pybind.cc 29.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

24
#include "paddle/fluid/framework/channel.h"
Y
Yi Wang 已提交
25 26 27 28 29 30
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
36
#include "paddle/fluid/framework/version.h"
D
dzhwinter 已提交
37
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
38
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yi Wang 已提交
39
#include "paddle/fluid/platform/enforce.h"
40
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
41 42 43 44
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
45 46
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
47
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
48
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
49

50
#include "paddle/fluid/string/to_string.h"
51

D
Dong Zhihong 已提交
52
#ifdef PADDLE_WITH_CUDA
Y
Yi Wang 已提交
53 54 55
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
56 57
#endif

M
minqiyang 已提交
58 59
#include "pybind11/stl.h"

Q
Qiao Longfei 已提交
60 61 62
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

63
namespace paddle {
64
namespace pybind {
65
bool IsCompiledWithCUDA() {
66
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
67 68 69 70 71 72
  return false;
#else
  return true;
#endif
}

Y
update  
Yancey1989 已提交
73
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
74
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
75 76 77 78 79 80
  return true;
#else
  return false;
#endif
}

81 82
PYBIND11_PLUGIN(core) {
  py::module m("core", "C++ core of PaddlePaddle");
83

84 85 86 87
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

88
  BindException(&m);
Y
Yu Yang 已提交
89

90 91 92
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
93
      .def("_get_dims",
94
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
95
      .def("_set_dims",
Q
qijun 已提交
96
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
97
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
98
           })
Y
yuyang18 已提交
99
      .def("_set_layout",
D
dzhwinter 已提交
100 101 102
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
103
      .def("_alloc_float",
D
dzhwinter 已提交
104
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
105
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
106
           })
Y
yuyang18 已提交
107
      .def("_alloc_float",
Y
Yu Yang 已提交
108
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
109
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
110
           })
Y
yuyang18 已提交
111
      .def("_alloc_int",
Y
Yu Yang 已提交
112
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
113
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
114
           })
Y
yuyang18 已提交
115
      .def("_alloc_int",
D
dzhwinter 已提交
116
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
117
             self.mutable_data<int>(place);
Q
qijun 已提交
118
           })
Y
yuyang18 已提交
119
      .def("_alloc_int",
C
chengduoZH 已提交
120 121 122
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
123
      .def("_alloc_float",
C
chengduoZH 已提交
124 125 126
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
127 128
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
129
      .def("set", PyCPUTensorSetFromArray<double>)
130
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
131
      .def("set", PyCPUTensorSetFromArray<bool>)
132
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
133
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
134
      .def("set", PyCPUTensorSetFromArray<int8_t>)
135
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
136 137
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
138
      .def("set", PyCUDATensorSetFromArray<double>)
139
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
140
      .def("set", PyCUDATensorSetFromArray<bool>)
141
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
142
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
143
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
144 145 146 147 148 149
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
150
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
151
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
152
#endif
153
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
154 155 156 157 158
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
      .def("_dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
159

160
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
161 162
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
163 164 165 166 167 168 169 170 171 172 173 174 175 176
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
177
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
178 179 180 181 182
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
183
      .def("set_lod",
184
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
185
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
186
             LoD new_lod;
187 188
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
189 190
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
191
             self.set_lod(new_lod);
D
dangqingqing 已提交
192
           })
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
218
      // Set above comments of set_lod.
219 220 221 222 223 224 225 226 227 228 229 230 231
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
232 233
      });

Q
qijun 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
247 248 249 250 251 252 253 254 255
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
256
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
257
      .def("rows", [](SelectedRows &self) {
258 259 260 261 262
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
263
      });
Q
qijun 已提交
264

265
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
266 267 268

All parameter, weight, gradient are variables in Paddle.
)DOC")
269
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
270
      .def("set_int",
271 272
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
273 274 275 276 277 278 279
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
280
      .def("get_tensor",
281 282
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
283 284
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
285 286 287
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
288 289 290 291 292
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
293 294 295
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
D
Dong Zhihong 已提交
296 297 298 299 300 301 302
#ifdef PADDLE_WITH_CUDA
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
#endif
Y
Refine  
Yu Yang 已提交
303 304 305 306 307
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
Y
Yu Yang 已提交
308
           py::return_value_policy::reference);
309

Y
Refine  
Yu Yang 已提交
310
  py::class_<framework::ReaderHolder>(m, "Reader", "")
311
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
312

S
sneaxiy 已提交
313 314 315 316
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
317 318
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
319
      .def("push",
S
sneaxiy 已提交
320
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
321
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
322
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
323
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
324
           })
S
sneaxiy 已提交
325 326 327 328
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
329

S
sneaxiy 已提交
330
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
331
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
332
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
333
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
334 335 336 337 338 339 340
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
              holder->InitOnce(capacity, dims);
S
sneaxiy 已提交
341
              return holder->GetQueue();
S
sneaxiy 已提交
342
            },
S
sneaxiy 已提交
343
        py::return_value_policy::copy);
S
sneaxiy 已提交
344

345
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
346
      .def("var",
347
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
348
             return self.Var(name);
Y
Yu Yang 已提交
349
           },
350
           py::return_value_policy::reference)
351
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
352
      .def(py::init<>())
353
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
354
           py::return_value_policy::reference)
Y
Yu Yang 已提交
355
      .def("drop_kids", &Scope::DropKids);
356

Y
Yu Yang 已提交
357 358
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
359 360
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
361 362 363 364 365 366 367 368 369 370
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
371 372
    return ret_values;
  });
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
389
  m.def("prune", [](const ProgramDesc &origin,
390
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
391
    ProgramDesc prog_with_targets(origin);
392
    for (const auto &t : targets) {
393
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
394
    }
395
    proto::ProgramDesc pruned_desc;
396
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
397
    return new ProgramDesc(pruned_desc);
398
  });
Y
Yu Yang 已提交
399
  m.def("inference_optimize", [](ProgramDesc &origin) {
400
    proto::ProgramDesc pruned_desc;
401
    InferenceOptimize(*(origin.Proto()), &pruned_desc);
Y
Yu Yang 已提交
402
    return new ProgramDesc(pruned_desc);
403
  });
404 405 406 407
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
408 409 410
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
411 412
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
413
  // clang-format off
Y
Yu Yang 已提交
414
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
415 416
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
417
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
418 419 420
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
421
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
422
                      -> paddle::platform::DeviceContext* {
423
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
424
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
425
#else
Q
qijun 已提交
426
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
427
#endif
C
chengduoZH 已提交
428 429 430 431 432 433 434 435 436 437 438
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
439 440 441 442
// clang-format on
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
443
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
444
      .def(py::init<int>())
D
dzhwinter 已提交
445
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
446

447 448 449
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
450

C
chengduoZH 已提交
451 452 453 454
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
455 456 457 458 459 460 461
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
462
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
463
             self = gpu_place;
C
chengduoZH 已提交
464 465
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
466 467
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
468
      });
Y
Yu Yang 已提交
469

Y
Yu Yang 已提交
470 471 472
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
473
                    proto::OpDesc desc;
Y
Yu Yang 已提交
474 475 476 477 478
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
479
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
480
                  })
481
      .def("run",
482
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
483 484 485
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
486
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
487 488 489 490 491
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
492 493 494 495 496 497 498
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
499 500
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
501
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
502
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
503 504 505 506
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
507

F
fengjiayi 已提交
508
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
509
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
510
      .def("close", &Executor::Close)
S
sneaxiy 已提交
511 512 513 514 515
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
516

D
dzhwinter 已提交
517
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
518
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
519 520
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
521

522
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
Y
update  
Yancey1989 已提交
523
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
524 525 526 527 528 529
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
530

531
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
532
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
533

X
Xin Pan 已提交
534 535
  m.def("_is_program_version_supported", IsProgramVersionSupported);

536 537 538 539 540
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
541

Y
Yu Yang 已提交
542 543 544 545 546 547 548 549 550
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
551
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
552 553
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
570 571 572
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
573
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
574
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
575
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
576 577 578 579

  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
580
#endif
Y
Yu Yang 已提交
581

582 583 584 585
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
586
      .value("kAll", platform::ProfilerState::kAll)
587 588 589 590 591 592 593 594 595 596 597 598 599
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
600
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
601
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
602

Y
yuyang18 已提交
603
  // -- python binds for parallel executor.
Y
yuyang18 已提交
604
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
Y
yuyang18 已提交
605 606
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy");
  exec_strategy.def(py::init())
Y
yuyang18 已提交
607 608 609 610 611 612 613
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
          })
      .def_property(
614 615 616 617
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
Y
yuyang18 已提交
618 619 620 621 622 623
          })
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
Y
yuyang18 已提交
624 625 626 627 628 629 630 631
          })
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
Y
yuyang18 已提交
632
          });
Y
yuyang18 已提交
633
  exec_strategy.def_property(
Y
yuyang18 已提交
634 635 636 637 638 639 640
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
641 642
      });

Y
yuyang18 已提交
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy");

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
            self.reduce_ = strategy;
          })
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
            self.gradient_scale_ = strategy;
Y
yuyang18 已提交
668 669 670 671 672 673
          })
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
            self.debug_graphviz_path_ = path;
F
fengjiayi 已提交
674 675 676 677 678
          })
      .def_property(
          "enable_data_balance",
          [](const BuildStrategy &self) { return self.enable_data_balance_; },
          [](BuildStrategy &self, bool b) { self.enable_data_balance_ = b; });
Y
yuyang18 已提交
679 680 681 682

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
683
                  const std::string &, Scope *, std::vector<Scope *> &,
684 685
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
W
Wu Yi 已提交
686
      .def("_bcast_params", &ParallelExecutor::BCastParamsToDevices)
Y
Yu Yang 已提交
687 688 689 690
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
691 692 693 694 695
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
696 697 698 699
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
700 701 702 703 704 705
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
706

707
  BindRecordIOWriter(&m);
708
  return m.ptr();
L
Luo Tao 已提交
709
}
710
}  // namespace pybind
711
}  // namespace paddle