_generator)
W
Wu Yi 已提交
606
            if args.update_method != "local" and args.use_reader_alloc:
607 608 609 610 611 612 613
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch
T
typhoonzero 已提交
614

615
        lr_scheduler = self.get_lr_scheduler(trainer_prog)
616
        print_to_err(type(self).__name__, "begin to train on trainer")
W
Wu Yi 已提交
617
        out_losses = []
618
        for i in range(RUN_STEP):
619 620 621
            (loss,) = exe.run(
                binary, fetch_list=[avg_cost.name], feed=feeder.feed(get_data())
            )
W
Wu Yi 已提交
622
            out_losses.append(loss[0])
623
            print_to_err(type(self).__name__, "run step %d finished" % i)
624 625 626
            if lr_scheduler is not None:
                lr_scheduler.step()

627 628
        print_to_err(type(self).__name__, "trainer run finished\n")
        # print_to_err(type(self).__name__, "out_losses")
629

630
        sys.stdout = old_stdout
631
        print_to_out(out_losses)
T
typhoonzero 已提交
632 633


634
class TestParallelDyGraphRunnerBase:
635 636
    def get_model(self):
        raise NotImplementedError(
637 638
            "get_model should be implemented by child classes."
        )
639 640 641

    def run_one_loop(self, model, opt, data):
        raise NotImplementedError(
642 643
            "train_one_loop should be implemented by the child classes."
        )
644

645
    def _get_data(self, batch, args):
646 647 648 649
        if (
            paddle.distributed.get_world_size() == 1
            and args.update_method == 'gloo'
        ):  # Gloo single mode
X
xiongkun 已提交
650 651
            return batch
        elif args.update_method != "local":
652
            new_batch = []
653

654 655 656
            # NOTE(@xiongkun03) args.diff_batch means batch length is different:
            # such as : batch = [2,3,4,5], then the first rank will get [2]  and
            # the second rank will get [3,4,5].
657 658
            # this function is for test sparse_embedding_differ_length
            if hasattr(args, "diff_batch") and args.diff_batch:
659 660 661
                assert (
                    len(batch) > 2
                ), "in differ_batch mode, len(batch) must > 2."
662 663 664
                if paddle.distributed.get_rank() == 0:
                    new_batch.append(batch[0])
                elif paddle.distributed.get_rank() == 1:
665
                    new_batch.extend(list(batch[1:]))
666 667 668 669 670 671 672 673 674 675
                else:
                    raise NotImplementedError(
                        "Current TestParallelDyGraphRunnerBase don't support world_size > 2"
                    )
                return new_batch
            else:
                for offset, item in enumerate(batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
676 677 678
        else:
            return batch

679 680
    def run_trainer(self, args):
        seed = 90
X
xiongkun 已提交
681 682 683
        if args.update_method == 'gloo':
            place = fluid.CPUPlace()
        elif fluid.core.is_compiled_with_cuda():
684 685 686 687 688 689
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
690
            assert "Only support CUDAPlace or XPUPlace or CPU(Gloo) for now."
691 692 693 694

        with fluid.dygraph.guard(place):
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
Y
Yan Xu 已提交
695 696
            np.random.seed(seed)
            import random
697

698
            random.seed(seed)
699 700
            model, train_reader, opt = self.get_model()
            nranks = len(args.endpoints.split(",")) if args.endpoints else 1
Y
Yan Xu 已提交
701

702 703 704 705 706 707
            # if args.update_method == "nccl2":
            if (
                args.update_method == "nccl2"
                or args.update_method == "bkcl"
                or args.update_method == "hccl"
            ):
Q
qizhaoaoe 已提交
708
                strategy = paddle.distributed.parallel.ParallelStrategy()
709 710 711 712
                strategy.nranks = nranks
                strategy.local_rank = args.trainer_id
                strategy.trainer_endpoints = args.endpoints.split(",")
                strategy.current_endpoint = args.current_endpoint
713
                paddle.distributed.init_parallel_env()
714
                print_to_err(
715
                    type(self).__name__,
716 717
                    "begin to prepare context in dygraph with nccl2",
                )
718
                if not args.find_unused_parameters:
Q
qizhaoaoe 已提交
719
                    model = paddle.DataParallel(
720 721
                        model, strategy, find_unused_parameters=False
                    )
722
                else:
Q
qizhaoaoe 已提交
723
                    model = paddle.DataParallel(
724 725
                        model, strategy, find_unused_parameters=True
                    )
726
                print_to_err(type(self).__name__, "model built in dygraph")
X
xiongkun 已提交
727 728 729 730

            elif args.update_method == "gloo":
                paddle.distributed.init_parallel_env()
                if not args.find_unused_parameters:
Q
qizhaoaoe 已提交
731
                    model = paddle.DataParallel(
732 733
                        model, find_unused_parameters=False
                    )
X
xiongkun 已提交
734
                else:
Q
qizhaoaoe 已提交
735
                    model = paddle.DataParallel(
736 737
                        model, find_unused_parameters=True
                    )
X
xiongkun 已提交
738

739
            out_losses = []
740
            print_to_err(type(self).__name__, "begin to run dygraph training")
741
            for step_id, data in enumerate(train_reader()):
742
                data = self._get_data(data, args)
743 744 745
                if step_id == RUN_STEP:
                    break
                loss = self.run_one_loop(model, opt, data)
G
guru4elephant 已提交
746
                if step_id % 10 == 0:
747
                    print_to_err(
748
                        type(self).__name__,
749 750
                        "loss at step %d: %f" % (step_id, loss.numpy()),
                    )
Y
Yan Xu 已提交
751
                out_losses.append(loss.numpy())
752 753 754 755

                loss.backward()

                opt.minimize(loss)
756 757
                if not args.accumulate_gradient:
                    model.clear_gradients()
758
        print_to_out(out_losses)
759

760 761 762 763 764 765 766 767 768
    def run_trainer_with_spawn(self, args):
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
769
        random.seed(seed)
770
        # get trainer id
L
LiYuRio 已提交
771 772
        paddle.distributed.parallel._get_global_parallel_env()
        args.trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
773 774

        # 3. init parallel env
X
xiongkun 已提交
775
        if args.update_method in ["nccl2", "gloo"]:
776 777 778 779
            paddle.distributed.init_parallel_env()

        # 4. train model
        model, train_reader, opt = self.get_model()
X
xiongkun 已提交
780
        if args.update_method in ["nccl2", "gloo"]:
781
            model = paddle.DataParallel(
782 783
                model, find_unused_parameters=args.find_unused_parameters
            )
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.minimize(loss)
            model.clear_gradients()
        return out_losses

799
    def run_use_fleet_api_trainer(self, args):
800
        from paddle.distributed import fleet
801

802 803 804 805 806 807 808 809
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
810
        random.seed(seed)
811
        # get trainer id
L
LiYuRio 已提交
812 813
        paddle.distributed.parallel._get_global_parallel_env()
        args.trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
814

815 816
        # set strategy
        strategy = fleet.DistributedStrategy()
817 818
        if args.find_unused_parameters:
            strategy.find_unused_parameters = True
819

820
        # 3. init parallel env
821
        if args.update_method == "nccl2" or "bkcl" or "hccl":
822
            fleet.init(is_collective=True, strategy=strategy)
823 824 825

        # 4. train model
        model, train_reader, opt = self.get_model()
826
        if args.update_method == "nccl2" or "bkcl" or "hccl":
827 828 829 830 831 832 833 834 835 836 837 838 839 840
            opt = fleet.distributed_optimizer(opt)
            model = fleet.distributed_model(model)

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.step()
841 842
            if not args.accumulate_gradient:
                opt.clear_grad()
843 844
        print_to_out(out_losses)

845

T
typhoonzero 已提交
846
def runtime_main(test_class):
W
Wu Yi 已提交
847
    parser = argparse.ArgumentParser(description='Run dist test.')
848 849 850
    parser.add_argument(
        '--role', type=str, required=True, choices=['pserver', 'trainer']
    )
W
Wu Yi 已提交
851
    parser.add_argument('--endpoints', type=str, required=False, default="")
852 853 854 855 856 857 858 859 860 861 862 863 864 865
    parser.add_argument(
        '--update_method',
        type=str,
        default="local",
        choices=[
            "pserver",
            "nccl2",
            "bkcl",
            "local",
            "nccl2_reduce_layer",
            "gloo",
            "hccl",
        ],
    )
W
Wu Yi 已提交
866 867
    parser.add_argument('--trainer_id', type=int, required=False, default=0)
    parser.add_argument('--trainers', type=int, required=False, default=1)
868
    parser.add_argument('--nccl_comm_num', type=int, required=False, default=1)
869 870
    parser.add_argument('--enable_backward_deps', action='store_true')
    parser.add_argument('--use_hallreduce', action='store_true')
871
    parser.add_argument('--use_pipeline', action='store_true')
872
    parser.add_argument('--use_fleet_api', action='store_true')
873
    parser.add_argument('--use_fleet_api_20', action='store_true')
874
    parser.add_argument('--use_local_sgd', action='store_true')
875
    parser.add_argument('--diff_batch', action='store_true')
876
    parser.add_argument('--ut4grad_allreduce', action='store_true')
877 878 879 880 881 882
    parser.add_argument(
        '--hallreduce_inter_nranks', type=int, required=False, default=2
    )
    parser.add_argument(
        '--current_endpoint', type=str, required=False, default=""
    )
W
Wu Yi 已提交
883
    parser.add_argument('--sync_mode', action='store_true')
884
    parser.add_argument('--use_cuda', action='store_true')
X
xiongkun 已提交
885
    parser.add_argument('--use_cpu', action='store_true')
886
    parser.add_argument('--use_xpu', action='store_true')
887
    parser.add_argument('--use_dgc', action='store_true')
888
    parser.add_argument('--accumulate_gradient', action='store_true')
889
    parser.add_argument('--find_unused_parameters', action='store_true')
W
Wu Yi 已提交
890
    parser.add_argument('--use_reduce', action='store_true')
W
Wu Yi 已提交
891
    parser.add_argument('--dc_asgd', action='store_true')
T
tangwei12 已提交
892
    parser.add_argument('--hogwild', action='store_true')
893
    parser.add_argument('--save_model', action='store_true')
894 895 896
    parser.add_argument(
        '--use_reader_alloc', action='store_true', required=False
    )
897
    parser.add_argument('--batch_size', required=False, type=int, default=2)
W
Wu Yi 已提交
898
    parser.add_argument('--lr', required=False, type=float, default=0.001)
899 900 901 902 903 904 905 906 907
    parser.add_argument(
        '--batch_merge_repeat', required=False, type=int, default=1
    )
    parser.add_argument(
        '--nccl2_reduce_layer_local_run',
        required=False,
        type=bool,
        default=False,
    )
908
    parser.add_argument('--sync_batch_norm', action='store_true')
909 910 911
    parser.add_argument(
        '--fuse_all_reduce', required=False, type=ast.literal_eval, default=None
    )
W
Wu Yi 已提交
912 913

    args = parser.parse_args()
T
typhoonzero 已提交
914

X
xiongkun 已提交
915 916 917
    if args.update_method == 'gloo':
        paddle.set_device("cpu")

T
typhoonzero 已提交
918
    model = test_class()
W
Wu Yi 已提交
919
    if args.role == "pserver" and args.update_method == "pserver":
W
Wu Yi 已提交
920
        model.run_pserver(args)
921 922
    elif args.use_fleet_api:
        model.run_use_fleet_api_trainer(args)
923 924
    elif args.use_fleet_api_20:
        model.run_use_fleet_api_20_trainer(args)
925 926
    elif args.use_pipeline:
        model.run_pipeline_trainer(args)
T
typhoonzero 已提交
927
    else:
928
        model.run_trainer(args)
X
Xin Pan 已提交
929

M
minqiyang 已提交
930

X
Xin Pan 已提交
931
class TestDistBase(unittest.TestCase):
W
Wu Yi 已提交
932 933 934
    def _setup_config(self):
        raise NotImplementedError("tests should have _setup_config implemented")

935 936 937
    def _after_setup_config(self):
        if self._enforce_place == "CPU":
            self.__use_cuda = False
938
            self.__use_xpu = False
939
            self._use_dgc = False
940 941
        elif self._enforce_place == "GPU":
            self.__use_cuda = True
942 943 944 945 946
            self.__use_xpu = False
        elif self._enforce_place == "XPU":
            self.__use_cuda = False
            self.__use_xpu = True
            self._use_dgc = False
947 948 949 950 951
        else:
            if fluid.core.is_compiled_with_cuda():
                self.__use_cuda = True
            else:
                self.__use_cuda = False
952 953 954 955
                self._use_dgc = False

        if self._use_reduce:
            assert not self._use_dgc
956

X
Xin Pan 已提交
957 958 959
    def setUp(self):
        self._trainers = 2
        self._pservers = 2
Y
Yancey1989 已提交
960
        self._port_set = set()
M
minqiyang 已提交
961
        self._python_interp = sys.executable
W
Wu Yi 已提交
962
        self._sync_mode = True
T
tangwei12 已提交
963
        self._hogwild_mode = False
964
        self._enforce_place = None
W
Wu Yi 已提交
965
        self._use_reduce = False
W
Wu Yi 已提交
966
        self._dc_asgd = False  # must use with async mode
967
        self._use_reader_alloc = True
W
Wu Yi 已提交
968
        self._nccl2_mode = False
969
        self._bkcl_mode = False
X
xiongkun 已提交
970
        self._gloo_mode = False  # now, support gloo backend
971
        self._hccl_mode = False
972
        self._pipeline_mode = False
973
        self._mp_mode = False
974
        self._diff_batch = False
W
Wu Yi 已提交
975 976 977 978 979
        # FIXME(typhoonzero): I added this stupid argument to enable
        # testing allreduce layers, which users can call layers.allreduce
        # to accumulate tensors at anywhere. Find a better way to do this
        # test, reduce check this argument everywhere.
        self._nccl2_reduce_layer = False
W
Wu Yi 已提交
980
        self._lr = 0.001
981
        self._use_dgc = False
982
        self._dygraph = False
983
        self._nccl_comm_num = 1
984
        self._enable_backward_deps = False
985
        self._use_fleet_api = False
986
        self._use_fleet_api_20 = False
987 988
        self._use_local_sgd = False
        self._ut4grad_allreduce = False
989
        self._use_hallreduce = False
990
        self._save_model = False
991
        self._fuse_all_reduce = None
992
        self._accumulate_gradient = False
993
        self._find_unused_parameters = False
W
Wu Yi 已提交
994
        self._setup_config()
995 996 997 998 999 1000

        global DIST_UT_PORT
        if DIST_UT_PORT == 0 and os.getenv("PADDLE_DIST_UT_PORT"):
            DIST_UT_PORT = int(os.getenv("PADDLE_DIST_UT_PORT"))

        if DIST_UT_PORT == 0:
1001
            self._ps_endpoints = "127.0.0.1:{},127.0.0.1:{}".format(
1002 1003 1004
                self._find_free_port(),
                self._find_free_port(),
            )
1005
        else:
1006
            self._ps_endpoints = "127.0.0.1:{},127.0.0.1:{}".format(
1007 1008 1009
                DIST_UT_PORT,
                DIST_UT_PORT + 1,
            )
1010
            DIST_UT_PORT += 2
1011
            self._dist_port = DIST_UT_PORT
1012

1013
        self._after_setup_config()
X
Xin Pan 已提交
1014

1015 1016 1017 1018 1019
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()

Y
Yancey1989 已提交
1020
    def _find_free_port(self):
Y
Yancey1989 已提交
1021
        def __free_port():
1022 1023 1024
            with closing(
                socket.socket(socket.AF_INET, socket.SOCK_STREAM)
            ) as s:
Y
Yancey1989 已提交
1025
                s.bind(('', 0))
1026
                print_to_err(
1027 1028
                    type(self).__name__, "socket name: %s" % s.getsockname()[1]
                )
Y
Yancey1989 已提交
1029 1030 1031 1032 1033 1034 1035
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port
Y
Yancey1989 已提交
1036

1037 1038 1039
    def start_pserver(
        self, model_file, check_error_log, required_envs, log_name=""
    ):
X
Xin Pan 已提交
1040
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
1041 1042 1043 1044 1045 1046 1047 1048
        ps_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            required_envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            ps_cmd += " -m coverage run --branch -p"

        ps_cmd += " %s --role pserver --endpoints %s --trainer_id 0 --current_endpoint %s --trainers %d --update_method pserver"

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
        ps0_cmd = ps_cmd % (
            self._python_interp,
            model_file,
            self._ps_endpoints,
            ps0_ep,
            self._trainers,
        )
        ps1_cmd = ps_cmd % (
            self._python_interp,
            model_file,
            self._ps_endpoints,
            ps1_ep,
            self._trainers,
        )
W
Wu Yi 已提交
1063 1064 1065 1066

        if self._sync_mode:
            ps0_cmd += " --sync_mode"
            ps1_cmd += " --sync_mode"
X
Xin Pan 已提交
1067

1068 1069
        print(ps0_cmd)
        print(ps1_cmd)
1070 1071 1072 1073
        path0 = os.path.join(self.temp_dir.name, log_name + "_ps0_err.log")
        path1 = os.path.join(self.temp_dir.name, log_name + "_ps1_err.log")
        ps0_pipe = open(path0, "wb")
        ps1_pipe = open(path1, "wb")
G
gongweibao 已提交
1074

1075
        print_to_err(type(self).__name__, "going to start pserver process 0")
1076 1077 1078 1079 1080 1081
        ps0_proc = subprocess.Popen(
            ps0_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps0_pipe,
            env=required_envs,
        )
1082
        print_to_err(type(self).__name__, "going to start pserver process 1")
1083 1084 1085 1086 1087 1088
        ps1_proc = subprocess.Popen(
            ps1_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps1_pipe,
            env=required_envs,
        )
G
gongweibao 已提交
1089

1090
        return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe
X
Xin Pan 已提交
1091

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
    def _run_local(
        self,
        model,
        envs,
        check_error_log=False,
        batch_size=DEFAULT_BATCH_SIZE,
        batch_merge_repeat=1,
        log_name="",
        devices="1",
    ):
G
gongweibao 已提交
1102

1103 1104 1105 1106 1107 1108
        cmd = self._python_interp

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            cmd += " -m coverage run --branch -p"

1109
        cmd += " {} --role trainer --update_method local --lr {:f}".format(
1110 1111 1112
            model,
            self._lr,
        )
1113

1114 1115 1116 1117
        if batch_size != DEFAULT_BATCH_SIZE:
            cmd += " --batch_size %d" % batch_size
        if batch_merge_repeat > 1:
            cmd += " --batch_merge_repeat %d" % batch_merge_repeat
W
Wu Yi 已提交
1118 1119
        if self._nccl2_reduce_layer:
            cmd += " --nccl2_reduce_layer_local_run 1"
1120

1121
        if self.__use_cuda:
1122
            cmd += " --use_cuda"
W
Wu Yi 已提交
1123
            env_local = {
1124 1125
                "CUDA_VISIBLE_DEVICES": devices,
                "PADDLE_TRAINERS_NUM": "1",
1126
                "PADDLE_TRAINER_ID": "0",
1127 1128 1129 1130 1131
            }
        elif self.__use_xpu:
            cmd += " --use_xpu"
            env_local = {
                "FLAGS_selected_xpus": devices,
W
Wu Yi 已提交
1132
                "PADDLE_TRAINERS_NUM": "1",
1133
                "PADDLE_TRAINER_ID": "0",
W
Wu Yi 已提交
1134
            }
1135 1136 1137
        else:
            env_local = {'CPU_NUM': '1'}

1138
        # not use dgc in single card
1139
        if len(devices) > 1 and self._use_dgc:
1140 1141
            cmd += " --use_dgc"

1142 1143 1144
        if self._accumulate_gradient:
            cmd += " --accumulate_gradient"

1145 1146 1147
        if self._find_unused_parameters:
            cmd += " --find_unused_parameters"

W
Wu Yi 已提交
1148
        env_local.update(envs)
1149
        print(f"local_cmd: {cmd}, env: {env_local}")
G
gongweibao 已提交
1150

1151
        if check_error_log:
1152 1153
            path = os.path.join(self.temp_dir.name, log_name + "_local.log")
            err_log = open(path, "wb")
1154 1155 1156 1157 1158 1159
            local_proc = subprocess.Popen(
                cmd.split(" "),
                stdout=subprocess.PIPE,
                stderr=err_log,
                env=env_local,
            )
G
gongweibao 已提交
1160
        else:
1161 1162 1163 1164 1165 1166
            local_proc = subprocess.Popen(
                cmd.split(" "),
                stdout=subprocess.PIPE,
                stderr=subprocess.PIPE,
                env=env_local,
            )
G
gongweibao 已提交
1167

1168 1169 1170 1171 1172 1173
        local_out, local_err = local_proc.communicate()

        if check_error_log:
            err_log.close()

        sys.stderr.write('local_stderr: %s\n' % local_err)
W
Wu Yi 已提交
1174
        sys.stderr.write('local_stdout: %s\n' % pickle.loads(local_out))
X
Xin Pan 已提交
1175

W
Wu Yi 已提交
1176
        return pickle.loads(local_out)
1177

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
    def _run_local_gloo(
        self,
        model,
        envs,
        check_error_log=False,
        batch_size=DEFAULT_BATCH_SIZE,
        batch_merge_repeat=1,
        log_name="",
        devices="0",
    ):
X
xiongkun 已提交
1188 1189
        saved_endpoints = self._ps_endpoints
        self._ps_endpoints = self._ps_endpoints.split(',')[0]
1190 1191 1192
        result = self._run_cluster_gloo(
            model, envs, 'gloo', check_error_log, log_name
        )
X
xiongkun 已提交
1193 1194 1195
        self._ps_endpoints = saved_endpoints
        return result

1196
    def _run_cluster(self, model, envs, check_error_log, log_name):
X
Xin Pan 已提交
1197
        # Run dist train to compare with local results
1198 1199 1200
        ps0, ps1, ps0_pipe, ps1_pipe = self.start_pserver(
            model, check_error_log, envs, log_name=log_name
        )
W
Wu Yi 已提交
1201

X
Xin Pan 已提交
1202
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
1203

1204 1205 1206 1207 1208 1209 1210 1211
        tr_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --trainers %d --update_method pserver --lr %f"

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
        tr0_cmd = tr_cmd % (
            self._python_interp,
            model,
            self._ps_endpoints,
            0,
            ps0_ep,
            self._trainers,
            self._lr,
        )
        tr1_cmd = tr_cmd % (
            self._python_interp,
            model,
            self._ps_endpoints,
            1,
            ps1_ep,
            self._trainers,
            self._lr,
        )
W
Wu Yi 已提交
1230 1231 1232 1233

        if self._sync_mode:
            tr0_cmd += " --sync_mode"
            tr1_cmd += " --sync_mode"
T
tangwei12 已提交
1234 1235 1236
        if self._hogwild_mode:
            tr0_cmd += " --hogwild"
            tr1_cmd += " --hogwild"
W
Wu Yi 已提交
1237 1238 1239
        if self._use_reduce:
            tr0_cmd += " --use_reduce"
            tr1_cmd += " --use_reduce"
1240 1241 1242
        if self._use_reader_alloc:
            tr0_cmd += " --use_reader_alloc"
            tr1_cmd += " --use_reader_alloc"
1243
        if self.__use_cuda:
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
            tr0_cmd += " --use_cuda"
            tr1_cmd += " --use_cuda"
            env0 = {"CUDA_VISIBLE_DEVICES": "0"}
            env1 = {"CUDA_VISIBLE_DEVICES": "1"}
        else:
            env0 = {'CPU_NUM': '1'}
            env1 = {'CPU_NUM': '1'}

        env0.update(envs)
        env1.update(envs)
X
Xin Pan 已提交
1254

1255 1256
        print(f"tr0_cmd: {tr0_cmd}, env: {env0}")
        print(f"tr1_cmd: {tr1_cmd}, env: {env1}")
1257 1258 1259 1260 1261

        path0 = os.path.join(self.temp_dir.name, log_name + "_tr0_err.log")
        path1 = os.path.join(self.temp_dir.name, log_name + "_tr1_err.log")
        tr0_pipe = open(path0, "wb")
        tr1_pipe = open(path1, "wb")
G
gongweibao 已提交
1262

1263
        print_to_err(type(self).__name__, "going to start trainer process 0")
1264 1265 1266 1267 1268 1269
        tr0_proc = subprocess.Popen(
            tr0_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=tr0_pipe,
            env=env0,
        )
1270
        print_to_err(type(self).__name__, "going to start trainer process 1")
1271 1272 1273 1274 1275 1276
        tr1_proc = subprocess.Popen(
            tr1_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=tr1_pipe,
            env=env1,
        )
X
Xin Pan 已提交
1277

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
        # Wait until trainer process terminate
        while True:
            stat0 = tr0_proc.poll()
            time.sleep(0.1)
            if stat0 is not None:
                break
        while True:
            stat1 = tr1_proc.poll()
            time.sleep(0.1)
            if stat1 is not None:
                break

1290 1291
        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
X
Xin Pan 已提交
1292

G
gongweibao 已提交
1293
        # close trainer file
1294 1295 1296 1297
        tr0_pipe.close()
        tr1_pipe.close()
        ps0_pipe.close()
        ps1_pipe.close()
W
Wu Yi 已提交
1298

W
Wu Yi 已提交
1299 1300
        ps0.terminate()
        ps1.terminate()
T
typhoonzero 已提交
1301

W
Wu Yi 已提交
1302 1303
        return pickle.loads(tr0_out), pickle.loads(tr1_out)

1304 1305 1306
    def _get_gloo_trainer_cmd(
        self, model, ep, update_method, trainer_id, trainer_num
    ):
X
xiongkun 已提交
1307 1308 1309 1310 1311 1312 1313 1314
        env = {}
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

1315 1316 1317 1318 1319 1320 1321 1322 1323
        tr_cmd = tr_cmd % (
            self._python_interp,
            model,
            self._ps_endpoints,
            trainer_id,
            ep,
            update_method,
            self._lr,
        )
X
xiongkun 已提交
1324 1325 1326 1327 1328

        if self._use_reduce:
            tr_cmd += " --use_reduce"
        if self._use_reader_alloc:
            tr_cmd += " --use_reader_alloc"
1329 1330
        # assert self._use_reduce == False, "gloo not support _use_reduce"
        # assert self._use_reader_alloc == False, "gloo not support _use_reduce"
X
xiongkun 已提交
1331 1332
        if self._save_model:
            tr_cmd += " --save_model"
1333 1334
        if self._diff_batch:
            tr_cmd += " --diff_batch"
X
xiongkun 已提交
1335 1336
        self.__use_cuda = False
        self.__use_xpu = False
1337 1338
        assert not self.__use_cuda, "gloo not support use cuda"
        assert not self.__use_xpu, "gloo not support use xpu"
X
xiongkun 已提交
1339
        tr_cmd += " --use_cpu"
1340 1341
        env.update(
            {
1342 1343
                "PADDLE_TRAINERS_NUM": f"{trainer_num}",
                "PADDLE_TRAINER_ID": f"{trainer_id}",
1344 1345 1346 1347 1348 1349 1350
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
                "PADDLE_CURRENT_ENDPOINT": ep,
                "PADDLE_DISTRI_BACKEND": "gloo",
                "GLOG_v": "2",
            }
        )
X
xiongkun 已提交
1351

1352
        assert not self._use_dgc, "gloo not support use dgc"
1353

X
xiongkun 已提交
1354 1355 1356 1357 1358 1359
        if self._accumulate_gradient:
            tr_cmd += " --accumulate_gradient"

        if self._find_unused_parameters:
            tr_cmd += " --find_unused_parameters"

1360
        assert not self._pipeline_mode, "gloo not support use pipeline"
X
xiongkun 已提交
1361 1362 1363 1364 1365

        if self._enable_backward_deps:  # build strategy, save it
            tr_cmd += " --enable_backward_deps"

        if self._fuse_all_reduce is not None:
1366
            tr_cmd += f" --fuse_all_reduce {self._fuse_all_reduce}"
X
xiongkun 已提交
1367

1368 1369
        assert not self._use_fleet_api, "gloo not support use fleet api"
        assert not self._use_fleet_api_20, "gloo not support use fleet api"
X
xiongkun 已提交
1370 1371
        return tr_cmd, env

1372 1373 1374
    def _get_nccl2_trainer_cmd(
        self, model, ep, update_method, trainer_id, trainer_num
    ):
1375
        env = {}
1376 1377 1378 1379 1380 1381 1382
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

1383 1384 1385 1386 1387 1388 1389 1390 1391
        tr_cmd = tr_cmd % (
            self._python_interp,
            model,
            self._ps_endpoints,
            trainer_id,
            ep,
            update_method,
            self._lr,
        )
W
Wu Yi 已提交
1392 1393

        if self._use_reduce:
1394
            tr_cmd += " --use_reduce"
W
Wu Yi 已提交
1395
        if self._use_reader_alloc:
1396
            tr_cmd += " --use_reader_alloc"
1397 1398
        if self._save_model:
            tr_cmd += " --save_model"
W
Wu Yi 已提交
1399
        if self.__use_cuda:
1400
            tr_cmd += " --use_cuda"
1401 1402
            env.update(
                {
1403 1404 1405 1406
                    "FLAGS_selected_gpus": f"{0}",
                    "CUDA_VISIBLE_DEVICES": f"{trainer_id}",
                    "PADDLE_TRAINERS_NUM": f"{trainer_num}",
                    "PADDLE_TRAINER_ID": f"{trainer_id}",
1407 1408 1409 1410
                    "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                    "PADDLE_CURRENT_ENDPOINT": ep,
                }
            )
1411 1412 1413 1414
        # TODO(liuyuhui):XPU_VISIBLE_DEVICES is not working right now,
        # will update it after Badiu Kunlun partners' support.
        elif self.__use_xpu:
            tr_cmd += " --use_xpu"
1415 1416
            env.update(
                {
1417
                    "FLAGS_selected_xpus": f"{trainer_id}",
1418
                    # "XPU_VISIBLE_DEVICES": "{}".format(trainer_id + 1),
1419 1420
                    "PADDLE_TRAINERS_NUM": f"{trainer_num}",
                    "PADDLE_TRAINER_ID": f"{trainer_id}",
1421 1422 1423 1424 1425
                    "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                    "PADDLE_CURRENT_ENDPOINT": ep,
                    "GLOG_v": "2",
                }
            )
W
Wu Yi 已提交
1426
        else:
1427
            env.update({'CPU_NUM': '1'})
W
Wu Yi 已提交
1428

1429
        if self._use_dgc:
1430 1431
            tr_cmd += " --use_dgc"

1432 1433 1434
        if self._accumulate_gradient:
            tr_cmd += " --accumulate_gradient"

1435 1436 1437
        if self._find_unused_parameters:
            tr_cmd += " --find_unused_parameters"

1438 1439
        if self._pipeline_mode:
            tr_cmd += " --use_pipeline"
1440
        if self._mp_mode:
1441
            env = {"FLAGS_selected_gpus": f"{trainer_id}"}
1442 1443

        if self._nccl_comm_num > 1:
1444
            tr_cmd += f" --nccl_comm_num {self._nccl_comm_num}"
1445

1446 1447
        if self._use_hallreduce:
            tr_cmd += " --use_hallreduce --hallreduce_inter_nranks 2"
1448

1449
        if self._enable_backward_deps:
1450
            tr_cmd += " --enable_backward_deps"
1451

1452
        if self._fuse_all_reduce is not None:
1453
            tr_cmd += f" --fuse_all_reduce {self._fuse_all_reduce}"
1454

1455
        if self._use_fleet_api:
1456 1457 1458 1459 1460
            tr_cmd += (
                " --use_fleet_api_20"
                if self._use_fleet_api_20
                else " --use_fleet_api"
            )
1461 1462 1463 1464
            if self._use_local_sgd:
                tr_cmd += " --use_local_sgd"
            if self._ut4grad_allreduce:
                tr_cmd += " --ut4grad_allreduce"
1465 1466
            if hasattr(self, '_sync_batch_norm') and self._sync_batch_norm:
                tr_cmd += " --sync_batch_norm"
1467

1468 1469 1470
        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            env['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')

1471
        return tr_cmd, env
W
Wu Yi 已提交
1472

1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
    def _run_cluster_gloo(
        self, model, envs, update_method, check_error_log, log_name
    ):
        assert update_method == "gloo", (
            "_run_cluster_gloo must have update_method: gloo, but get %s"
            % update_method
        )
        assert (
            not self._use_hallreduce
        ), "_run_cluster_gloo must have _use_hallreduce = false"
X
xiongkun 已提交
1483 1484 1485 1486 1487 1488 1489 1490

        worker_endpoints = self._ps_endpoints.split(",")

        trainer_num = len(worker_endpoints)

        procs = []
        pipes = []
        for i in range(0, trainer_num):
1491 1492 1493
            tr_cmd, tr_env = self._get_gloo_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num
            )
X
xiongkun 已提交
1494 1495 1496
            tr_env.update(envs)
            tr_env["GLOG_vmodule"] = 'gloo_context=4'
            tr_env["GLOG_v"] = '3'
1497 1498 1499 1500 1501
            print(
                "use_hallreduce:{} tr_cmd:{}, env: {}".format(
                    self._use_hallreduce, tr_cmd, tr_env
                )
            )
X
xiongkun 已提交
1502

1503
            path = os.path.join(
1504
                self.temp_dir.name, log_name + f"_tr{i}_err.log"
1505
            )
1506
            tr_pipe = open(path, "wb")
X
xiongkun 已提交
1507 1508 1509

            print_to_err(
                type(self).__name__,
1510
                f"going to start process {i} with nccl2",
1511 1512 1513 1514 1515 1516 1517
            )
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env,
            )
X
xiongkun 已提交
1518 1519 1520 1521 1522 1523 1524 1525 1526

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
1527
            sys.stderr.write(f'trainer {i} stderr: {tr_err}\n')
X
xiongkun 已提交
1528 1529

        if trainer_num == 1:
1530 1531
            if check_error_log:
                print("outs[0]:", outs[0])
X
xiongkun 已提交
1532 1533 1534 1535 1536 1537 1538 1539
            return pickle.loads(outs[0])

        else:
            if check_error_log:
                print("outs[0]:", outs[0])
                print("outs[1]:", outs[1])
            return pickle.loads(outs[0]), pickle.loads(outs[1])

1540 1541 1542
    def _run_cluster_nccl2(
        self, model, envs, update_method, check_error_log, log_name
    ):
1543 1544
        if self._use_hallreduce:
            self._ps_endpoints = ""
1545 1546 1547

            global DIST_UT_PORT
            if DIST_UT_PORT == 0:
W
WangXi 已提交
1548
                # NOTE(wangxi). hallreduce test must use 4cards after nccl>=2.7
1549 1550
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (
1551 1552
                        self._find_free_port()
                    )
1553 1554 1555 1556
            else:
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (DIST_UT_PORT + i)
                DIST_UT_PORT += 4
1557
            self._ps_endpoints = self._ps_endpoints[:-1]
W
Wu Yi 已提交
1558

1559 1560
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
W
Wu Yi 已提交
1561

1562
        trainer_num = len(worker_endpoints)
W
Wu Yi 已提交
1563

1564 1565 1566 1567
        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
1568 1569
                model, worker_endpoints[i], update_method, i, trainer_num
            )
1570
            tr_env.update(envs)
1571 1572 1573 1574 1575
            print(
                "use_hallreduce:{} tr_cmd:{}, env: {}".format(
                    self._use_hallreduce, tr_cmd, tr_env
                )
            )
W
Wu Yi 已提交
1576

1577
            path = os.path.join(
1578
                self.temp_dir.name, log_name + f"_tr{i}_err.log"
1579
            )
1580
            tr_pipe = open(path, "wb")
W
Wu Yi 已提交
1581

1582
            print_to_err(
1583
                type(self).__name__,
1584
                f"going to start process {i} with nccl2",
1585 1586 1587 1588 1589 1590 1591
            )
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env,
            )
1592 1593 1594 1595 1596 1597 1598 1599 1600

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
1601
            sys.stderr.write(f'trainer {i} stderr: {tr_err}\n')
1602

1603 1604 1605
        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
1606

1607
        return pickle.loads(outs[0]), pickle.loads(outs[1])
1608

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
    def _run_pipeline(self, model, envs, check_error_log, log_name):
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
        update_method = "nccl2"

        trainer_num = len(worker_endpoints)

        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
1620 1621
                model, worker_endpoints[i], update_method, i, trainer_num
            )
1622 1623 1624 1625 1626
            tr_env.update(envs)
            tr_env['CUDA_VISIBLE_DEVICES'] = "0,1"
            tr_env['NCCL_SHM_DISABLE'] = '1'
            tr_env['FLAGS_selected_gpus'] = str(i)
            tr_env['FLAGS_cudnn_deterministic'] = '0'
1627
            print(f"tr_cmd:{tr_cmd}, env: {tr_env}")
1628

1629
            path = os.path.join(self.temp_dir.name + f"tr{i}_err.log")
1630
            tr_pipe = open(path, "wb")
1631 1632 1633

            print_to_err(
                type(self).__name__,
1634
                f"going to start process {i} with nccl2",
1635 1636 1637 1638 1639 1640 1641
            )
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env,
            )
1642 1643 1644 1645 1646 1647 1648 1649 1650

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
1651
            sys.stderr.write(f'trainer {i} stderr: {tr_err}\n')
1652 1653 1654 1655 1656 1657

        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
        return pickle.loads(outs[0]), pickle.loads(outs[1])

1658
    def _get_required_envs(self, check_error_log=False, need_envs={}):
1659 1660 1661 1662 1663 1664
        # TODO(typhoonzero): should auto adapt GPU count on the machine.
        required_envs = {
            "PATH": os.getenv("PATH", ""),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
G
guru4elephant 已提交
1665
            "FLAGS_rpc_deadline": "30000",  # 5sec to fail fast
1666
            "FLAGS_rpc_retry_bind_port": "50",
1667
            "FLAGS_cudnn_deterministic": "1",
1668
            "FLAGS_rpc_disable_reuse_port": "1",
W
Wu Yi 已提交
1669
            "http_proxy": "",
1670
            "NCCL_P2P_DISABLE": "1",
1671
            "NCCL_SHM_DISABLE": "1",
1672
            "FLAGS_new_executor_static_build": "1",
1673 1674 1675
        }

        if check_error_log:
1676 1677 1678 1679
            required_envs["GLOG_vmodule"] = (
                "fused_all_reduce_op_handle=10,all_reduce_op_handle=10,alloc_continuous_space_op=10,fuse_all_reduce_op_pass=10,"
                "alloc_continuous_space_for_grad_pass=10,fast_threaded_ssa_graph_executor=10,executor=10,operator=10,"
                "sparse_all_reduce_op_handle=10,gen_nccl_id_op=10,gen_nccl_id_op_help=10,nccl_helper=10,grpc_client=10,"
1680
                "grpc_server=10,request_handler_impl=10,section_worker=10"
1681
            )
1682 1683
            required_envs["GLOG_logtostderr"] = "1"

1684 1685
        if os.getenv('NVIDIA_TF32_OVERRIDE', '') is not None:
            required_envs['NVIDIA_TF32_OVERRIDE'] = os.getenv(
1686 1687
                'NVIDIA_TF32_OVERRIDE', ''
            )
1688

1689 1690 1691
        required_envs.update(need_envs)
        return required_envs

1692 1693 1694 1695 1696 1697 1698 1699
    def check_with_place(
        self,
        model_file,
        delta=1e-3,
        check_error_log=False,
        need_envs={},
        log_name="",
    ):
1700
        if self._dygraph and (self._gloo_mode or self._nccl2_mode):
1701 1702 1703 1704 1705 1706 1707
            self.check_with_place_func(
                model_file=model_file,
                delta=delta,
                check_error_log=check_error_log,
                need_envs=need_envs,
                log_name=log_name,
            )
1708
        else:
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
            self.check_with_place_func(
                model_file=model_file,
                delta=delta,
                check_error_log=check_error_log,
                need_envs=need_envs,
                log_name=log_name,
            )

    def check_with_place_func(
        self,
        model_file,
        delta=1e-3,
        check_error_log=False,
        need_envs={},
        log_name="",
    ):
1725 1726
        required_envs = self._get_required_envs(check_error_log, need_envs)

X
xiongkun 已提交
1727
        if self._gloo_mode:
1728 1729 1730
            local_losses = self._run_local_gloo(
                model_file, required_envs, check_error_log, log_name=log_name
            )
X
xiongkun 已提交
1731
        else:
1732 1733 1734
            local_losses = self._run_local(
                model_file, required_envs, check_error_log, log_name=log_name
            )
1735

W
Wu Yi 已提交
1736
        if self._nccl2_mode:
W
Wu Yi 已提交
1737 1738
            if self._nccl2_reduce_layer:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1739 1740
                    model_file,
                    required_envs,
1741 1742
                    update_method="nccl2_reduce_layer",
                    check_error_log=check_error_log,
1743 1744
                    log_name=log_name,
                )
W
Wu Yi 已提交
1745 1746
            else:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1747 1748
                    model_file,
                    required_envs,
1749 1750
                    update_method='nccl2',
                    check_error_log=check_error_log,
1751 1752
                    log_name=log_name,
                )
1753 1754 1755 1756 1757 1758
        elif self._bkcl_mode:
            tr0_losses, tr1_losses = self._run_cluster_nccl2(
                model_file,
                required_envs,
                update_method='bkcl',
                check_error_log=check_error_log,
1759 1760
                log_name=log_name,
            )
X
xiongkun 已提交
1761 1762 1763 1764 1765 1766 1767
        elif self._gloo_mode:
            # gloo mode, cpu only parallel train @xiongkun03
            tr0_losses, tr1_losses = self._run_cluster_gloo(
                model_file,
                required_envs,
                update_method='gloo',
                check_error_log=check_error_log,
1768 1769
                log_name=log_name,
            )
1770 1771 1772 1773 1774 1775
        elif self._hccl_mode:
            tr0_losses, tr1_losses = self._run_cluster_nccl2(
                model_file,
                required_envs,
                update_method='hccl',
                check_error_log=check_error_log,
1776 1777
                log_name=log_name,
            )
1778
        elif self._pipeline_mode:
1779 1780 1781
            tr0_losses, tr1_losses = self._run_pipeline(
                model_file, required_envs, check_error_log, log_name=log_name
            )
W
Wu Yi 已提交
1782
        else:
1783 1784 1785
            tr0_losses, tr1_losses = self._run_cluster(
                model_file, required_envs, check_error_log, log_name=log_name
            )
1786 1787

        for step_id in range(RUN_STEP):
W
Wu Yi 已提交
1788 1789 1790
            local_loss = local_losses[step_id]
            tr0_loss = tr0_losses[step_id]
            tr1_loss = tr1_losses[step_id]
1791 1792 1793 1794
            if self._pipeline_mode:
                dist_loss = np.array([tr1_loss])
            else:
                dist_loss = (np.array([tr0_loss]) + np.array([tr1_loss])) / 2
W
Wu Yi 已提交
1795 1796
            print("=======", local_loss, ":", dist_loss[0], "=======")
            self.assertAlmostEqual(local_loss, dist_loss[0], delta=delta)
1797

1798 1799 1800 1801 1802 1803 1804 1805
    def check_with_place_multi_cards(
        self,
        model_file,
        delta=1e-3,
        check_error_log=False,
        need_envs={},
        log_name="",
    ):
1806

1807 1808 1809 1810 1811 1812
        # need open p2p or shm otherwise multi cards mode will hang
        need_envs.update({"NCCL_P2P_DISABLE": "0", "NCCL_SHM_DISABLE": "0"})

        required_envs = self._get_required_envs(check_error_log, need_envs)

        if self._use_dgc:
1813 1814 1815 1816 1817 1818 1819
            multi_cards_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_dgc_2cards",
                devices="0,1",
            )
1820 1821

            self._use_dgc = False
1822 1823 1824 1825 1826 1827 1828
            base_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_base_2cards",
                devices="0,1",
            )
1829 1830 1831 1832 1833 1834 1835 1836

            self._use_dgc = True

            for step_id in range(RUN_STEP):
                base_loss = base_losses[step_id]
                multi_cards_loss = multi_cards_losses[step_id]
                print("=======", base_loss, ":", multi_cards_loss, "=======")
                self.assertAlmostEqual(base_loss, multi_cards_loss, delta=delta)