mnist.py 3.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import argparse
import time
import cProfile
Y
yi.wu 已提交
23
import os
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler

SEED = 1
DTYPE = "float32"

# random seed must set before configuring the network.
# fluid.default_startup_program().random_seed = SEED


def cnn_model(data):
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=data,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu")
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu")

    # TODO(dzhwinter) : refine the initializer and random seed settting
    SIZE = 10
    input_shape = conv_pool_2.shape
    param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE]
    scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5

    predict = fluid.layers.fc(
        input=conv_pool_2,
        size=SIZE,
        act="softmax",
        param_attr=fluid.param_attr.ParamAttr(
            initializer=fluid.initializer.NormalInitializer(
                loc=0.0, scale=scale)))
    return predict


W
Wu Yi 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
def get_model(args, is_train, main_prog, startup_prog):
    # NOTE: mnist is small, we don't implement data sharding yet.
    filelist = [
        os.path.join(args.data_path, f) for f in os.listdir(args.data_path)
    ]
    with fluid.program_guard(main_prog, startup_prog):
        if args.use_reader_op:
            data_file_handle = fluid.layers.open_files(
                filenames=filelist,
                shapes=[[-1, 1, 28, 28], (-1, 1)],
                lod_levels=[0, 0],
                dtypes=["float32", "int64"],
                thread_num=1,
                pass_num=1)
            data_file = fluid.layers.double_buffer(
                fluid.layers.batch(
                    data_file_handle, batch_size=args.batch_size))
        with fluid.unique_name.guard():
            if args.use_reader_op:
                input, label = fluid.layers.read_file(data_file)
            else:
                images = fluid.layers.data(
                    name='pixel', shape=[1, 28, 28], dtype='float32')
                label = fluid.layers.data(
                    name='label', shape=[1], dtype='int64')

            predict = cnn_model(images)
95 96
            cost = fluid.layers.cross_entropy(input=predict, label=label)
            avg_cost = fluid.layers.mean(x=cost)
W
Wu Yi 已提交
97
            # Evaluator
98
            batch_acc = fluid.layers.accuracy(input=predict, label=label)
W
Wu Yi 已提交
99 100 101 102 103 104 105
            # Optimization
            if is_train:
                opt = fluid.optimizer.AdamOptimizer(
                    learning_rate=0.001, beta1=0.9, beta2=0.999)
                opt.minimize()
                if args.memory_optimize:
                    fluid.memory_optimize(main_prog)
106 107

    # Reader
W
Wu Yi 已提交
108 109 110 111 112 113 114
    if is_train:
        reader = paddle.dataset.mnist.train()
    else:
        reader = paddle.dataset.mnist.test()
    batched_reader = paddle.batch(
        reader, batch_size=args.batch_size * args.gpus)
    return avg_cost, opt, [batch_acc], batched_reader, data_file_handle