all_reduce.py 3.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.fluid.framework as framework
17
import paddle.distributed.communication.stream as stream
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
from paddle.distributed.communication.reduce import ReduceOp


def all_reduce(tensor, op=ReduceOp.SUM, group=None, sync_op=True):
    """

    Reduce a tensor over all ranks so that all get the result.
    As shown below, one process is started with a GPU and the data of this process is represented
    by its group rank. The reduce operator is sum. Through all_reduce operator,
    each GPU will have the sum of the data from all GPUs.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/allreduce.png
        :width: 800
        :alt: all_reduce
        :align: center

    Args:
        tensor (Tensor): The input Tensor. It also works as the output Tensor. Its data type
            should be float16, float32, float64, int32, int64, int8, uint8 or bool.
        op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.MIN|ReduceOp.PROD, optional): The operation used. Default value is ReduceOp.SUM.
        group (Group, optional): The group instance return by new_group or None for global default group.
        sync_op (bool, optional): Wether this op is a sync op. Default value is True.

    Returns:
        Return a task object.

    Examples:
        .. code-block:: python

            # required: distributed
            import paddle
            import paddle.distributed as dist

            dist.init_parallel_env()
            if dist.get_rank() == 0:
                data = paddle.to_tensor([[4, 5, 6], [4, 5, 6]])
            else:
                data = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            dist.all_reduce(data)
            print(data)
            # [[5, 7, 9], [5, 7, 9]] (2 GPUs)
    """
    if not framework._in_legacy_dygraph():
61 62 63
        return stream.all_reduce(
            tensor, op=op, group=group, sync_op=sync_op, use_calc_stream=False
        )
64 65

    # code below will be removed after we remove the old dygraph
66 67
    if group is not None and not group.is_member():
        return
68 69 70
    use_calc_stream = sync_op
    ring_id = 0 if group is None else group.id
    if op == ReduceOp.SUM:
71 72 73
        return paddle._legacy_C_ops.c_allreduce_sum_(
            tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id
        )
74
    elif op == ReduceOp.MAX:
75 76 77
        return paddle._legacy_C_ops.c_allreduce_max_(
            tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id
        )
78
    elif op == ReduceOp.MIN:
79 80 81
        return paddle._legacy_C_ops.c_allreduce_min_(
            tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id
        )
82
    elif op == ReduceOp.PROD:
83 84 85
        return paddle._legacy_C_ops.c_allreduce_prod_(
            tensor, 'use_calc_stream', use_calc_stream, 'ring_id', ring_id
        )
86 87
    else:
        raise ValueError("Unknown parameter: {}.".format(op))