launch.py 30.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
r"""
15
fleetrun is a module that spawns multiple distributed
16 17
process on each training node for gpu training and cpu training.
Usage:
18
    In both of single node training or multiple node training, this module
19 20 21 22 23 24 25 26
launch a process on each of the given gpu card or cpu machine.
    GPU training:
    1. for single node training with all visible gpu cards:
       fleetrun your_training_py (arg1 arg2 and all others)
    2. for single node training with [0,4) cards
       fleetrun --gpus="0,1,2,3" your_training_py (arg1 arg2 and all others)
    3. for multiple node training such as two node:192.168.0.16, 192.168.0.17
        on 192.168.0.16:
27
            fleetrun --ips="192.168.0.16,192.168.0.17" \
28 29 30 31 32 33
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --ips="192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    CPU training:
    1. for single node training with multi servers and workers:
34
        fleetrun --server_num=2 --worker_num=2 your_training_py (arg1 arg2 and all others)
35
    2. for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
36
        with 2 servers and 4 workers.
37
        on 192.168.0.16:
38 39
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
40 41 42
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6171" \
43 44 45 46 47 48 49 50 51 52 53
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    3. use gloo backend for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
        with 2 servers and 4 workers. (workers should set port)
        on 192.168.0.16:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
54 55 56
                your_training_py (arg1 arg2 and all others)
"""

57
import shutil
58
import sys
59
import tempfile
60 61 62 63
import os
import time
import six
import copy
64
import pathlib
65 66
from argparse import ArgumentParser, REMAINDER
import paddle.fluid as fluid
67
from paddle.distributed.fleet import launch_utils
68 69 70 71 72
from paddle.distributed.fleet.launch_utils import (
    get_host_name_ip, find_free_ports, logger, get_cluster, DeviceMode,
    start_local_trainers, direct_start, watch_local_trainers,
    terminate_local_procs, DistributeMode, ParameterServerLauncher, get_logger,
    check_backend, block_windows_and_macos)
73 74
from paddle.distributed.fleet import cloud_utils
from paddle.distributed.fleet import ascend_utils
75

K
kuizhiqing 已提交
76
from paddle.distributed.fleet.elastic import enable_elastic, launch_elastic
77

78 79
__all__ = []

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

def _print_arguments(args):
    print("-----------  Configuration Arguments -----------")
    for arg, value in sorted(six.iteritems(vars(args))):
        print("%s: %s" % (arg, value))
    print("------------------------------------------------")


def _parse_args():
    """
    Helper function parsing the command line options
    @retval ArgumentParser
    """
    parser = ArgumentParser(
        description='''start paddle training using multi-process mode.
see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/training/cluster_howto.html#permalink-8--nccl2-
''')
97
    base_group = parser.add_argument_group("Base Parameters")
98

99 100
    base_group.add_argument(
        "--log_dir",
101
        type=str,
102
        default="log",
G
Guoxia Wang 已提交
103
        help="The path for each process's log. Default --log_dir=log/")
X
xiongkun 已提交
104 105 106
    base_group.add_argument(
        "--backend",
        type=str,
K
kuizhiqing 已提交
107 108 109
        default=os.environ.get('PADDLE_DISTRI_BACKEND', 'auto'),
        help="Specifize the backend, can be gloo|nccl|bkcl|auto|hccl|heter. "
        "Default value is auto which perfers nccl or bkcl.")
110 111 112 113 114 115 116 117
    base_group.add_argument(
        "--nproc_per_node",
        type=int,
        default=None,
        help="The number of processes to launch on a node."
        "In gpu training, it should be less or equal to the gpus number of you system(or you set by --gpus). And so each process can"
        " bound to one or average number of gpus.")

118 119 120
    base_group.add_argument(
        "--run_mode",
        type=str,
G
gongweibao 已提交
121
        default=None,
122 123
        help="run mode of job, can be:collective/ps/ps-heter")

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    if fluid.core.is_compiled_with_cuda():
        base_group.add_argument(
            "--gpus",
            type=str,
            default=None,
            help="It's for gpu training."
            "For example:"
            "--gpus=\"0,1,2,3\" will launch four training processes each bound to one gpu."
        )
        base_group.add_argument("--selected_gpus", dest="gpus")

    if fluid.core.is_compiled_with_xpu():
        base_group.add_argument(
            "--xpus",
            type=str,
            default=None,
            help="It's for xpu training. For example: "
            "--xpus=\"0,1,2,3\" will launch four training processes each bound to one xpu."
        )
        base_group.add_argument("--selected_xpus", dest="xpus")
144

K
kuizhiqing 已提交
145 146 147 148 149 150 151 152 153 154
    if fluid.core.is_compiled_with_npu():
        base_group.add_argument(
            "--npus",
            type=str,
            default=None,
            help="It's for xpu training. For example: "
            "--npus=\"0,1,2,3\" will launch four training processes each bound to one npu."
        )
        base_group.add_argument("--selected_npus", dest="npus")

Z
zn 已提交
155 156 157 158 159 160 161 162 163 164
    if fluid.core.is_compiled_with_mlu():
        base_group.add_argument(
            "--mlus",
            type=str,
            default=None,
            help="It's for mlu training. For example: "
            "--mlus=\"0,1,2,3\" will launch four training processes each bound to one mlu."
        )
        base_group.add_argument("--selected_mlus", dest="mlus")

165 166 167 168 169 170
    base_group.add_argument("training_script",
                            type=str,
                            help="The full path to the single GPU training "
                            "program/script to be launched in parallel, "
                            "followed by all the arguments for the "
                            "training script")
171

172 173 174 175 176 177 178 179 180 181
    base_group.add_argument('training_script_args', nargs=REMAINDER)

    # Optional arguments for the launch helper
    # for collective
    collective_group = parser.add_argument_group("Collective Parameters")
    collective_group.add_argument(
        "--ips",
        type=str,
        default="127.0.0.1",
        help="Paddle cluster nodes ips, such as 192.168.0.16,192.168.0.17..")
182
    collective_group.add_argument(
183 184 185 186 187 188 189 190 191 192 193
        "--cluster_topo_path",
        type=str,
        default=None,
        help="A json format file will be stored in this path which is used"
        "to represent the cluster topology information for auto parallel.")
    collective_group.add_argument(
        "--rank_mapping_path",
        type=str,
        default=None,
        help="A json format file will be stored in this path which is used"
        "to map processes to machines for auto parallel.")
194 195 196 197 198
    collective_group.add_argument(
        "--enable_auto_mapping",
        type=bool,
        default=False,
        help="Set true to enable the lazy launch for auto-parallel scenario.")
199 200 201

    ps_group = parser.add_argument_group("Parameter-Server Parameters")
    # for parameter server
202 203 204 205 206 207 208 209
    ps_group.add_argument("--servers",
                          type=str,
                          default="",
                          help="User defined servers ip:port")
    ps_group.add_argument("--workers",
                          type=str,
                          default="",
                          help="User defined workers ip:port")
210 211 212 213
    ps_group.add_argument("--coordinators",
                          type=str,
                          default="",
                          help="User defined coordinators ip:port")
214 215 216 217
    ps_group.add_argument(
        "--heter_workers",
        type=str,
        default="",
218
        help="User defined heter workers in each stage ip1:port1;ip2:port2")
219 220 221 222
    ps_group.add_argument(
        "--heter_devices",
        type=str,
        default="",
223
        help="User defined heter devices in each stage cpu;gpu;cpu")
224 225

    ps_group.add_argument("--worker_num", type=int, help="number of workers")
226 227 228
    ps_group.add_argument("--coordinator_num",
                          type=int,
                          help="number of coordinators")
229
    ps_group.add_argument("--server_num", type=int, help="number of servers")
230 231 232
    ps_group.add_argument("--heter_worker_num",
                          type=str,
                          help="number of heter_workers in each stage 1;2;3")
233
    ps_group.add_argument("--http_port", type=int, help="Gloo http Port")
234

235 236
    # parameter elastic mode
    elastic_group = parser.add_argument_group("Elastic Parameters")
237 238 239 240 241 242
    elastic_group.add_argument("--elastic_server",
                               type=str,
                               help="etcd server host:port")
    elastic_group.add_argument("--elastic_pre_hook",
                               type=str,
                               help="elastic pre_hook shell cmd")
243

244 245 246
    elastic_group.add_argument("--job_id", type=str, help="job unique id")
    elastic_group.add_argument("--np", type=int, help="job pod/node number")
    elastic_group.add_argument("--scale", type=int, default=0, help="scale np")
247 248 249 250 251 252 253
    elastic_group.add_argument("--host",
                               type=str,
                               help="bind host, default to POD_IP env")
    elastic_group.add_argument("--force",
                               type=bool,
                               default=False,
                               help="update np force")
254

K
kuizhiqing 已提交
255 256
    known_args, _ = parser.parse_known_args()
    return known_args
257 258


259
def get_cluster_from_args(args, device_mode, devices_per_proc):
260 261 262 263
    node_ips = [x.strip() for x in args.ips.split(',')]
    if len(node_ips) == 1:
        node_ip = node_ips[0]
    else:
264 265 266 267
        if args.host:
            node_ip = args.host
        else:
            _, node_ip = get_host_name_ip()
268

269
    assert node_ip in node_ips, "Can't find your local ip {%s} in node_ips: {%s}" \
270
        % (node_ip, node_ips)
271 272
    node_rank = node_ips.index(node_ip)

273
    logger.debug("parsed from args: node_ips:{} node_ip:{} node_rank:{}".format(
274 275 276 277 278
        node_ips, node_ip, node_rank))

    free_ports = None
    if not cloud_utils.use_paddlecloud() and len(
            node_ips) <= 1 and os.environ.get('FLAGS_START_PORT') is None:
279
        free_ports = find_free_ports(len(devices_per_proc))
280 281
        if free_ports is not None:
            free_ports = list(free_ports)
G
gongweibao 已提交
282
            logger.info("find free ports:{}".format(free_ports))
283 284 285
    else:
        start_port = 6070
        if os.environ.get('FLAGS_START_PORT') is not None:
286
            start_port = int(os.environ.get('FLAGS_START_PORT'))
287

288 289 290
        free_ports = [
            x for x in range(start_port, start_port + len(devices_per_proc))
        ]
291

292 293 294
    trainer_endpoints = []
    for ip in node_ips:
        trainer_endpoints.append(["%s:%d" % (ip, port) for port in free_ports])
295 296
    return get_cluster(node_ips, node_ip, trainer_endpoints, device_mode,
                       devices_per_proc)
297 298


X
xiongkun 已提交
299 300 301 302 303 304 305 306 307 308 309 310
def cpuonly_check(args):
    if args.ips and len(args.ips.split(',')) > 1:
        raise RuntimeError(
            "CPUONLY launch only support single trainer, that is len(ips)=1, but got %s."
            % args.ips)
    if args.run_mode:
        assert args.run_mode == 'cpuonly', "CPUONLY launch only support run mode is CPUONLY"
    if args.servers:
        raise RuntimeError("CPUONLY launch can't have --servers as arguments.")
    return True


311
def get_cluster_info(args):
K
kuizhiqing 已提交
312
    # parse arguments, used for cloud-single-machine and local
X
xiongkun 已提交
313
    if args.backend == 'gloo': cpuonly_check(args)
314 315 316 317 318
    if args.enable_auto_mapping:
        (device_mode, devices_per_proc) = (DeviceMode.GPU, [])
    else:
        (device_mode,
         devices_per_proc) = launch_utils.get_device_proc_info(args)
K
kuizhiqing 已提交
319 320 321 322
    trainers_num = cloud_utils.get_trainers_num()
    logger.debug("parsed from args trainerss_num:{} mode:{} devices:{}".format(
        trainers_num, device_mode, devices_per_proc))

323 324
    cuda_visible_devices = os.getenv("CUDA_VISIBLE_DEVICES")

K
kuizhiqing 已提交
325 326 327 328 329 330
    cluster = None
    pod = None

    start_port = 6170
    if os.environ.get('FLAGS_START_PORT') is not None:
        start_port = os.environ.get('FLAGS_START_PORT')
331
    # auto mapping between processes and devices for auto-parallel
332
    if args.enable_auto_mapping == True:
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
        assert args.cluster_topo_path is not None, \
            "The cluster topology must be provied when enabling auto mapping."
        rank_mapping_path = args.rank_mapping_path or os.getenv(
            "PADDLE_RANK_MAPPING_PATH")
        if not rank_mapping_path:
            os.environ["PADDLE_NEED_RANK_MAPPING"] = str(True)
            os.environ["PADDLE_ENABLE_ELASTIC"] = str(
                enable_elastic(args, device_mode))
            cwd = pathlib.Path().resolve()
            rank_mapping_path = os.path.join(cwd,
                                             "auto_parallel_rank_mapping.json")
            os.environ["PADDLE_RANK_MAPPING_PATH"] = str(rank_mapping_path)

            original_args = sys.argv[1:]
            os.environ["PADDLE_ORIGINAL_CMD_ARGS"] = " ".join(original_args)
            os.environ["PADDLE_CLUSTER_TOPO_PATH"] = str(args.cluster_topo_path)
            os.environ["PADDLE_ENABLE_AUTO_MAPPING"] = str(
                args.enable_auto_mapping)
            cluster, pod = launch_utils.get_mapped_cluster_from_args_without_rank_mapping(
                args, device_mode)
        else:
            os.environ["PADDLE_NEED_RANK_MAPPING"] = str(False)
            os.environ["PADDLE_ENABLE_ELASTIC"] = str(
                enable_elastic(args, device_mode))

            os.environ["PADDLE_CLUSTER_TOPO_PATH"] = str(args.cluster_topo_path)
            os.environ["PADDLE_RANK_MAPPING_PATH"] = str(rank_mapping_path)
            os.environ["PADDLE_ENABLE_AUTO_MAPPING"] = str(
                args.enable_auto_mapping)
            cluster, pod = launch_utils.get_mapped_cluster_from_args_with_rank_mapping(
                args, device_mode)
K
kuizhiqing 已提交
364
    elif cloud_utils.use_paddlecloud() and trainers_num != 1:
365 366 367
        cluster, pod = cloud_utils.get_cloud_cluster(args.ips, device_mode,
                                                     devices_per_proc,
                                                     start_port)
K
kuizhiqing 已提交
368 369
        logger.debug("get cluster from cloud:{}".format(cluster))
    elif device_mode == DeviceMode.ASCEND_NPU:
370
        # for ascend
371 372 373 374
        cluster, pod = ascend_utils.get_cloud_cluster(rank_table_file=os.getenv(
            "RANK_TABLE_FILE", None),
                                                      device_mode=device_mode,
                                                      start_port=start_port)
K
kuizhiqing 已提交
375 376 377 378 379
    else:
        # trainers_num = 1 or not use paddlecloud ips="a,b"
        cluster, pod = get_cluster_from_args(args, device_mode,
                                             devices_per_proc)
        logger.debug("get cluster from args:{}".format(cluster))
380 381
    return cluster, pod

382

383
def get_global_envs(args, tmp_dir):
K
kuizhiqing 已提交
384 385 386 387
    global_envs = copy.copy(os.environ.copy())
    # add gloo env
    global_envs["PADDLE_WITH_GLOO"] = str(os.getenv("PADDLE_WITH_GLOO", "0"))
    global_envs["PADDLE_GLOO_RENDEZVOUS"] = "3"
388
    global_envs["PADDLE_GLOO_FS_PATH"] = tmp_dir
X
xiongkun 已提交
389
    global_envs["PADDLE_DISTRI_BACKEND"] = args.backend
390 391 392 393 394 395 396
    return global_envs


def launch_collective(args):
    tmp_dir = tempfile.mkdtemp()
    cluster, pod = get_cluster_info(args)
    global_envs = get_global_envs(args, tmp_dir)
K
kuizhiqing 已提交
397

398 399 400 401 402 403
    procs = start_local_trainers(cluster,
                                 pod,
                                 training_script=args.training_script,
                                 training_script_args=args.training_script_args,
                                 log_dir=args.log_dir,
                                 envs=global_envs)
K
kuizhiqing 已提交
404 405 406

    for idx, proc in enumerate(procs):
        print("launch proc_id:{} idx:{}".format(proc.proc.pid, idx))
407

K
kuizhiqing 已提交
408
    while True:
K
kuizhiqing 已提交
409 410
        try:
            alive = watch_local_trainers(procs, cluster.trainers_nranks())
411

K
kuizhiqing 已提交
412 413 414 415
            if not alive:
                logger.info("Local processes completed.")
                logger.debug("POD info:{}".format(pod))
                break
416

K
kuizhiqing 已提交
417 418 419 420 421 422
            time.sleep(3)

        except:
            logger.warning("Terminating... exit")
            terminate_local_procs(procs)
            exit(1)
K
kuizhiqing 已提交
423

424 425
    if os.path.exists(tmp_dir):
        shutil.rmtree(tmp_dir)
426

427

428 429 430 431 432 433 434
def launch_ps(args, distribute_mode):
    cloud_flag = cloud_utils.use_paddlecloud()

    # for ps-cpu on paddlecloud
    if cloud_flag and distribute_mode == DistributeMode.PS:
        direct_start(args)
        return
435 436 437 438 439
    #elif cloud_flag and distribute_mode == DistributeMode.PS_HETER:
    #    cloud_ps_heter_env_set(args)
    #    args.workers = os.getenv("PADDLE_TRAINER_ENDPOINTS")
    #    args.servers = os.getenv("PADDLE_PSERVERS_IP_PORT_LIST")
    #    args.heter_workers = os.getenv("PADDLE_HETER_TRAINER_IP_PORT_LIST")
440 441 442 443 444 445

    ps_launcher = ParameterServerLauncher(args, distribute_mode)
    ps_launcher.start_ps()
    return


446 447 448 449 450 451 452 453
def infer_backend(args):
    if args.backend != "auto": return
    if fluid.core.is_compiled_with_cuda():
        args.backend = 'nccl'
    elif fluid.core.is_compiled_with_npu():
        args.backend = 'unknown'
    elif fluid.core.is_compiled_with_xpu():
        args.backend = 'bkcl'
Z
zn 已提交
454 455
    elif fluid.core.is_compiled_with_mlu():
        args.backend = 'cncl'
456 457 458 459
    else:
        args.backend = 'gloo'


460
def which_distributed_mode(args):
461
    infer_backend(args)  # modify the args.backend
462 463 464 465 466 467 468 469 470 471
    if args.run_mode is not None:
        assert args.run_mode in ["collective", "ps", "ps-heter"]

    if args.run_mode == "collective":
        return DistributeMode.COLLECTIVE
    elif args.run_mode == "ps":
        return DistributeMode.PS
    elif args.run_mode == "ps-heter":
        return DistributeMode.PS_HETER

472
    ps_args = [
473
        '--worker_num', '--server_num', '--heter_worker_num', '--servers',
474
        '--workers', '--heter_workers', '--heter_devices', '--http_port'
475
    ]
476
    collective_args = ['--ips']
477

478
    ps_heter_args = ["--heter_worker_num", "--heter_workers", "--heter_devices"]
479

480 481
    coordinator_args = ["--coordinator_num", "--coordinators"]

482 483 484 485 486 487 488
    has_ps_args = [
        ps_arg for ps_arg in ps_args if ps_arg in " ".join(sys.argv[1:-1])
    ]
    has_collective_args = [
        co_arg for co_arg in collective_args
        if co_arg in " ".join(sys.argv[1:-1])
    ]
489 490 491 492 493 494

    if len(has_ps_args) > 1 and len(has_collective_args) > 1:
        raise ValueError(
            "Only one mode(Collective or Parameter-Server) can be selected at the same time, but more than one configuration was received."
        )

495
    if fluid.core.is_compiled_with_cuda():
496
        accelerators = fluid.core.get_cuda_device_count()
B
Baibaifan 已提交
497 498
    elif fluid.core.is_compiled_with_npu():
        accelerators = fluid.core.get_npu_device_count()
499
    elif fluid.core.is_compiled_with_xpu():
500
        accelerators = fluid.core.get_xpu_device_count()
Z
zn 已提交
501 502
    elif fluid.core.is_compiled_with_mlu():
        accelerators = fluid.core.get_mlu_device_count()
503
    else:
504
        accelerators = 0
505

506 507
    if len(has_ps_args) > 0:
        logger.info(
508 509
            "Run parameter-sever mode. pserver arguments:{}, accelerators count:{}"
            .format(has_ps_args, accelerators))
510
        has_ps_heter_args = list(set(has_ps_args) & set(ps_heter_args))
511
        has_coordinator_args = list(set(has_ps_args) & set(coordinator_args))
512 513 514 515
        if len(has_ps_heter_args) > 0:
            return DistributeMode.PS_HETER
        else:
            return DistributeMode.PS
516
    elif len(has_collective_args) > 0:
517 518 519
        logger.info(
            "Run collective mode. gpu arguments:{}, cuda count:{}".format(
                has_collective_args, accelerators))
520
        return DistributeMode.COLLECTIVE
521
    else:
522
        if not fluid.core.is_compiled_with_cuda(
Z
zn 已提交
523 524
        ) and not fluid.core.is_compiled_with_xpu(
        ) and not fluid.core.is_compiled_with_mlu():
X
xiongkun 已提交
525 526
            if args.servers:
                logger.warning(
Z
zn 已提交
527
                    "Not found distinct arguments and not compiled with cuda or xpu or npu or mlu. "
K
kuizhiqing 已提交
528
                    "But found args.servers not empty, default use ps mode")
X
xiongkun 已提交
529 530 531
                return DistributeMode.PS
            else:
                return DistributeMode.COLLECTIVE
532 533
        else:
            logger.warning(
Z
zn 已提交
534
                "Not found distinct arguments and compiled with cuda or xpu or npu or mlu. "
K
kuizhiqing 已提交
535
                "Default use collective mode")
536
            return DistributeMode.COLLECTIVE
537 538 539


def launch():
G
Guoxia Wang 已提交
540 541
    """
    Paddle distribution training entry ``python -m paddle.distributed.launch``.
542

G
Guoxia Wang 已提交
543 544 545 546 547 548 549 550 551
    Usage:
        .. code-block:: bash
            :name: code-block-bash1

            python -m paddle.distributed.launch [-h] [--log_dir LOG_DIR] [--nproc_per_node NPROC_PER_NODE] [--run_mode RUN_MODE] [--gpus GPUS]
                             [--selected_gpus GPUS] [--ips IPS] [--servers SERVERS] [--workers WORKERS] [--heter_workers HETER_WORKERS]
                             [--worker_num WORKER_NUM] [--server_num SERVER_NUM] [--heter_worker_num HETER_WORKER_NUM]
                             [--http_port HTTP_PORT] [--elastic_server ELASTIC_SERVER] [--job_id JOB_ID] [--np NP] [--scale SCALE]
                             [--host HOST] [--force FORCE]
552
                             training_script ...
G
Guoxia Wang 已提交
553 554 555


    Base Parameters:
G
Guoxia Wang 已提交
556
        - ``--log_dir``: The path for each process's log. e.g., ``--log_dir=output_dir``. Default ``--log_dir=log``.
G
Guoxia Wang 已提交
557

G
Guoxia Wang 已提交
558
        - ``--nproc_per_node``: The number of processes to launch on a node. In gpu training, it should be less or equal to the gpus number of you system(or you set by --gpus).  e.g., ``--nproc_per_node=8``
G
Guoxia Wang 已提交
559

G
Guoxia Wang 已提交
560
        - ``--run_mode``: run mode of job, can be:collective/ps/ps-heter. e.g., ``--run_mode=ps``. Default ``--run_mode=collective``.
G
Guoxia Wang 已提交
561

G
Guoxia Wang 已提交
562
        - ``--gpus``: It's for gpu training. e.g., ``--gpus=0,1,2,3`` will launch four training processes each bound to one gpu.
G
Guoxia Wang 已提交
563 564

        - ``--selected_gpus``: gpus aliases, recommend to use ``--gpus``.
565

G
Guoxia Wang 已提交
566
        - ``--xpus``: It's for xpu training if xpu is available. e.g., ``--xpus=0,1,2,3``.
567

G
Guoxia Wang 已提交
568 569
        - ``--selected_xpus``: xpus aliases, recommend to use ``--xpus``.

Z
zn 已提交
570 571 572 573
        - ``--mlus``: It's for mlu training. e.g., ``--mlus=0,1,2,3`` will launch four training processes each bound to one mlu.

        - ``--selected_mlus``: mlus aliases, recommend to use ``--mlus``.

574
        - ``training_script``: The full path to the single GPU training program/script to be launched in parallel, followed by all the arguments for the training script. e.g., ``training.py``
G
Guoxia Wang 已提交
575

G
Guoxia Wang 已提交
576
        - ``training_script_args``: The args of training_script. e.g., ``--lr=0.1``
G
Guoxia Wang 已提交
577 578

    Collective Parameters:
G
Guoxia Wang 已提交
579
        - ``--ips``: Paddle cluster nodes ips, e.g., ``--ips=192.168.0.16,192.168.0.17``. Default ``--ips=127.0.0.1``.
G
Guoxia Wang 已提交
580 581

    Parameter-Server Parameters:
G
Guoxia Wang 已提交
582
        - ``--servers``: User defined servers ip:port, e.g., ``--servers="192.168.0.16:6170,192.168.0.17:6170"``
G
Guoxia Wang 已提交
583

G
Guoxia Wang 已提交
584
        - ``--workers``: User defined workers ip:port, e.g., ``--workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172"``
G
Guoxia Wang 已提交
585

586
        - ``--heter_workers``: User defined heter workers ip1:port1;ip2:port2, e.g., ``--heter_workers="192.168.0.16:6172;192.168.0.17:6172"``
G
Guoxia Wang 已提交
587 588 589 590 591

        - ``--worker_num``: Number of workers (It recommend to set when in the emulated distributed environment using single node)

        - ``--server_num``: Number of servers (It recommend to set when in the emulated distributed environment using single node)

592
        - ``--heter_worker_num``: Number of heter_workers in each stage (It recommend to set when in the emulated distributed environment using single node)
593

594
        - ``--heter_devices``: Type of heter_device in each stage
G
Guoxia Wang 已提交
595 596 597 598

        - ``--http_port``: Gloo http Port

    Elastic Parameters:
G
Guoxia Wang 已提交
599
        - ``--elastic_server``: etcd server host:port, e.g., ``--elastic_server=127.0.0.1:2379``
G
Guoxia Wang 已提交
600

G
Guoxia Wang 已提交
601
        - ``--job_id``: job unique id, e.g., ``--job_id=job1``
G
Guoxia Wang 已提交
602

G
Guoxia Wang 已提交
603
        - ``--np``: job pod/node number, e.g., ``--np=2``
G
Guoxia Wang 已提交
604 605 606 607 608 609 610 611 612 613

        - ``--host``: bind host, default to POD_IP env.


    Returns:
        ``None``

    Examples 1 (collective, single node):
        .. code-block:: bash
            :name: code-block-example-bash1
614

G
Guoxia Wang 已提交
615
            # For training on single node using 4 gpus.
G
Guoxia Wang 已提交
616 617

            python -m paddle.distributed.launch --gpus=0,1,2,3 train.py --lr=0.01
618

G
Guoxia Wang 已提交
619 620 621 622
    Examples 2 (collective, multi node):
        .. code-block:: bash
            :name: code-block-example-bash2

G
Guoxia Wang 已提交
623 624
            # The parameters of --gpus and --ips must be consistent in each node.

625
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17
G
Guoxia Wang 已提交
626 627 628 629 630 631 632

            # On 192.168.0.16:

            python -m paddle.distributed.launch --gpus=0,1,2,3 --ips=192.168.0.16,192.168.0.17 train.py --lr=0.01

            # On 192.168.0.17:
            python -m paddle.distributed.launch --gpus=0,1,2,3 --ips=192.168.0.16,192.168.0.17 train.py --lr=0.01
633

G
Guoxia Wang 已提交
634 635 636 637
    Examples 3 (ps, cpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash3

G
Guoxia Wang 已提交
638
            # To simulate distributed environment using single node, e.g., 2 servers and 4 workers.
639

G
Guoxia Wang 已提交
640
            python -m paddle.distributed.launch --server_num=2 --worker_num=4 train.py --lr=0.01
641

G
Guoxia Wang 已提交
642 643 644 645
    Examples 4 (ps, cpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash4

G
Guoxia Wang 已提交
646
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server and 2 workers.
G
Guoxia Wang 已提交
647 648 649 650 651 652 653 654 655 656 657 658 659

            # On 192.168.0.16:

            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

    Examples 5 (ps, gpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash5

G
Guoxia Wang 已提交
660
           # To simulate distributed environment using single node, e.g., 2 servers and 4 workers, each worker use single gpu.
661

G
Guoxia Wang 已提交
662 663
            export CUDA_VISIBLE_DEVICES=0,1,2,3
            python -m paddle.distributed.launch --server_num=2 --worker_num=4 train.py --lr=0.01
664

G
Guoxia Wang 已提交
665 666 667 668
    Examples 6 (ps, gpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash6

G
Guoxia Wang 已提交
669
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server and 2 workers.
G
Guoxia Wang 已提交
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684

            # On 192.168.0.16:

            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

    Examples 7 (ps-heter, cpu + gpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash7

G
Guoxia Wang 已提交
685
            # To simulate distributed environment using single node, e.g., 2 servers and 4 workers, two workers use gpu, two workers use cpu.
686

G
Guoxia Wang 已提交
687 688
            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --server_num=2 --worker_num=2 --heter_worker_num=2 train.py --lr=0.01
689

G
Guoxia Wang 已提交
690 691 692 693
    Examples 8 (ps-heter, cpu + gpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash8

G
Guoxia Wang 已提交
694
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server, 1 gpu worker, 1 cpu worker.
G
Guoxia Wang 已提交
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710

            # On 192.168.0.16:

            export CUDA_VISIBLE_DEVICES=0
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.17:6171" --heter_workers="192.168.0.16:6172,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            export CUDA_VISIBLE_DEVICES=0
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.17:6171" --heter_workers="192.168.0.16:6172,192.168.0.17:6172" train.py --lr=0.01

    Examples 9 (elastic):
        .. code-block:: bash
            :name: code-block-example-bash9

            python -m paddle.distributed.launch --elastic_server=127.0.0.1:2379 --np=2 --job_id=job1  --gpus=0,1,2,3 train.py
711

G
Guoxia Wang 已提交
712 713
    """

714 715 716 717
    args = _parse_args()
    logger = get_logger()
    _print_arguments(args)

X
xiongkun 已提交
718
    if args.backend == 'auto':
719 720
        distribute_mode = which_distributed_mode(
            args)  # which_distributed_mode must modify args.backend
X
xiongkun 已提交
721 722 723 724 725
    else:
        assert args.run_mode == 'collective' or args.run_mode == None, "When backend is not 'auto', run mode must be collective"
        check_backend(args.backend)
        distribute_mode = DistributeMode.COLLECTIVE

Z
zn 已提交
726
    #assert args.backend in ['gloo', 'nccl', 'bkcl', 'cncl', 'heter', 'unknown']
727

X
xiongkun 已提交
728 729
    if args.backend == 'gloo':
        logger.warning("launch start with CPUONLY mode")
730

731 732 733
    block_windows_and_macos(
        args.backend)  # raise error when using gloo on windows or macos

K
kuizhiqing 已提交
734 735 736
    if enable_elastic(args, distribute_mode):
        launch_elastic(args, distribute_mode)
        return
737

K
kuizhiqing 已提交
738 739
    if distribute_mode == DistributeMode.COLLECTIVE:
        launch_collective(args)
740
    else:
K
kuizhiqing 已提交
741
        launch_ps(args, distribute_mode)
742 743 744 745


if __name__ == "__main__":
    launch()