moe_layer.py 15.8 KB
Newer Older
R
Roc 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
R
Roc 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
R
Roc 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
R
Roc 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
R
Roc 已提交
14 15 16 17 18 19 20
#
# The file has been adapted from the file:
#     https://github.com/laekov/fastmoe/blob/master/fmoe/layers.py
#     Git commit hash: 295a615aacce7e54a37e7935274ba15e901c78e4
# We retain the following license from the original files:
#     Copyright 2021, Jiaao He. All rights reserved.
#   Licensed under the Apache License, Version 2.0 (the "License").
R
Roc 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33

import collections
import math

import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.distributed.utils import global_scatter, global_gather
from paddle.distributed import alltoall, all_gather

from paddle.distributed.fleet.meta_parallel import get_rng_state_tracker
from paddle.distributed import fleet
34
from paddle.autograd import PyLayer
R
Roc 已提交
35 36 37 38
from .gate import NaiveGate, GShardGate, SwitchGate, BaseGate
from .utils import count_by_gate
from paddle.distributed.fleet.meta_parallel.pp_utils.utils import _hp_recompute
from paddle import fluid
39
from paddle.fluid.framework import in_dygraph_mode
R
Roc 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53


def _local_scatter(inp, pos):
    if pos.shape != [0]:
        inp_buf = paddle.index_select(inp, pos, 0)
    else:
        inp_buf = paddle.empty([0, inp.shape[1]], dtype=inp.dtype)
    return inp_buf


def _local_gather(inp, pos, out_batch_size, maybe_overlap=True):
    if pos.shape != [0]:
        origin_dtype = inp.dtype
        inp = paddle.cast(inp, dtype="float32")
54 55 56 57 58
        inp_buf = paddle.scatter(paddle.zeros(
            shape=[out_batch_size, inp.shape[-1]], dtype="float32"),
                                 pos,
                                 inp,
                                 overwrite=True)
R
Roc 已提交
59 60 61 62 63 64 65 66 67
        inp_buf = paddle.cast(inp_buf, dtype=origin_dtype)
    else:
        inp_buf = paddle.zeros([out_batch_size, inp.shape[-1]], dtype=inp.dtype)
    return inp_buf


def _all_gather(tensor, group=None, use_calc_stream=True):
    if group is not None and not group.is_member():
        return
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

    if in_dygraph_mode():
        group = paddle.distributed.collective._get_default_group(
        ) if group is None else group
        tensor_shape = list(tensor.shape)
        tensor_shape[0] *= group.nranks
        out = paddle.empty(tensor_shape, tensor.dtype)

        task = group.process_group.all_gather(tensor, out)
        task.wait()
        return out
    else:
        ring_id = 0 if group is None else group.id
        nranks = paddle.distributed.collective._get_global_group(
        ).nranks if group is None else group.nranks
83 84 85
        return paddle._legacy_C_ops.c_allgather(tensor, 'use_calc_stream',
                                                use_calc_stream, 'ring_id',
                                                ring_id, 'nranks', nranks)
R
Roc 已提交
86 87


R
Roc 已提交
88
class MoEScatter(PyLayer):
R
Roc 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    r"""
    Scatter input samples from [batch x sequences] to contiguous alone experts.
    If `world_size` is greater than 1, the samples will first be locally
    scattered, and then exchanged across workers.
    """

    @staticmethod
    def forward(ctx,
                inp,
                pos,
                local_expert_count,
                global_expert_count,
                fwd_batch_size,
                world_size,
                group=None):
        local_input_buf = _local_scatter(inp, pos)
        if world_size > 1:
106 107 108 109
            global_input_buf = global_scatter(local_input_buf,
                                              local_expert_count,
                                              global_expert_count,
                                              group=group)
R
Roc 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
        else:
            global_input_buf = local_input_buf

        ctx.moe_args = inp.shape[0], world_size, group

        variables = (pos, local_expert_count, global_expert_count)
        ctx.save_for_backward(*variables)
        return global_input_buf

    @staticmethod
    def backward(ctx, grad):
        (pos, local_expert_count, global_expert_count) = ctx.saved_tensor()
        (inp_batch_size, world_size, group) = ctx.moe_args

        if world_size > 1:
125 126 127 128
            local_grad_in = global_gather(grad,
                                          local_expert_count,
                                          global_expert_count,
                                          group=group)
R
Roc 已提交
129 130 131 132 133 134
        else:
            local_grad_in = grad
        grad_in = _local_gather(local_grad_in, pos, inp_batch_size)
        return grad_in, None, None, None


R
Roc 已提交
135
class MoEGather(PyLayer):
R
Roc 已提交
136 137
    r"""
    Gather output samples from contiguous alone experts back to [batch x
R
Roc 已提交
138
    sequences]. Works symmetrically with MoEScatter.
R
Roc 已提交
139 140 141 142 143 144 145 146 147 148 149 150
    """

    @staticmethod
    def forward(ctx,
                global_output_buf,
                pos,
                local_expert_count,
                global_expert_count,
                local_batch_size,
                world_size,
                group=None):
        if world_size > 1:
151 152 153 154
            local_output_buf = global_gather(global_output_buf,
                                             local_expert_count,
                                             global_expert_count,
                                             group=group)
R
Roc 已提交
155 156
        else:
            local_output_buf = global_output_buf
157 158 159 160
        output = _local_gather(local_output_buf,
                               pos,
                               local_batch_size,
                               maybe_overlap=False)
R
Roc 已提交
161 162 163 164 165 166 167 168 169 170 171 172

        ctx.moe_args = (global_output_buf.shape[0], world_size, group)
        variables = (pos, local_expert_count, global_expert_count)
        ctx.save_for_backward(*variables)
        return output

    @staticmethod
    def backward(ctx, grad_out):
        pos, local_expert_count, global_expert_count = ctx.saved_tensor()
        fwd_batch_size, world_size, group = ctx.moe_args
        grad_out_buf = _local_scatter(grad_out, pos)
        if world_size > 1:
173 174 175 176
            global_grad_out_buf = global_scatter(grad_out_buf,
                                                 local_expert_count,
                                                 global_expert_count,
                                                 group=group)
R
Roc 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
        else:
            global_grad_out_buf = grad_out_buf
        return global_grad_out_buf, None, None, None


class AllGather(PyLayer):
    r"""
    A wrapper for the All-Gather function to support auto-differentiation.
    """

    @staticmethod
    def forward(ctx, inp, rank, world_size, group):
        tensor_list = []
        paddle.distributed.all_gather(tensor_list, inp, group=group)
        output = paddle.concat(tensor_list, axis=0)
        ctx.args = rank, inp.shape[0]
        return output

    @staticmethod
    def backward(ctx, grad_out):
        rank, dim0 = ctx.args
198 199 200 201
        return paddle.slice(grad_out,
                            axes=[0],
                            starts=[rank * dim0],
                            ends=[(rank + 1) * dim0])
R
Roc 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214


class Slice(PyLayer):
    r"""
    A wrapper for the Slice function to support auto-differentiation.
    """

    @staticmethod
    def forward(ctx, inp, rank, world_size, group):
        B = inp.shape[0]
        local_batch_size = B // world_size
        batch_start = local_batch_size * rank
        batch_end = min(batch_start + local_batch_size, B)
215 216 217 218
        inp = paddle.slice(inp,
                           axes=[0],
                           starts=[batch_start],
                           ends=[batch_end])
R
Roc 已提交
219 220 221 222 223 224 225
        ctx.args = world_size, group
        return inp

    @staticmethod
    def backward(ctx, grad_out):
        world_size, group = ctx.args
        return _all_gather(grad_out, group=group)
226 227


R
Roc 已提交
228 229 230 231 232 233 234 235 236 237 238 239
def prepare_forward(gate, num_expert, world_size, moe_group):
    pos, local_expert_count, global_expert_count = count_by_gate(
        gate, num_expert, world_size, group=moe_group)
    with paddle.no_grad():
        fwd_expert_count = global_expert_count.reshape_(
            [world_size, num_expert]).sum(axis=0)
        fwd_batch_size = int(fwd_expert_count.sum().item())
    return (
        pos,
        local_expert_count,
        global_expert_count,
        fwd_expert_count,
240 241
        fwd_batch_size,
    )
R
Roc 已提交
242 243


R
Roc 已提交
244 245
class MoELayer(nn.Layer):
    """MoE Layer
R
Roc 已提交
246 247 248 249 250 251 252 253 254 255 256 257
    Args:
        d_model: (int) model dimention
        experts: (nn.LayerList) expert networks list
        gate: (dict|NaiveGate|SwitchGate|NaiveGate): 
                if gate is a dict:
                    gate is a gate network config, containing 2 keys: 
                    `type`(str) value can be: "naive", "gshard", "switch" or None, default is "gshard"
                    `top_k`(int) default value is 2
                else gate is an instance of NaiveGate|SwitchGate|NaiveGate:

        moe_group: moe group for experts communication
        mp_group: mp group for mp commutication
258 259
        recompute_interval(int, optional): whether to use recompute, default 0, means to disable recompute.
        recompute_ctx(dict, optional): the context for recompute, if recompute_interval > 1, recompute_ctx must be given.
R
Roc 已提交
260 261 262
    Examples:
        .. code-block:: python
        from paddle.nn import layer, LayerList
R
Roc 已提交
263
        from paddle.distributed.moe import MoElayer
R
Roc 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
        from paddle.distributed.collective import Group
        from paddle.distributed import fleet

        moe_group = Group(fleet.worker_index(),
                          fleet.worker_num(),
                          0,
                          list(range(fleet.worker_num())))
        mp_group = None

        num_experts=8
        dim_feedforward=512
        d_model=8
        top_k=2

        class ExpertLayer(Layer):
            def __init__(self, d_model, d_hidden, name=None,rank=0, windex = 0, num_expert=1):
                super(ExpertLayer, self).__init__()                
                self.htoh4 = nn.Linear(d_model, d_hidden)
                self.h4toh = nn.Linear(d_hidden, d_model)

            def forward(self, x):
                x = self.htoh4(x)
                x = self.h4toh(x)
                return x

        gate_config = {
                "type": "gshard",
                "top_k": top_k,
        }
        
        experts_list = LayerList()
        for expi in range(num_experts):
            exp_layer = ExpertLayer(d_model, dim_feedforward // top_k, windex=expi, num_expert=num_experts)
            experts_list.append(exp_layer)
        
R
Roc 已提交
299
        moeLayer = MoELayer(d_model = d_model,
R
Roc 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312 313
                            experts=experts_list,
                            gate=gate_config,
                            moe_group=moe_group,
                            mp_group=mp_group,
                            recompute_interval=0)
        
    """

    def __init__(self,
                 d_model,
                 experts,
                 gate=None,
                 moe_group=None,
                 mp_group=None,
314 315
                 recompute_interval=0,
                 recompute_ctx=None):
R
Roc 已提交
316
        super(MoELayer, self).__init__()
R
Roc 已提交
317

318
        self.recompute_ctx = recompute_ctx
R
Roc 已提交
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

        if gate is None:
            gate = dict()

        assert isinstance(gate, (dict, BaseGate)), \
             "gate config' type must be dict or an instance of BaseGate"
        # only support mp/dp
        self.group = moe_group

        self.world_size = 1
        if self.group is not None:
            self.world_size = self.group.nranks
        self.num_expert = len(experts)
        self.recompute_interval = recompute_interval
        assert experts is not None
        self.experts = experts

        self.mp_group = mp_group
        self.d_model = d_model
        if isinstance(gate, dict):
            self.top_k = gate.get("top_k", 2)
            gate = gate.get("type", "gshard")
            if gate == "naive" or gate is None:
342 343 344 345
                gate = NaiveGate(self.d_model,
                                 num_expert=len(experts),
                                 world_size=self.world_size,
                                 topk=self.top_k)
R
Roc 已提交
346
            elif gate == "gshard":
347 348 349 350 351
                gate = GShardGate(self.d_model,
                                  num_expert=len(experts),
                                  world_size=self.world_size,
                                  topk=self.top_k,
                                  group=self.group)
R
Roc 已提交
352
            elif gate == "switch":
353 354 355 356 357
                gate = SwitchGate(self.d_model,
                                  num_expert=len(experts),
                                  world_size=self.world_size,
                                  topk=self.top_k,
                                  group=self.group)
R
Roc 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
            else:
                assert False, "We only support naive gate, \
                                gshard gate and switch gate, \
                                but you choose {} gate.".format(str(gate))
        elif isinstance(gate, NaiveGate):
            self.top_k = gate.top_k
        elif isinstance(gate, BaseGate):
            raise TypeError("Unimplemented gate type: ", type(gate))
        else:
            raise TypeError("gate's type must be either dict or moe.BaseGate")
        self.gate = gate

    def forward(self, inp):
        # inp shape: b * s * m
        assert len(inp.shape) == 3
        origin_shape = inp.shape
        inp = inp.reshape_([-1, origin_shape[2]])

        mp_rank = 0
        mp_size = 1
        if self.mp_group is not None:
            mp_rank = self.mp_group.rank
            mp_size = self.mp_group.nranks
        if mp_size > 1:
382
            inp = Slice.apply(inp, mp_rank, mp_size, self.mp_group)
R
Roc 已提交
383 384 385 386 387 388 389
        value, gate = self.gate(inp)

        (
            pos,
            local_expert_count,
            global_expert_count,
            fwd_expert_count,
390 391
            fwd_batch_size,
        ) = prepare_forward(gate, self.num_expert, self.world_size, self.group)
R
Roc 已提交
392 393 394 395 396 397 398 399 400 401 402

        topk = 1
        if len(gate.shape) == 2:
            topk = gate.shape[1]

        if pos.shape != [0]:
            temp_pos = pos // topk
        else:
            temp_pos = pos
        assert topk == self.top_k

403 404 405
        x = MoEScatter.apply(inp, temp_pos, local_expert_count,
                             global_expert_count, fwd_batch_size,
                             self.world_size, self.group)
R
Roc 已提交
406 407 408 409 410 411

        d_model = self.d_model

        def experts_fwd(x, fwd_expert_count, experts):

            if x.shape[0] == 0:
R
Roc 已提交
412
                return x
R
Roc 已提交
413 414 415 416 417 418 419 420 421 422 423
            y = []
            last_index = 0
            assert isinstance(fwd_expert_count, np.ndarray)
            assert len(experts) == len(fwd_expert_count)
            for idx, expert_count in enumerate(fwd_expert_count):
                if expert_count <= 0:
                    continue
                y.append(experts[idx](x[last_index:expert_count + last_index]))
                last_index = expert_count + last_index
            return paddle.concat(y, axis=0)

R
Roc 已提交
424
        if self.recompute_interval <= 0 or x.shape[0] == 0:
R
Roc 已提交
425 426
            x = experts_fwd(x, fwd_expert_count.numpy(), self.experts)
        else:
427 428
            x = _hp_recompute(experts_fwd, x, fwd_expert_count.numpy(),
                              self.experts)
R
Roc 已提交
429 430 431 432 433

        out_batch_size = inp.shape[0]
        if len(gate.shape) == 2:
            out_batch_size *= gate.shape[1]

434 435
        x = MoEGather.apply(x, pos, local_expert_count, global_expert_count,
                            out_batch_size, self.world_size, self.group)
R
Roc 已提交
436 437 438 439 440 441

        x = x.reshape([-1, self.top_k, d_model])
        value = value.reshape([x.shape[0], 1, self.top_k])
        x = paddle.bmm(value, x).reshape([-1, d_model])

        if mp_size > 1:
442
            x = AllGather.apply(x, mp_rank, mp_size, self.mp_group)
R
Roc 已提交
443 444 445 446

        x = paddle.reshape_(x, origin_shape)

        return x