pool_op.cc 14.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/pool_op.h"
16 17 18 19 20 21
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
22 23 24 25

namespace paddle {
namespace operators {

26 27 28 29 30 31 32 33 34
int PoolOutputSize(int input_size, int filter_size, int padding, int stride,
                   bool ceil_mode) {
  int output_size;
  if (!ceil_mode) {
    output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  } else {
    output_size =
        (input_size - filter_size + 2 * padding + stride - 1) / stride + 1;
  }
C
chengduoZH 已提交
35 36 37 38 39
  PADDLE_ENFORCE(output_size > 0,
                 "Due to the settings of padding(%d), filter_size(%d) and "
                 "stride(%d), the output size is less than 0, please check "
                 "again. Input_size:%d",
                 padding, filter_size, stride, input_size);
40 41 42
  return output_size;
}

43 44 45 46 47 48 49
void PoolOp::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "X(Input) of Pooling should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Out"),
                 "Out(Output) of Pooling should not be null.");

  auto in_x_dims = ctx->GetInputDim("X");

C
chengduoZH 已提交
50
  std::string pooling_type = ctx->Attrs().Get<std::string>("pooling_type");
51 52 53
  std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
54
  bool ceil_mode = ctx->Attrs().Get<bool>("ceil_mode");
55 56

  PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
C
chengduoZH 已提交
57
                 "Pooling intput should be 4-D or 5-D tensor.");
58

C
chengduoZH 已提交
59
  if (ctx->Attrs().Get<bool>("global_pooling")) {
60
    ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
C
fix bug  
chengduoZH 已提交
61 62
    for (size_t i = 0; i < ksize.size(); ++i) {
      paddings[i] = 0;
63
      ksize[i] = static_cast<int>(in_x_dims[i + 2]);
C
fix bug  
chengduoZH 已提交
64
    }
65
  }
66 67 68 69 70 71 72 73 74 75

  PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
                 "Input size and pooling size should be consistent.");
  PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
                    "Strides size and pooling size should be the same.");
  PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
                    "Paddings size and pooling size should be the same.");

  std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
  for (size_t i = 0; i < ksize.size(); ++i) {
76 77
    output_shape.push_back(PoolOutputSize(in_x_dims[i + 2], ksize[i],
                                          paddings[i], strides[i], ceil_mode));
78
  }
79
  ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
80
  ctx->ShareLoD("X", "Out");
81 82
}

83 84
framework::OpKernelType PoolOp::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
85
  framework::LibraryType library_{framework::LibraryType::kPlain};
C
chengduoZH 已提交
86
#ifdef PADDLE_WITH_CUDA
87 88
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
89 90
  }
#endif
91 92 93 94
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
95
  }
96
#endif
97 98 99 100 101 102 103 104

  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
      layout_, library_);
}

105 106 107 108 109 110 111
void PoolOpGrad::InferShape(framework::InferShapeContext *ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
  PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                 "Input(X@GRAD) should not be null.");
  ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

112 113
framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext &ctx) const {
114
  framework::LibraryType library_{framework::LibraryType::kPlain};
C
chengduoZH 已提交
115
#ifdef PADDLE_WITH_CUDA
116 117
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
118 119
  }
#endif
120 121 122 123
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
124
  }
125
#endif
126 127 128 129 130 131 132 133

  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
      layout_, library_);
}

134
Pool2dOpMaker::Pool2dOpMaker(OpProto *proto, OpAttrChecker *op_checker)
135 136 137
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "X",
C
chengduoZH 已提交
138
      "(Tensor) The input tensor of pooling operator. "
K
kexinzhao 已提交
139 140 141
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
142
  AddOutput("Out",
K
kexinzhao 已提交
143 144 145 146 147
            "(Tensor) The output tensor of pooling operator. "
            "The format of output tensor is also NCHW, "
            "where N is batch size, C is the number of channels, "
            "H is the height of the feature, "
            "and W is the width of the feature.");
148

C
chengduoZH 已提交
149
  AddAttr<std::string>("pooling_type",
C
chengduoZH 已提交
150 151
                       "(string), pooling type, can be \"max\" for max-pooling "
                       "and \"avg\" for average-pooling.")
152
      .InEnum({"max", "avg"});
C
fix bug  
chengduoZH 已提交
153
  AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
154 155
                            "(vector<int>) The pooling window "
                            "size(height, width) of the pooling operator. "
C
chengduoZH 已提交
156
                            "If global_pooling = true, ksize and paddings will "
C
fix bug  
chengduoZH 已提交
157 158
                            "be ignored.");  // TODO(Chengduo): Add checker.
                                             // (Currently,
C
fix doc  
chengduoZH 已提交
159
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
160
  AddAttr<bool>("global_pooling",
K
kexinzhao 已提交
161
                "(bool, default false) Whether to use the global pooling. "
C
chengduoZH 已提交
162
                "If global_pooling = true, ksize and paddings will be ignored.")
163
      .SetDefault(false);
K
kexinzhao 已提交
164 165 166
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default {1, 1}), strides(height, "
                            "width) of pooling operator.")
167 168
      .SetDefault({1, 1});
  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
169 170 171
  // TypedAttrChecker don't support vector type.)
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
172
      "(vector<int>, default {0,0}), paddings(height, width) of pooling "
K
kexinzhao 已提交
173
      "operator."
C
chengduoZH 已提交
174
      "If global_pooling = true, paddings and ksize will be ignored.")
175 176 177 178 179
      .SetDefault({0, 0});
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
180 181 182
  AddAttr<bool>(
      "ceil_mode",
      "(bool, default false) Wether to use the ceil function to calculate "
W
wanghaoshuang 已提交
183 184
      "output height and width. False is the default. If it is set to False, "
      "the floor function will be used.")
185
      .SetDefault(false);
186 187 188
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
189 190 191 192 193 194 195 196
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
197 198

  AddComment(R"DOC(
K
kexinzhao 已提交
199 200
Pool2d Operator.

C
chengduoZH 已提交
201
The pooling2d operation calculates the output based on
C
chengduoZH 已提交
202
the input, pooling_type and ksize, strides, paddings parameters.
K
kexinzhao 已提交
203 204
Input(X) and output(Out) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature, and W is the width of the feature.
C
fix doc  
chengduoZH 已提交
205 206
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
207 208
The input(X) size and output(Out) size may be different.

209
Example:
C
chengduoZH 已提交
210
  Input:
K
kexinzhao 已提交
211
       X shape: $(N, C, H_{in}, W_{in})$
C
chengduoZH 已提交
212
  Output:
K
kexinzhao 已提交
213
       Out shape: $(N, C, H_{out}, W_{out})$
214 215
  For ceil_mode = false:
       $$
C
chengduoZH 已提交
216 217
       H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
K
kexinzhao 已提交
218
       $$
219 220 221 222 223
  For ceil_mode = true:
       $$
       H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1
       $$
K
kexinzhao 已提交
224

225
)DOC");
226 227
}

228
Pool3dOpMaker::Pool3dOpMaker(OpProto *proto, OpAttrChecker *op_checker)
229
    : OpProtoAndCheckerMaker(proto, op_checker) {
K
kexinzhao 已提交
230 231 232 233 234 235
  AddInput("X",
           "(Tensor) The input tensor of pooling operator. "
           "The format of input tensor is NCDHW, where N is batch size, C is "
           "the number of channels, and D, H and W is the depth, height and "
           "width of "
           "the feature, respectively.");
236
  AddOutput("Out",
C
chengduoZH 已提交
237
            "(Tensor) The output tensor of pooling operator."
K
kexinzhao 已提交
238 239 240 241
            "The format of output tensor is also NCDHW, "
            "where N is batch size, C is "
            "the number of channels, and D, H and W is the depth, height and "
            "width of the feature, respectively.");
242

C
chengduoZH 已提交
243
  AddAttr<std::string>("pooling_type",
K
kexinzhao 已提交
244
                       "(string) Pooling type, can be \"max\" for max-pooling "
C
chengduoZH 已提交
245
                       "and \"avg\" for average-pooling.")
246
      .InEnum({"max", "avg"});
K
kexinzhao 已提交
247 248 249 250
  AddAttr<std::vector<int>>(
      "ksize",
      "(vector<int>) The pooling window size(depth, height, "
      "width) of pooling operator. "
C
chengduoZH 已提交
251
      "If global_pooling = true, ksize and paddings will "
K
kexinzhao 已提交
252 253
      "be ignored.");  // TODO(Chengduo): Add checker.
                       // (Currently,
C
fix bug  
chengduoZH 已提交
254
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
255 256 257 258
  AddAttr<bool>(
      "global_pooling",
      "(bool, default false) Whether to use the global pooling. "
      "If global_pooling = true, ksize and paddings wille be ignored.")
259
      .SetDefault(false);
K
kexinzhao 已提交
260 261 262 263
  AddAttr<std::vector<int>>(
      "strides",
      "(vector<int>, default {1,1,1}) Strides(depth, height, "
      "width) of the pooling operator.")
264 265
      .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
266 267
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
268
      "(vector<int>, default {0,0,0}), paddings(depth, height, "
K
kexinzhao 已提交
269
      "width) of pooling operator. "
C
chengduoZH 已提交
270
      "If global_pooling = true, ksize and paddings will be ignored.")
271 272 273
      .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)

274 275 276 277
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
278 279 280
  AddAttr<bool>(
      "ceil_mode",
      "(bool, default false) Wether to use the ceil function to calculate "
W
wanghaoshuang 已提交
281 282
      "output height and width. False is the default. If it is set to False, "
      "the floor function will be used.")
283
      .SetDefault(false);
284 285 286
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
287 288 289 290 291 292 293 294 295
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function

296
  AddComment(R"DOC(
K
kexinzhao 已提交
297 298
Pool3d Operator.

C
chengduoZH 已提交
299
The pooling3d operation calculates the output based on
C
chengduoZH 已提交
300
the input, pooling_type, ksize, strides, and paddings parameters.
K
kexinzhao 已提交
301 302
Input(X) and output(Out) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
303 304
width of the feature, respectively. Parameters(ksize, strides, paddings)
are three elements. These three elements represent depth, height and
K
kexinzhao 已提交
305
width, respectively. The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
306 307 308

Example:
  Input:
K
kexinzhao 已提交
309
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
310
  Output:
K
kexinzhao 已提交
311
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
312
  For ceil_mode = false:
C
chengduoZH 已提交
313 314 315 316 317
  $$
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
  $$
318 319 320 321 322 323
  For ceil_mode = true:
  $$
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0] + strides[0] -1)}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1] + strides[1] -1)}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2] + strides[2] -1)}{strides[2]} + 1
  $$
K
kexinzhao 已提交
324

325
)DOC");
326
}
327 328 329 330 331 332 333 334
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP(pool2d, ops::PoolOp, ops::Pool2dOpMaker, pool2d_grad,
            ops::PoolOpGrad);

Q
QI JUN 已提交
335 336 337 338 339 340
REGISTER_OP_CPU_KERNEL(
    pool2d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool2d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>)
341 342 343 344

REGISTER_OP(pool3d, ops::PoolOp, ops::Pool3dOpMaker, pool3d_grad,
            ops::PoolOpGrad);

Q
QI JUN 已提交
345 346 347 348 349 350
REGISTER_OP_CPU_KERNEL(
    pool3d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool3d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);