primops.py 10.5 KB
Newer Older
L
levi131 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle.fluid.layer_helper import LayerHelper
17

L
levi131 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
from .primreg import REGISTER_FN


def _simple_unop(helper):
    optype = helper.layer_type
    x, out = tuple(map(helper.kwargs.get, ('x', 'out')))
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type=optype, inputs={'X': x}, outputs={'Y': out}, attrs={})
    return out


def _simple_binop(helper):
    optype = helper.layer_type
    x, y, out = tuple(map(helper.kwargs.get, ('x', 'y', 'out')))
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

37 38 39 40 41 42 43
    helper.append_op(type=optype,
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={'Z': out},
                     attrs={})
L
levi131 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    return out


def _manipulation_unop(helper):
    optype = helper.layer_type
    x, out = tuple(map(helper.kwargs.get, ('x', 'out')))

    attrs = {
        k: helper.kwargs[k]
        for k in ('shape', 'axis', 'index') if k in helper.kwargs
    }

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

59 60 61 62
    helper.append_op(type=optype,
                     inputs={'X': x},
                     outputs={'Y': out},
                     attrs=attrs)
L
levi131 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    return out


# Each primitive op is given a Python constructor for sake of convenience.
def fill_const(value, shape, dtype, out=None):
    attrs = {'value': value, 'shape': shape, 'dtype': dtype}
    helper = LayerHelper('fill_constant_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type=helper.layer_type, outputs={'Y': out}, attrs=attrs)
    return out


def neg(x, out=None):
    zero = fill_const(0.0, x.shape, x.dtype)
    return sub(zero, x)


def set_value(x, y, axis, starts, ends, strides, out):
    assert x is out, "x and out should be the same Tensor in set_value"
    attrs = {'axes': axis, 'starts': starts, 'ends': ends, 'steps': strides}
    helper = LayerHelper('set_value', **locals())
85 86 87 88 89 90 91
    helper.append_op(type=helper.layer_type,
                     inputs={
                         'Input': x,
                         'ValueTensor': y
                     },
                     outputs={'Out': out},
                     attrs=attrs)
L
levi131 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    return out


@REGISTER_FN('add_p', 'X', 'Y', 'Z')
def add(x, y, out=None):
    return _simple_binop(LayerHelper('add_p', **locals()))


@REGISTER_FN('sub_p', 'X', 'Y', 'Z')
def sub(x, y, out=None):
    return _simple_binop(LayerHelper('sub_p', **locals()))


@REGISTER_FN('mul_p', 'X', 'Y', 'Z')
def mul(x, y, out=None):
    return _simple_binop(LayerHelper('mul_p', **locals()))


@REGISTER_FN('div_p', 'X', 'Y', 'Z')
def div(x, y, out=None):
    return _simple_binop(LayerHelper('div_p', **locals()))


@REGISTER_FN('sqrt_p', 'X', 'Y')
def sqrt(x, out=None):
    return _simple_unop(LayerHelper('sqrt_p', **locals()))


@REGISTER_FN('tanh_p', 'X', 'Y')
def tanh(x, out=None):
    return _simple_unop(LayerHelper('tanh_p', **locals()))


125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
@REGISTER_FN('sin_p', 'X', 'Y')
def sin(x, out=None):
    return _simple_unop(LayerHelper('sin_p', **locals()))


@REGISTER_FN('cos_p', 'X', 'Y')
def cos(x, out=None):
    return _simple_unop(LayerHelper('cos_p', **locals()))


@REGISTER_FN('exp_p', 'X', 'Y')
def exp(x, out=None):
    return _simple_unop(LayerHelper('exp_p', **locals()))


140 141 142 143 144
@REGISTER_FN('log_p', 'X', 'Y')
def log(x, out=None):
    return _simple_unop(LayerHelper('log_p', **locals()))


L
levi131 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
@REGISTER_FN('reshape_p', 'X', 'Y')
def reshape(x, shape, out=None):
    return _manipulation_unop(LayerHelper('reshape_p', **locals()))


@REGISTER_FN('broadcast_p', 'X', 'Y')
def broadcast(x, shape, out=None):
    return _manipulation_unop(LayerHelper('broadcast_p', **locals()))


@REGISTER_FN('transpose_p', 'X', 'Y')
def transpose(x, axis=None, out=None):
    return _manipulation_unop(LayerHelper('transpose_p', **locals()))


@REGISTER_FN('split_p', 'X', 'YS')
def split(x, num_or_sections, axis=0, outs=None):
    if isinstance(num_or_sections, (list, tuple)):
        n = len(num_or_sections)
    else:
165 166
        if not isinstance(num_or_sections, int):
            raise TypeError(
167 168
                f'num_or_sections must be int, but got {type(num_or_sections)}.'
            )
L
levi131 已提交
169 170 171 172 173 174 175 176 177 178
        n = num_or_sections

    attrs = {'num_or_sections': num_or_sections, 'axis': axis}

    helper = LayerHelper('split_p', **locals())
    if outs is None:
        outs = [
            helper.create_variable_for_type_inference(dtype=x.dtype)
            for i in range(n)
        ]
179 180 181 182
    helper.append_op(type=helper.layer_type,
                     inputs={'X': x},
                     outputs={'YS': outs},
                     attrs=attrs)
L
levi131 已提交
183 184 185 186 187
    return outs


@REGISTER_FN('concat_p', 'XS', 'Y')
def concat(xs, axis=0, out=None):
188 189
    if isinstance(xs, paddle.fluid.framework.Variable):
        xs = [xs]
L
levi131 已提交
190 191 192 193
    attrs = {'axis': axis}
    helper = LayerHelper('concat_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=xs[0].dtype)
194 195 196 197
    helper.append_op(type=helper.layer_type,
                     inputs={'XS': xs},
                     outputs={'Y': out},
                     attrs=attrs)
L
levi131 已提交
198 199 200 201 202
    return out


@REGISTER_FN('reduce_p', 'X', 'Y')
def reduce(x, axis, keepdim=False, out=None):
203 204 205 206
    if not isinstance(axis, (tuple, list)):
        raise TypeError(f'axis must be tuple or list, but got {type(axis)}')
    if not isinstance(keepdim, bool):
        raise TypeError(f'keepdim must be bool, but got {type(keepdim)}')
L
levi131 已提交
207 208 209 210 211 212
    attrs = {'axis': axis, 'keepdim': keepdim}

    helper = LayerHelper('reduce_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

213 214 215 216
    helper.append_op(type=helper.layer_type,
                     inputs={'X': x},
                     outputs={'Y': out},
                     attrs=attrs)
L
levi131 已提交
217 218 219 220 221 222 223 224 225 226
    return out


@REGISTER_FN('matmul_p', 'X', 'Y', 'Z')
def matmul(x, y, out=None):
    return _simple_binop(LayerHelper('matmul_p', **locals()))


@REGISTER_FN('slice_select_p', 'X', 'Y')
def slice_select(x, axis, starts, ends, strides, out=None):
227 228 229 230 231 232 233 234 235 236 237 238 239 240
    if not isinstance(axis, (list, tuple)):
        raise TypeError(f'Argument type error. `axis` is supposed to be list or'
                        f' tuple but found {type(axis)}.')
    if not isinstance(starts, (list, tuple)):
        raise TypeError(
            f'Argument type error. `starts` is supposed to be list or'
            f' tuple but found {type(starts)}.')
    if not isinstance(ends, (list, tuple)):
        raise TypeError(f'Argument type error. `ends` is supposed to be list or'
                        f' tuple but found {type(ends)}.')
    assert len(axis) == len(starts) == len(ends) == len(strides), (
        f'len(axis), len(starts), len(ends) and len(strides) should be equal, '
        f'but len(axis)={len(axis)}, len(starts)={len(starts)}, '
        f'len(ends)={len(ends)} and len(strides)={len(strides)}')
L
levi131 已提交
241 242 243 244 245

    attrs = {'axis': axis, 'starts': starts, 'ends': ends, 'strides': strides}
    helper = LayerHelper('slice_select_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
246 247 248 249
    helper.append_op(type=helper.layer_type,
                     inputs={'X': x},
                     outputs={'Y': out},
                     attrs=attrs)
L
levi131 已提交
250 251 252 253 254
    return out


@REGISTER_FN('slice_assign_p', 'X', 'Y', 'Z')
def slice_assign(x, y, axis, starts, ends, strides, out=None):
255 256 257 258 259 260 261
    assert len(starts) == len(ends) == len(strides) == len(axis), (
        f'len(starts), len(ends), len(strides) and len(axis) should be equal, '
        f'but len(starts)={len(starts)}, len(ends)={len(ends)}, '
        f'len(strides)={len(strides)} and len(axis)={len(axis)}')
    assert len(y.shape) == len(x.shape), (
        f'len(y.shape) should be equal to len(x.shape), '
        f'but len(y.shape)={len(y.shape)} and len(x.shape)={len(x.shape)}.')
L
levi131 已提交
262 263 264 265 266

    attrs = {'axis': axis, 'starts': starts, 'ends': ends, 'strides': strides}
    helper = LayerHelper('slice_assign_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
267 268 269 270 271 272 273
    helper.append_op(type=helper.layer_type,
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={'Z': out},
                     attrs=attrs)
L
levi131 已提交
274 275 276
    return out


277
@REGISTER_FN('gather_p', 'X', 'IndexTensor', 'Y')
L
levi131 已提交
278 279 280 281 282
def gather(x, indextensor, axis, out=None):
    attrs = {'axis': axis}
    helper = LayerHelper('gather_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
283 284 285 286 287 288 289
    helper.append_op(type=helper.layer_type,
                     inputs={
                         'X': x,
                         'IndexTensor': indextensor
                     },
                     outputs={'Y': out},
                     attrs=attrs)
L
levi131 已提交
290 291 292 293 294
    return out


@REGISTER_FN('scatter_add_p', 'X', 'Y', 'IndexTensor', 'Z')
def scatter_add(x, y, indextensor, axis, out=None):
295 296 297 298 299 300 301 302 303 304
    assert len(x.shape) == len(y.shape), (
        f'len(x.shape) should be equal to len(y.shape), '
        f'but len(x.shape)={len(x.shape)} and len(y.shape)={len(y.shape)}.')
    assert len(
        indextensor.shape
    ) == 1, f'len(indextensor.shape) must be equal to 1, but got {len(indextensor.shape)}.'
    assert y.shape[axis] == indextensor.shape[0], (
        f'y.shape[axis] should be equal to indextensor.shape[0], '
        f'but y.shape[axis]={y.shape[axis]} and '
        f'indextensor.shape[0]={indextensor.shape[0]}.')
L
levi131 已提交
305 306 307 308
    attrs = {'axis': axis}
    helper = LayerHelper('scatter_add_p', **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
309 310 311 312 313 314 315 316
    helper.append_op(type=helper.layer_type,
                     inputs={
                         'X': x,
                         'Y': y,
                         'IndexTensor': indextensor
                     },
                     outputs={'Z': out},
                     attrs=attrs)
L
levi131 已提交
317
    return out