engine.py 68.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
16
import logging
17
import numbers
18 19
import os
import random
20 21
from collections import defaultdict

22 23
import numpy as np

24
import paddle
25
import paddle.distributed.auto_parallel.utils as auto_utils
26
import paddle.utils as utils
Z
zhaoyingli 已提交
27
from paddle import fluid, static
28 29 30 31
from paddle.distributed import fleet
from paddle.fluid import Variable, core
from paddle.fluid.dygraph.parallel import ParallelEnv
from paddle.fluid.executor import _to_name_str, global_scope
32
from paddle.fluid.framework import IrGraph, Operator
33
from paddle.fluid.framework import _current_expected_place as _get_device
34
from paddle.fluid.framework import in_dygraph_mode
35
from paddle.fluid.layers.utils import flatten
36
from paddle.metric import Metric
37 38
from paddle.static import InputSpec

39
from ..utils.log_utils import get_logger
Z
zhaoyingli 已提交
40
from .callbacks import config_callbacks
41
from .cluster import Cluster, get_default_cluster
42 43 44
from .converter import Converter
from .cost.estimate_cost import get_cost_from_engine
from .dist_context import DistributedContext, get_default_distributed_context
45 46
from .dist_loader import (
    DistributedDataLoader,
47
    DistributedDataLoaderFromGenerator,
48
)
49 50 51
from .dist_op import DistributedOperator
from .dist_saver import DistributedSaver
from .helper import ProgramHelper
52
from .interface import CollectionNames, get_collection
53 54 55 56
from .parallelizer_v2 import Parallelizer
from .planner_v2 import Planner
from .process_group import get_all_process_groups, new_process_group
from .strategy import Strategy
57

58 59

class Engine:
60
    """
61 62
    An Engine object can provide the full power of auto parallel to users.
    With the help of it, users can easily obtain the abilities of the
63 64 65 66 67 68 69
    distributed training and inference. It also support the dynamic graph and
    static graph at the same time.

    Args:
        model (paddle.nn.Layer, optional): The model is an instance of
            paddle.nn.Layer.
        loss (Loss|Callable|None, optional): The loss can be a `paddle.nn.Layer`
70 71
            instance or any callable function taken the predicted values and
            ground truth values as input. It can be None when there is no loss.
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
            Default: None.
        optimizer (Optimizer|None, optional): The optimizer need to be set in training
            and should be None in eval and predict mode. Default: None.
        metrics (Metric|list[Metric]|None, optional): If metrics is set, all
            metrics will be calculated and output in train/eval mode. Default: None.
        cluster (Cluster|None, optional): The cluster represents the topology information
            about the used physical devices. Default: None. (Unused for now)
        strategy (Strategy|None, optional): The strategy is used to configure the
        parallelization and optimization behaviors. Default: None.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.vision.transforms as T
88
            from paddle.distributed.fleet import auto
89 90 91 92 93 94 95 96 97 98
            from paddle.vision.datasets import MNIST

            transform = T.Compose([
                T.Transpose(),
                T.Normalize([127.5], [127.5])
            ])
            train_dataset = MNIST(mode='train', transform=transform)
            valid_dataset = MNIST(mode='test', transform=transform)

            model = paddle.vision.models.LeNet()
99
            loss = paddle.nn.CrossEntropyLoss()
100 101 102 103
            optimizer = paddle.optimizer.Adam(
                learning_rate=0.001, parameters=model.parameters())
            metrics = paddle.metric.Accuracy(topk=(1, 2))

104 105
            engine = auto.Engine(model, loss, optimizer, metrics)
            # fit
106 107 108
            engine.fit(train_dataset,
                       epochs=2,
                       batch_size=64)
109
            # evaluate
110 111 112 113 114 115 116
            engine.evaluate(valid_dataset,
                            batch_size=64)
            # predict
            engine.predict(valid_dataset,
                           batch_size=64)
            # save
            engine.save("./my_model")
117
            # load
118 119 120
            engine.load("./my_model")

    """
121

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
    def __init__(
        self,
        model=None,
        loss=None,
        optimizer=None,
        metrics=None,
        cluster=None,
        strategy=None,
    ):

        if (
            model
            and not isinstance(model, paddle.nn.Layer)
            and not callable(model)
        ):
137 138 139 140
            raise TypeError(
                "'model must be sub classes of `paddle.nn.Layer` or any callable function."
            )
        self._model = model
141 142 143 144 145 146 147 148 149

        if (
            loss
            and not isinstance(loss, (paddle.nn.Layer, Variable))
            and not callable(loss)
        ):
            raise TypeError(
                "'loss' must be sub classes of `paddle.nn.Layer` or any callable function or a Variable."
            )
150 151 152
        self._loss = loss

        if optimizer and not isinstance(
153 154 155
            optimizer,
            (paddle.optimizer.Optimizer, paddle.fluid.optimizer.Optimizer),
        ):
156 157
            raise TypeError(
                "'optimizer' must be object of class `paddle.optimizer.Optimizer`"
158 159
                " or `paddle.fluid.optimizer.Optimizer`."
            )
160
        self._optimizer = auto_utils.validate_opt(optimizer)
161
        self._orig_optimizer = copy.deepcopy(self._optimizer)
162 163

        metrics = metrics or []
164
        for metric in auto_utils.to_list(metrics):
165 166 167 168 169 170
            if metric and not isinstance(metric, Metric):
                raise TypeError(
                    "{} is not sub class of Metric".format(
                        metric.__class__.__name__
                    )
                )
171
        self._metrics = auto_utils.to_list(metrics)
172 173 174 175 176 177 178 179 180 181 182 183 184

        if cluster and not isinstance(cluster, Cluster):
            raise TypeError(
                "'cluster' must be the object or class `paddle.distributed.auto_parallel.Cluster`"
            )
        self._cluster = cluster or get_default_cluster()

        if strategy and not isinstance(strategy, Strategy):
            raise TypeError(
                "'strategy' must be object of class `paddle.distributed.auto_parallel.Strategy`"
            )
        self._strategy = strategy or Strategy()

185
        self._logger = get_logger(logging.INFO)
186
        if os.getenv("POD_NAME"):
187 188
            self._logger.info(
                "Distribute training by paddle.distributed.launch"
189
            )
190
            fleet.init(is_collective=True)
191

192
        self._executor = None
193 194 195
        self._cur_rank = paddle.distributed.get_rank()
        self._nranks = paddle.distributed.get_world_size()
        self._saver = DistributedSaver()
196

197 198
        self._orig_main_prog = static.default_main_program()
        self._orig_startup_prog = static.default_startup_program()
199
        self._orig_dist_context = get_default_distributed_context()
200
        self._dist_contexts = {}
201 202
        self._fwd_main_progs = {}
        self._fwd_dist_contexts = {}
203 204
        self._serial_main_progs = {}
        self._serial_startup_progs = {}
205 206 207 208
        self._dist_main_progs = defaultdict(dict)  # dist main programs
        self._dist_startup_progs = defaultdict(dict)  # dist startup programs
        self._feed_vars = {}
        self._fetch_vars = {}
209
        self._planners = {}
210 211
        self._has_prepared = {"train": False, "eval": False, "predict": False}
        self._has_prepared_reader = {
212 213
            "train": False,
            "eval": False,
214
            "predict": False,
215
        }
216 217 218 219
        self._inputs_spec = []
        self._labels_spec = []
        self._inputs = []
        self._labels = []
220
        self._losses = []
221

222
        self._mode = None
223 224
        self._skip_build = False
        self._outside_dataloader = False
225
        self._planned_mode = None
226 227
        self._dygraph_mode = False
        self._tuning = self._strategy.tuning
228

Z
zhaoyingli 已提交
229 230
        self.history = None

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
    def _prepare_data_spec(self, data, split, batch_size):
        inputs_spec = []
        labels_spec = []
        if isinstance(data, paddle.io.IterableDataset):
            if split is None:
                inputs, labels = next(iter(data))
            else:
                sample = next(iter(data))
                inputs = sample[:split]
                labels = sample[split:]
        elif isinstance(data, paddle.io.Dataset):
            if split is None:
                inputs, labels = data[0]
            else:
                sample = data[0]
                inputs = sample[:split]
                labels = sample[split:]
        else:
249
            raise TypeError(
250 251 252 253
                "Data should be a Dataset or IterableDatset, but received {}.".format(
                    type(data).__name__
                )
            )
254 255
        inputs = auto_utils.to_list(inputs)
        labels = auto_utils.to_list(labels)
256 257

        num_shards = self._strategy.dataset.num_shards
258

259 260 261 262 263 264 265 266 267 268 269 270 271 272
        def _adjust_item_spec(num_shards, spec):
            if num_shards > 1 and len(spec.shape) > 1:
                spec.shape[0] = spec.shape[0] * num_shards

        def _infer_item_spec(item, name, batch_size, specs):
            if isinstance(item, np.ndarray):
                spec = InputSpec.from_numpy(item, name)
                if batch_size is None:
                    _adjust_item_spec(num_shards, spec)
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
            elif isinstance(item, (Variable, core.VarBase, core.eager.Tensor)):
                spec = InputSpec.from_tensor(item, name)
273
                _adjust_item_spec(num_shards, spec)
274 275 276 277
                if batch_size is None:
                    specs.append(spec)
                else:
                    specs.append(spec.batch(batch_size))
278
            elif isinstance(item, numbers.Number):
279
                specs.append(InputSpec([batch_size], type(item), name))
280 281 282 283 284 285
            else:
                raise TypeError(
                    "The sample's dtype returned of dataset should be number, np.ndarray or Tensor, but got {}".format(
                        type(item).__name__
                    )
                )
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301

        if inputs is not None:
            for i, item in enumerate(inputs):
                assert item is not None, "Receive None input."
                name = "input" + str(i)
                _infer_item_spec(item, name, batch_size, inputs_spec)
        if labels is not None:
            for i, item in enumerate(labels):
                assert item is not None, "Receive None input."
                name = "label" + str(i)
                _infer_item_spec(item, name, batch_size, labels_spec)

        inputs_spec = self._validate_spec(inputs_spec)
        labels_spec = self._validate_spec(labels_spec)
        return inputs_spec, labels_spec

302
    def _prepare_data_tensor(self, inputs_spec, labels_spec, inputs, labels):
303
        if in_dygraph_mode() or self._dygraph_mode:
304 305
            raise ValueError("Only support static graph mode.")

306
        if inputs_spec:
307 308 309 310 311
            assert isinstance(
                inputs_spec, list
            ), "inputs should be list, but received {}".format(
                type(inputs_spec)
            )
312 313 314 315 316 317 318 319 320
            assert isinstance(
                inputs, list
            ), "inputs should be list, but received {}".format(type(inputs))
            assert len(inputs_spec) == len(
                inputs
            ), "the number of `inputs_spec` should be equal to `inputs`'s."
            for input_spec, input in zip(inputs_spec, inputs):
                if input_spec.shape != input.shape:
                    input.desc.set_shape(input_spec.shape)
321
        if labels_spec:
322 323 324 325 326
            assert isinstance(
                labels_spec, list
            ), "labels should be list, but received {}".format(
                type(labels_spec)
            )
327 328 329 330 331 332 333 334 335 336
            assert isinstance(
                labels, list
            ), "labels should be list, but received {}".format(type(labels))
            assert len(labels_spec) == len(
                labels
            ), "the number of `labels_spec` should be equal to `labels`'s."
            for label_spec, label in zip(labels_spec, labels):
                if label_spec.shape != label.shape:
                    label.desc.set_shape(label_spec.shape)

337 338 339 340 341 342 343 344 345
        return inputs, labels

    def _prepare_reader(self):
        dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
        dist_context = self._dist_contexts[self._mode]
        dist_main_block = dist_main_prog.global_block()

        # NOTE: this list may be changed if Paddle changes the existing rules.
        related_reader_ops = [
346 347 348
            "create_py_reader",
            "create_double_buffer_reader",
            "read",
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
        ]
        # remove the first three ops if multiple run fit/evaluate/predict
        if dist_main_block.ops[0].type == 'create_py_reader':
            for i in range(len(related_reader_ops)):
                if dist_main_block.ops[0].type in related_reader_ops:
                    dist_main_block._remove_op(0, sync=False)
        dist_main_block._sync_with_cpp()
        # Step 1: find the reader ops
        reader_op_indices = []
        for idx, op in enumerate(dist_main_block.ops):
            if op.type in related_reader_ops:
                reader_op_indices.append(idx)
        # Step 2: insert the new reader ops to cpp
        new_reader_ops = []
        for idx in reversed(reader_op_indices):
            new_op_desc = dist_main_block.desc._prepend_op()
            new_op_desc.copy_from(dist_main_block.ops[idx].desc)
366 367 368
            new_op = Operator(
                dist_main_block, new_op_desc, type=new_op_desc.type()
            )
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
            new_reader_ops.append(new_op)
            dist_op = DistributedOperator(new_op)
            dist_context.add_dist_op_for_program(dist_op)
        # Step 3: insert the new reader ops to python
        for new_op in new_reader_ops:
            dist_main_block.ops.insert(0, new_op)
        for i in range(len(reader_op_indices)):
            reader_op_indices[i] += len(reader_op_indices)
        # Step 4: remove the old reader ops from python and cpp
        for idx in reversed(reader_op_indices):
            op = dist_main_block.ops.pop(idx)
            dist_main_block.desc._remove_op(idx, idx + 1)
        dist_main_block._sync_with_cpp()
        self._has_prepared_reader[self._mode] = True

    def _prepare_feed(self, data, user_feeds, mode):
        feeds = {}
        if data is not None:
            if isinstance(data, (list, tuple)):
                if len(data) == 1 and isinstance(data[0], dict):
                    for name, data in data[0].items():
                        feeds[name] = data
                else:
                    raise ValueError("Unsupported data {}".format(data))
            elif isinstance(data, dict):
                for name, data in data.items():
                    feeds[name] = data
            else:
                raise ValueError("Unsupported data {}".format(data))
398
        if user_feeds is not None:
399 400 401 402 403
            assert isinstance(
                user_feeds, dict
            ), "user_feeds must be a dict, but receive {}".format(
                type(user_feeds).__name__
            )
404 405
            for name, data in user_feeds.items():
                feeds[name] = data
406 407
        return feeds

408
    def _prepare_fetch(self, user_fetches, mode):
409
        if user_fetches is not None:
410 411 412 413 414
            assert isinstance(
                user_fetches, list
            ), "user_fetches must be a list, but receive {}".format(
                type(user_fetches).__name__
            )
415
        fetch_names = []
416
        fetch_indices = []
417

418 419
        def _process_fetch_group(group_name, var_list):
            group_indices = []
420
            for var in var_list:
421 422 423 424 425 426
                # Remove duplicate var_names
                if self._is_local_var(var):
                    var_name = _to_name_str(var)
                    if var_name not in fetch_names:
                        fetch_names.append(var_name)
                    group_indices.append(fetch_names.index(var_name))
427 428
            if not group_indices:
                fetch_names.append([])
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
            fetch_indices.append(group_indices)

        if mode != "predict":
            _process_fetch_group("loss", self._fetch_vars[mode]["loss"])
        if mode != "predict":
            metrics = self._fetch_vars[mode]["metrics"]
            for i, var_list in enumerate(metrics):
                _process_fetch_group("metrics_" + str(i), var_list)
        if mode == "predict":
            _process_fetch_group("outputs", self._fetch_vars[mode]["outputs"])
        user_fetches_collection = [
            item[1] for item in get_collection(CollectionNames.FETCHES)
        ]
        var_list = (user_fetches_collection or []) + (user_fetches or [])
        _process_fetch_group("fetches", var_list)
        return fetch_names, fetch_indices

446 447 448 449 450 451 452 453 454 455
    def _prepare_logger(
        self,
        outs,
        epoch=None,
        step=None,
        lr=None,
        fetch_names=None,
        fetch_indices=None,
        mode=None,
    ):
Z
zhaoyingli 已提交
456
        logs = {}
457
        if epoch is not None:
Z
zhaoyingli 已提交
458
            logs["epoch"] = epoch
459
        if step is not None:
Z
zhaoyingli 已提交
460
            logs["step"] = step + 1
461
        if lr is not None:
Z
zhaoyingli 已提交
462
            logs["lr"] = lr
463 464
        group_idx = 0
        if mode != "predict":
Z
zhaoyingli 已提交
465
            # logging loss
466
            loss_indices = fetch_indices[group_idx]
Z
zhaoyingli 已提交
467
            assert len(loss_indices) <= 1
468
            for idx in loss_indices:
Z
zhaoyingli 已提交
469
                logs["loss"] = outs[idx][0]
470
            group_idx += 1
Z
zhaoyingli 已提交
471
            # logging metrics
472 473 474 475 476 477 478 479 480 481
            metric_vars = self._fetch_vars[mode]["metrics"]
            if metric_vars:
                for metric in self._metrics:
                    metrics_indices = fetch_indices[group_idx]
                    metric_out = []
                    for idx in metrics_indices:
                        metric_out.append(outs[idx])
                    if metric_out:
                        metric.update(*metric_out)
                        results = metric.accumulate()
482
                        for i, res in enumerate(auto_utils.to_list(results)):
Z
zhaoyingli 已提交
483
                            logs[metric.name()[i]] = res
484
                    group_idx += 1
Z
zhaoyingli 已提交
485 486 487 488 489 490 491
        # logging outputs
        elif mode == "predict":
            outputs_indices = fetch_indices[group_idx]
            logs_out = {}
            for idx in outputs_indices:
                logs_out["out%d" % (idx)] = outs[idx]
            logs["outputs"] = logs_out
492 493
            group_idx += 1
        # logging user fetches
Z
zhaoyingli 已提交
494 495
        collect_fetches = get_collection(CollectionNames.FETCHES)
        logs_fetch = {}
496 497 498 499
        for name, var_name in collect_fetches:
            if var_name in fetch_names:
                idx = fetch_names.index(var_name)
                logs_fetch[name or var_name] = outs[idx]
Z
zhaoyingli 已提交
500 501
        logs["fetches"] = logs_fetch
        return logs
502

503 504 505 506 507 508 509 510 511 512 513
    def _prepare_program(self, mode):
        # Do the build process
        self._build(mode)
        # Do the planning process
        self._plan(mode)
        # Do the parallel process
        self._parallel(mode)
        # Init comm and startup program
        self._initialize(mode)
        self._has_prepared[mode] = True

514
    def _build(self, mode):
515
        if in_dygraph_mode() or self._dygraph_mode:
516
            paddle.disable_static()
517 518 519
            self._dygraph_mode = True
            self._logger.info("Building model with 'to_static' method.")

520
            self.program_helper = ProgramHelper(
521 522 523 524 525
                self._model,
                self._loss,
                self._metrics,
                self._inputs_spec,
                self._labels_spec,
526
            )
527
            # build forward main program
528 529
            with utils.unique_name.guard():
                self.program_helper.build_program(mode)
530

531 532 533
            self.concrete_program = self.program_helper.concrete_program
            serial_main_prog = self.program_helper.main_program
            serial_startup_prog = self.program_helper.startup_program
534

535 536
            self._inputs = self.program_helper.input_vars
            self._labels = self.program_helper.label_vars
537
            outputs = self.program_helper.output_vars
538
            self._losses = self.program_helper.loss_vars
539
            metrics = self.program_helper.metric_vars
540

541
            paddle.enable_static()
542
        else:
543
            # build program in static graph mode
544 545 546 547
            serial_main_prog = self._serial_main_progs.get(mode, None)
            if serial_main_prog is not None:
                return

548
            outputs = []
549
            metrics = []
550
            self._losses = []
551 552
            serial_main_prog = self._orig_main_prog.clone()
            serial_startup_prog = self._orig_startup_prog.clone()
553
            if not self._skip_build:
554 555 556
                with static.program_guard(
                    serial_main_prog, serial_startup_prog
                ), utils.unique_name.guard():
557 558 559 560 561 562 563
                    self._inputs = [
                        s._create_feed_layer() for s in self._inputs_spec
                    ]
                    self._labels = [
                        s._create_feed_layer() for s in self._labels_spec
                    ]

564
                    outputs = auto_utils.to_list(self._model(*self._inputs))
565

566
                    if mode != "predict" and self._loss:
567 568 569 570 571
                        assert isinstance(
                            self._loss, paddle.nn.Layer
                        ) or callable(
                            self._loss
                        ), "the type of `loss` of the Engine arguments should be sub classes of `paddle.nn.Layer` or any callable function."
572
                        self._losses = auto_utils.to_list(
573 574
                            self._loss(*(outputs + self._labels))
                        )
575

576
                    if mode != "predict" and (outputs or self._labels):
577 578
                        for metric in self._metrics:
                            metrics.append(
579
                                auto_utils.to_list(
580 581
                                    metric.compute(*(outputs + self._labels))
                                )
582
                            )
Z
zhaoyingli 已提交
583
            elif mode == "train":
584 585 586
                assert isinstance(
                    self._loss, Variable
                ), "the type of `loss` of the Engine arguments should be Variable."
587
                self._losses = auto_utils.to_list(self._loss)
588 589 590 591 592 593 594

        default_ctx = get_default_distributed_context()
        if not default_ctx.has_annotation:
            # We build the world process group because the data parallel
            # needs all ranks by default.
            new_process_group(list(range(self._nranks)))
            default_ctx.data_parallel = True
595 596 597 598 599 600
            self._inputs = [
                auto_utils.set_data_parallel(var) for var in self._inputs
            ]
            self._labels = [
                auto_utils.set_data_parallel(var) for var in self._labels
            ]
601

602
        feed_vars = {"inputs": self._inputs, "labels": self._labels}
603 604 605

        fetch_vars = {
            "outputs": flatten(outputs),
606
            "loss": self._losses,
607
            "metrics": metrics,
608 609
        }

610 611 612
        if mode != "train":
            serial_main_prog = serial_main_prog.clone(for_test=True)

613 614 615
        auto_utils.set_recompute_segments(
            self._model, self._losses, self._strategy, serial_main_prog
        )
616
        self._dist_contexts[mode] = DistributedContext(
617 618 619
            serial_main_prog,
            serial_startup_prog,
            self._optimizer,
620 621 622 623 624 625 626 627 628 629 630
            self._losses,
            feed_vars,
            fetch_vars,
            self._cluster,
            self._strategy,
        )
        self._fwd_dist_contexts[mode] = DistributedContext(
            serial_main_prog,
            serial_startup_prog,
            self._optimizer,
            self._losses,
631 632 633 634 635
            feed_vars,
            fetch_vars,
            self._cluster,
            self._strategy,
        )
636
        self._dist_contexts[mode].gradient_scale = self._strategy.gradient_scale
637
        self._fwd_main_progs[mode] = serial_main_prog.clone()
638

639 640 641
    def _optimization_tuning(self, mode, dataset, batch_size):
        if not self._tuning.enable:
            raise ValueError("Please set `tuning.enable=True`.")
642

643 644 645 646 647 648 649 650
        assert mode == "train"
        # Do the build process
        self._build(mode)
        # Do the planning process
        self._plan(mode)

        dataset.dp_world_size = self._dp_world_sizes
        dataset.dp_rank = self._dp_ranks
651 652

        from .tuner.optimization_tuner import OptimizationTuner
653 654 655 656 657 658 659 660 661

        self._optimization_tuner = OptimizationTuner(
            self._dist_contexts[mode],
            dataset,
            self._inputs_spec,
            self._labels_spec,
            batch_size=batch_size,
            rank=self._cur_rank,
        )
662 663 664

        self._optimization_tuner.tune()

665
        if self._tuning.run_after_tuning:
666 667
            # update the strategy
            self._dist_contexts[
668 669
                mode
            ]._strategy = self._optimization_tuner.get_best_config()
670

671 672 673 674 675 676
    def _plan(self, mode):
        if self._planned_mode is None:
            self._planned_mode = mode
        else:
            self._init_dist_context(mode)

677 678
        self._planners[mode] = Planner(mode, self._dist_contexts[mode])
        self._planners[mode].plan()
679

680 681 682 683
        # infer data parallel info
        inputs_var = self._dist_contexts[mode].serial_feed_vars["inputs"]
        labels_var = self._dist_contexts[mode].serial_feed_vars["labels"]
        block = self._dist_contexts[mode].serial_main_program.global_block()
684
        # TODO: check this feed_list
685 686 687 688 689
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in block.vars:
                feed_list.append(block.vars[var.name])

690 691
        self._dp_world_sizes = []
        self._dp_ranks = []
692
        for feed_var in feed_list:
693
            dp_world_size, dp_rank = auto_utils.get_input_split_info(
694
                self._cur_rank, feed_var, self._dist_contexts[mode]
695
            )
696 697
            self._dp_world_sizes.append(dp_world_size)
            self._dp_ranks.append(dp_rank)
698

699
    def _parallel(self, mode, all_ranks=False):
700 701 702
        # Parallelize program based on the planner's results
        # For now, the completer has to be passed to the planner,
        # because we may use it to complete the annotation of the backwarkward and update.
703 704 705
        parallelizer = Parallelizer(
            mode, self._planners[mode].completer, self._dist_contexts[mode]
        )
706 707 708 709
        if not all_ranks:
            parallelizer.parallel(self._cur_rank)
        else:
            parallelizer.parallel_all()
710 711

    def _init_dist_context(self, mode):
712
        # Init dist_context['mode'] with the first planned dist_context
713 714 715 716 717 718 719 720 721 722
        # to guarantee that train/eval/predict mode have same parallel strategy
        dist_context = self._dist_contexts[mode]
        origin_main_prog = dist_context._original_serial_main_program
        ref_mode = self._planned_mode
        ref_dist_context = self._dist_contexts[ref_mode]
        ref_origin_main_prog = ref_dist_context._original_serial_main_program
        ref_blocks = ref_origin_main_prog.blocks
        for ib, block in enumerate(origin_main_prog.blocks):
            for iop, op in enumerate(block.ops):
                ref_op = ref_blocks[ib].ops[iop]
723 724 725 726 727 728 729 730
                assert (
                    op.type == ref_op.type
                ), "'{}' mode op '{}' is different with '{}' op '{}'. ".format(
                    mode, op.type, ref_mode, ref_op.type
                )
                ref_op_dist_attr = (
                    ref_dist_context.get_op_dist_attr_for_program(ref_op)
                )
731 732 733
                dist_context.set_op_dist_attr_for_program(op, ref_op_dist_attr)

    def _initialize(self, mode):
734
        # Get the current content from the distributed context
735
        self._serial_main_progs[mode] = self._dist_contexts[
736 737
            mode
        ].serial_main_program
738
        self._serial_startup_progs[mode] = self._dist_contexts[
739 740
            mode
        ].serial_startup_program
741
        self._dist_main_progs[mode] = self._dist_contexts[
742 743
            mode
        ].dist_main_programs
744
        self._dist_startup_progs[mode] = self._dist_contexts[
745 746
            mode
        ].dist_startup_programs
747 748
        self._feed_vars[mode] = self._dist_contexts[mode].serial_feed_vars
        self._fetch_vars[mode] = self._dist_contexts[mode].serial_fetch_vars
Z
zhaoyingli 已提交
749
        self._optimizer = self._dist_contexts[mode]._serial_optimizer
750

751 752 753 754
        if self._nranks > 1:
            # Traverse different rank programs and traverse each op of them,
            # instantiate communication by process_mapping.
            all_process_groups = get_all_process_groups()
C
caozhou 已提交
755
            cur_rank = self._cur_rank
756 757 758
            # NOTE: After the implementation of the unified dynamic and static communication group
            # initialization mode in the future, the initialization logic of full mode
            # will be removed because port occupation error may occur.
759
            if self._strategy.auto_mode == "full":
760 761 762
                auto_utils.initialize_pg_in_full_mode(
                    all_process_groups, cur_rank
                )
763 764
            else:
                for process_group in all_process_groups:
C
caozhou 已提交
765
                    if cur_rank not in process_group.ranks:
766 767
                        continue
                    process_group.instantiate()
768

769 770 771
        self._place = _get_device()
        if isinstance(self._place, fluid.CUDAPlace):
            self._place = fluid.CUDAPlace(ParallelEnv().dev_id)
772

773 774 775 776 777
        if self._strategy.seed:
            paddle.seed(self._strategy.seed + self._dp_ranks[0])
            np.random.seed(self._strategy.seed + self._dp_ranks[0])
            random.seed(self._strategy.seed + self._dp_ranks[0])

778
        if self._dygraph_mode:
779 780
            dist_context = self._dist_contexts[mode]
            dist_main_program = self._dist_main_progs[mode][self._cur_rank]
781 782 783
            self.program_helper.init(
                dist_main_program, self._place, dist_context
            )
784

785
        if self._executor is None:
786
            self._executor = paddle.static.Executor(self._place)
787 788 789 790 791 792 793 794 795 796
            uninitialized = []
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            for var in dist_startup_prog.list_vars():
                scope_var = global_scope().find_var(var.name)
                if scope_var and scope_var.get_tensor()._is_initialized():
                    continue
                uninitialized.append(var)
            if uninitialized:
                prune_startup_prog = dist_startup_prog._prune(uninitialized)
                self._executor.run(prune_startup_prog)
797

798
            if hasattr(self, "_state_dict") and hasattr(self, "_dist_attr"):
799 800 801
                self._set_state_dict(
                    mode, self._strict, self._state_dict, self._dist_attr
                )
802 803

        if self._strategy.reinit:
Z
zhaoyingli 已提交
804
            self._logger.info("NOTE: parameters will be re-initialized.")
805 806 807
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            self._executor.run(dist_startup_prog)

808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
    def fit(
        self,
        train_data,
        train_sample_split=None,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        log_freq=10,
        save_dir=None,
        save_freq=1,
        valid_data=None,
        valid_sample_split=None,
        valid_freq=1,
        valid_steps=None,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
826 827 828 829 830 831 832 833
        """
        Trains the model for a fixed number of epochs. If `valid_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
            train_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            train_sample_split (int, optional): Each sample of the train dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
834
                more than two items, train_sample_split specifies how to split these items into
835
                input and label. The items before it are input and the left are label. Default: None.
836
            batch_size (int, optional): The batch size of train_data and valid_data if provided.
837 838 839
                The user's data will be used directly without batching if set to None. Default: 1.
            epochs (int, optional): The number of epochs to train the model. Default: 1.
            steps_per_epoch (int, optional): The total number of steps (batches of samples)
840
                is executed in one epoch before stating the next one. If None, it is equal to
841 842
                the number samples in your dataset divided by the batch size. Default: None.
            valid_data (Dataset, optional): An instance of paddle paddle.io.Dataset used for
843
                evaluation at the end of epoch. No evaluation will be done if set to None.
844
                Default: None. (Unsupported for now)
845
            valid_freq (int, optional): Only relevant if valid_data is provided. This specifies
846 847
                how many training epochs before a new evaluation is performed. Default: 1.
            valid_sample_split (int, optional): Only relevant if valid_data is provided.
848 849
                Each sample of the valid dataset is assumed to be a (input, label) pair
                by default and has two items. If each sample has more than two items,
850 851 852
                valid_sample_split specifies how to split these items into input and label.
                The items before it are input and the left are label. Default: None.
            valid_steps (int, optional): Only relevant if valid_data is provided.
853 854
                It is the total number of steps (batches of samples) to draw before
                stopping validation at the end of every epoch. If None, validation will run until the
855 856 857 858
                `valid_data` dataset is exhausted. The validation will start from the
                beginning of the dataset at each epoch. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
859
                0. Default None.
860 861 862 863 864 865 866 867 868 869 870 871
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during training. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
872
                from paddle.distributed.fleet import auto
873 874 875 876 877 878 879 880 881
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
882
                loss = paddle.nn.CrossEntropyLoss()
883 884 885 886
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

887
                engine = auto.Engine(model, loss, optimizer, metrics)
888 889 890 891
                engine.fit(train_dataset,
                           epochs=2,
                           batch_size=64)
        """
892 893
        self._mode = 'train'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
894 895
            train_data, train_sample_split, batch_size
        )
896 897
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
898
        else:
899
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
900

901 902 903 904 905 906 907
        train_dataloader = self._prepare_dataloader_from_generator(
            dataset=train_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
908 909
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
910

911
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
Z
zhaoyingli 已提交
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937

        cbks = config_callbacks(
            callbacks,
            engine=self,
            batch_size=batch_size,
            epochs=epochs,
            steps=train_dataloader._steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
            metrics=self._metrics_name(),
            acc_step=self._k_steps,
        )

        cbks.on_begin('train')
        for epoch in range(epochs):
            logs = {}
            cbks.on_epoch_begin(epoch)
            for step, _ in enumerate(train_dataloader):
                cbks.on_batch_begin('train', step, logs)
                try:
                    outs = self._executor.run(
                        self.main_program,
                        fetch_list=fetch_names,
                        use_program_cache=self._strategy.use_cache,
938 939
                        return_numpy=self._strategy.return_numpy,
                    )
Z
zhaoyingli 已提交
940 941
                except core.EOFException:
                    break
942
                lr = auto_utils.get_lr(self._optimizer)
943 944 945 946 947 948 949 950 951
                logs = self._prepare_logger(
                    outs,
                    epoch,
                    step,
                    lr,
                    fetch_names,
                    fetch_indices,
                    self._mode,
                )
Z
zhaoyingli 已提交
952 953 954
                cbks.on_batch_end('train', step, logs)

            if valid_data and (epoch + 1) % valid_freq == 0:
955 956 957 958 959 960 961 962 963 964
                val_logs = self.evaluate(
                    valid_data,
                    valid_sample_split,
                    batch_size,
                    valid_steps,
                    log_freq,
                    collate_fn,
                    callbacks,
                    verbose,
                )
Z
zhaoyingli 已提交
965
                val_logs = {
966
                    "val_" + name: val for name, val in val_logs.items()
Z
zhaoyingli 已提交
967 968 969 970 971 972 973 974 975 976
                }
                logs.update(val_logs)
                self._switch_mode("train")
            else:
                self._reset_metrics()

            cbks.on_epoch_end(epoch, logs)

        cbks.on_end('train', logs)
        return self.history
977

978 979 980 981 982 983 984 985 986 987 988
    def evaluate(
        self,
        valid_data,
        valid_sample_split=None,
        batch_size=1,
        steps=None,
        log_freq=10,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
989 990 991 992
        """
        Evaluate the loss and metrics of the model on evaluation data.

        Args:
993 994
            valid_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            valid_sample_split (int, optional): Each sample of the eval dataset is assumed
995
                to be a (input, label) pair by default and has two items. If each sample has
996
                more than two items, valid_sample_split specifies how to split these items into
997
                input and label. The items before it are input and the left are label. Default: None.
998
            batch_size (int, optional): The batch size of valid_data. The user's data will
999
                be used directly without batching if set to None. Default: 1.
1000 1001
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping evaluation. If None, evaluation will run until the `valid_data` dataset is exhausted.
1002 1003 1004 1005 1006
                The evaluation will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
1007
                during evaluating. Default: None. (Unused for now)
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
1018
                from paddle.distributed.fleet import auto
1019 1020 1021 1022 1023 1024 1025 1026 1027
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                valid_dataset = MNIST(mode='test', transform=transform)

                model = paddle.vision.models.LeNet()
1028
                loss = paddle.nn.CrossEntropyLoss()
1029 1030
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1031
                engine = auto.Engine(model, loss, metrics=metrics)
1032 1033 1034
                engine.evaluate(valid_dataset, batch_size=64)

        """
1035 1036
        self._mode = 'eval'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1037 1038
            valid_data, valid_sample_split, batch_size
        )
1039 1040
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
1041
        else:
1042
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
1043

1044 1045 1046 1047 1048 1049
        valid_dataloader = self._prepare_dataloader_from_generator(
            dataset=valid_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            steps_per_epoch=steps,
1050 1051
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
1052

1053
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
1054

Z
zhaoyingli 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
        cbks = config_callbacks(
            callbacks,
            engine=self,
            batch_size=batch_size,
            log_freq=log_freq,
            verbose=verbose,
            metrics=self._metrics_name(),
        )

        eval_steps = valid_dataloader._steps
1065 1066 1067
        cbks.on_begin(
            'eval', {'steps': eval_steps, 'metrics': self._metrics_name()}
        )
Z
zhaoyingli 已提交
1068
        logs = {}
1069
        for step, _ in enumerate(valid_dataloader):
Z
zhaoyingli 已提交
1070
            cbks.on_batch_begin('eval', step, logs)
1071
            try:
1072 1073
                outs = self._executor.run(
                    self.main_program,
1074
                    fetch_list=fetch_names,
1075
                    use_program_cache=self._strategy.use_cache,
1076 1077
                    return_numpy=self._strategy.return_numpy,
                )
1078
            except core.EOFException:
1079
                break
1080 1081 1082
            logs = self._prepare_logger(
                outs, None, step, None, fetch_names, fetch_indices, self._mode
            )
Z
zhaoyingli 已提交
1083 1084
            cbks.on_batch_end('eval', step, logs)
        cbks.on_end('eval', logs)
1085
        self._reset_metrics()
Z
zhaoyingli 已提交
1086
        return logs
1087

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
    def predict(
        self,
        test_data,
        test_sample_split=None,
        batch_size=1,
        steps=None,
        collate_fn=None,
        callbacks=None,
        verbose=2,
    ):
1098 1099 1100 1101 1102 1103 1104
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset): An instance of paddle paddle.io.Dataset. Default: None.
            test_sample_split (int, optional): Each sample of the test dataset is assumed
                to be a (input, label) pair by default and has two items. If each sample has
1105
                more than two items, test_sample_split specifies how to split these items into
1106 1107 1108
                input and label. The items before it are input and the left are label. Default: None.
            batch_size (int, optional): The batch size of test_data. The user's data will
                be used directly without batching if set to None. Default: 1.
1109 1110
            steps (int, optional): It is the total number of steps (batches of samples) to draw before
                stopping predict. If None, predict will run until the `test_data` dataset is exhausted.
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
                The predict will start from the beginning of the dataset in each run. Default: None.
            collate_fn(callable, optional): function to generate mini-batch data by merging
                the sample list, None for only stack each fields of sample in axis
                0. Default None.
            callbacks (Callback|None, optional): A list of `Callback` instances to apply
                during testing. Default: None. (Unused for now)

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle
                import paddle.vision.transforms as T
1127
                from paddle.distributed.fleet import auto
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                valid_dataset = MNIST(mode='test', transform=transform)

                model = paddle.vision.models.LeNet()

1138
                engine = auto.Engine(model)
1139 1140
                engine.predict(valid_dataset, batch_size=64)
        """
1141 1142
        self._mode = 'predict'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1143 1144
            test_data, test_sample_split, batch_size
        )
1145 1146
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
Z
zhaoyingli 已提交
1147
        else:
1148
            self._switch_mode(self._mode)
Z
zhaoyingli 已提交
1149

1150 1151 1152 1153 1154 1155
        test_dataloader = self._prepare_dataloader_from_generator(
            dataset=test_data,
            capacity=70,
            iterable=False,
            batch_size=batch_size,
            steps_per_epoch=steps,
1156 1157
            collate_fn=collate_fn,
        )
Z
zhaoyingli 已提交
1158

1159
        fetch_names, fetch_indices = self._prepare_fetch(None, mode=self._mode)
1160

Z
zhaoyingli 已提交
1161 1162 1163 1164 1165
        outputs = []
        cbks = config_callbacks(callbacks, engine=self, verbose=verbose)
        test_steps = test_dataloader._steps
        cbks.on_begin('predict', {'steps': test_steps})
        logs = {}
1166
        for step, _ in enumerate(test_dataloader):
Z
zhaoyingli 已提交
1167
            cbks.on_batch_begin('predict', step, logs)
1168
            try:
1169 1170
                outs = self._executor.run(
                    self.main_program,
1171
                    fetch_list=fetch_names,
1172
                    use_program_cache=self._strategy.use_cache,
1173 1174
                    return_numpy=self._strategy.return_numpy,
                )
1175
            except core.EOFException:
1176
                break
1177 1178 1179
            logs = self._prepare_logger(
                outs, None, step, None, fetch_names, fetch_indices, self._mode
            )
Z
zhaoyingli 已提交
1180 1181 1182 1183 1184
            cbks.on_batch_end('predict', step, logs)
            outputs.append(list(logs["outputs"].values()))
        cbks.on_end('predict', logs)
        return outputs

1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
    def dataloader(
        self,
        dataset,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        epochs=1,
        steps_per_epoch=None,
        sample_split=1,
        mode=None,
    ):
1202 1203 1204
        if mode is not None:
            self.to_mode(mode)
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1205 1206
            dataset, sample_split, batch_size
        )
1207 1208
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
1209
        else:
1210
            self._switch_mode(self._mode)
1211

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
        dataloader = self._prepare_dataloader(
            dataset,
            return_list=False,
            batch_size=batch_size,
            shuffle=shuffle,
            drop_last=drop_last,
            collate_fn=collate_fn,
            num_workers=num_workers,
            use_buffer_reader=use_buffer_reader,
            use_shared_memory=use_shared_memory,
            timeout=timeout,
            worker_init_fn=worker_init_fn,
            epochs=epochs,
1225 1226
            steps_per_epoch=steps_per_epoch,
        )
1227 1228
        return dataloader

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
    def dataloader_from_generator(
        self,
        dataset,
        capacity=70,
        use_double_buffer=True,
        iterable=True,
        use_multiprocess=False,
        drop_last=True,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        collate_fn=None,
        sample_split=1,
        mode=None,
    ):
1244 1245 1246
        if mode is not None:
            self.to_mode(mode)
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1247 1248
            dataset, sample_split, batch_size
        )
1249 1250 1251 1252
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
        else:
            self._switch_mode(self._mode)
1253

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
        dataloader = self._prepare_dataloader_from_generator(
            dataset=dataset,
            capacity=capacity,
            use_double_buffer=use_double_buffer,
            iterable=iterable,
            return_list=False,
            use_multiprocess=use_multiprocess,
            drop_last=drop_last,
            batch_size=batch_size,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
1265 1266
            collate_fn=collate_fn,
        )
1267 1268
        return dataloader

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
    def prepare(
        self,
        inputs_spec=None,
        labels_spec=None,
        inputs=None,
        labels=None,
        main_program=None,
        startup_program=None,
        mode=None,
    ):
1279 1280
        if mode is not None:
            self.to_mode(mode)
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296

        if not self._mode:
            raise ValueError(
                "Please set mode to be prepared with `prepare(mode=...)`"
            )

        if self._has_prepared[self._mode]:
            return

        inputs_spec = self._validate_spec(inputs_spec)
        labels_spec = self._validate_spec(labels_spec)
        inputs = self._validate_vars(inputs)
        labels = self._validate_vars(labels)

        self._orig_main_prog = main_program
        self._orig_startup_prog = startup_program
1297 1298
        if inputs or labels:
            self._skip_build = True
1299 1300
            inputs, labels = self._prepare_data_tensor(
                inputs_spec, labels_spec, inputs, labels
1301
            )
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
            if self._orig_main_prog is None:
                self._orig_main_prog = static.default_main_program()
            if self._orig_startup_prog is None:
                self._orig_startup_prog = static.default_startup_program()
        elif inputs_spec or labels_spec:
            self._outside_dataloader = True
            if self._orig_main_prog is None:
                self._orig_main_prog = static.default_main_program()
            if self._orig_startup_prog is None:
                self._orig_startup_prog = static.default_startup_program()
        else:
1313 1314 1315
            assert (
                self._inputs_spec and self._labels_spec
            ), "Please call the dataloader(...) before calling prepare(...)"
1316

1317 1318 1319 1320 1321 1322 1323
        self._inputs_spec, self._labels_spec = inputs_spec, labels_spec
        self._inputs, self._labels = inputs, labels
        if not self._has_prepared[self._mode]:
            self._prepare_program(self._mode)
        else:
            self._switch_mode(self._mode)

1324
    def run(self, data=None, feed=None, fetch_list=None, mode=None):
1325 1326 1327 1328
        if mode is not None:
            self.to_mode(mode)
        feed_dict = self._prepare_feed(data, feed, self._mode)
        fetch_names, fetch_indices = self._prepare_fetch(fetch_list, self._mode)
1329 1330 1331 1332
        if (
            self._outside_dataloader
            and not self._has_prepared_reader[self._mode]
        ):
1333
            self._prepare_reader()
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
        outs = self._executor.run(
            self.main_program,
            feed=feed_dict,
            fetch_list=fetch_names,
            use_program_cache=self._strategy.use_cache,
            return_numpy=self._strategy.return_numpy,
        )
        logs = self._prepare_logger(
            outs, None, None, None, fetch_names, fetch_indices, self._mode
        )
Z
zhaoyingli 已提交
1344
        return logs
1345

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
    def _prepare_dataloader(
        self,
        dataset,
        return_list=True,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        epochs=1,
        steps_per_epoch=None,
    ):
1362

1363
        if self._strategy.gradient_merge and batch_size is not None:
1364 1365 1366 1367 1368
            assert (
                batch_size % self._k_steps == 0
            ), "Requires batch_size:[{}] to be divisible by k_steps:[{}].".format(
                batch_size, self._k_steps
            )
1369
            batch_size //= self._k_steps
1370

1371 1372
        dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self._mode][self._cur_rank]
1373
        dist_main_block = dist_main_prog.global_block()
1374

1375 1376 1377 1378
        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
1379 1380
        inputs_var = self._feed_vars[self._mode]["inputs"]
        labels_var = self._feed_vars[self._mode]["labels"]
1381 1382 1383 1384
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
1385 1386 1387 1388
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)
1389 1390

        # insert read op at the end of program
1391
        places = paddle.static.cuda_places()
1392
        with static.program_guard(dist_main_prog, dist_startup_prog):
1393
            dataloader = DistributedDataLoader(
1394
                dataset,
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
                feed_list=feed_list,
                places=places,
                return_list=return_list,
                batch_size=batch_size,
                shuffle=shuffle,
                drop_last=drop_last,
                collate_fn=collate_fn,
                num_workers=num_workers,
                use_buffer_reader=use_buffer_reader,
                use_shared_memory=use_shared_memory,
                timeout=timeout,
                worker_init_fn=worker_init_fn,
                epochs=epochs,
                steps_per_epoch=steps_per_epoch,
                split_data=self._strategy.split_data,
1410
                data_parallel_world_size=self._dp_world_sizes,
1411 1412
                data_parallel_rank=self._dp_ranks,
            )
1413

1414 1415
        return dataloader

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
    def _prepare_dataloader_from_generator(
        self,
        dataset,
        capacity=None,
        use_double_buffer=True,
        iterable=True,
        return_list=False,
        use_multiprocess=False,
        drop_last=True,
        batch_size=1,
        epochs=1,
        steps_per_epoch=None,
        collate_fn=None,
    ):
1430 1431

        if self._strategy.gradient_merge and batch_size is not None:
1432 1433 1434 1435 1436
            assert (
                batch_size % self._k_steps == 0
            ), "Requires batch_size:[{}] to be divisible by k_steps:[{}].".format(
                batch_size, self._k_steps
            )
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
            batch_size //= self._k_steps

        dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self._mode][self._cur_rank]
        dist_main_block = dist_main_prog.global_block()

        # NOTE: Get feed_list, then insert dataloader op with sharded var shape.
        # Cause predict_program does not contain labels var,
        # then we will add labels var from serial_program to dist_program,
        # that maintains the length of feed_list equal to the length of dataset's values.
        inputs_var = self._feed_vars[self._mode]["inputs"]
        labels_var = self._feed_vars[self._mode]["labels"]
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])
            else:
                copy_var = dist_main_block._clone_variable(var, var.persistable)
                copy_var.desc.set_original_id(var.desc.original_id())
                feed_list.append(copy_var)

        places = paddle.static.cuda_places()
        with static.program_guard(dist_main_prog, dist_startup_prog):
            dataloader = DistributedDataLoaderFromGenerator(
                dataset=dataset,
                feed_list=feed_list,
                capacity=capacity,
                use_double_buffer=use_double_buffer,
                iterable=iterable,
                return_list=return_list,
                use_multiprocess=use_multiprocess,
                drop_last=drop_last,
                places=places,
                batch_size=batch_size,
                epochs=epochs,
                steps_per_epoch=steps_per_epoch,
                collate_fn=collate_fn,
                split_data=self._strategy.split_data,
                data_parallel_world_size=self._dp_world_sizes,
1476 1477
                data_parallel_rank=self._dp_ranks,
            )
1478 1479 1480 1481 1482 1483
        self._prepare_reader()
        return dataloader

    def _tune(self, tune_data, tune_sample_split=None, batch_size=1):
        self._mode = 'train'
        self._inputs_spec, self._labels_spec = self._prepare_data_spec(
1484 1485
            tune_data, tune_sample_split, batch_size
        )
1486 1487
        self._optimization_tuning(self._mode, tune_data, batch_size)

1488
    def _validate_spec(self, specs):
1489
        specs = auto_utils.to_list(specs)
1490
        self._k_steps = self._strategy.gradient_merge.k_steps
1491 1492
        if specs is not None:
            for i, spec in enumerate(specs):
1493 1494 1495 1496
                if not isinstance(spec, InputSpec):
                    raise TypeError(
                        "'spec' must be object of class `paddle.static.InputSpec`."
                    )
1497 1498
                if spec.name is None:
                    raise ValueError(
1499 1500 1501 1502
                        "Requires Input[{}].name != None, but receive `None` with {}.".format(
                            i, spec
                        )
                    )
1503
                if self._k_steps > 1:
1504
                    shape = list(spec.shape)
1505 1506 1507 1508 1509
                    assert (
                        shape[0] % self._k_steps == 0
                    ), "Requires batch_size[{}] to be divisible by k_steps[{}].".format(
                        spec.shape[0], self._k_steps
                    )
1510
                    shape[0] //= self._k_steps
1511
                    spec.shape = shape
1512 1513 1514
        return specs or []

    def _validate_vars(self, vars):
1515
        vars = auto_utils.to_list(vars)
1516 1517 1518 1519 1520
        if vars is not None:
            for i, var in enumerate(vars):
                if not isinstance(var, Variable):
                    raise TypeError("'var' must be a `Variable`.")
        return vars or []
1521

1522 1523 1524 1525
    def _is_local_var(self, var):
        var_name = _to_name_str(var)
        return var_name in self.main_program.global_block().vars

1526 1527 1528 1529
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

Z
zhaoyingli 已提交
1530 1531 1532
    def _metrics_name(self):
        metrics_name = ['loss'] if self._loss else []
        for m in self._metrics:
1533
            metrics_name.extend(auto_utils.to_list(m.name()))
Z
zhaoyingli 已提交
1534 1535
        return metrics_name

1536
    def _switch_mode(self, mode):
1537 1538 1539
        assert (
            mode in self._dist_main_progs
        ), "{} model is not ready, please call `prepare()` first.".format(mode)
1540
        self.to_mode(mode)
Z
zhaoyingli 已提交
1541
        self._optimizer = self._dist_contexts[mode]._serial_optimizer
1542

1543
    def to_mode(self, mode):
1544 1545 1546 1547 1548
        assert mode in [
            "train",
            "eval",
            "predict",
        ], "mode {} should be one of ['train', 'eval', 'predict']".format(mode)
1549 1550
        self._mode = mode

1551 1552 1553
    def _set_state_dict(self, mode, strict, state_dict, dist_attr):
        program = self._dist_main_progs[mode][self._cur_rank]
        dist_context = self._dist_contexts[mode]
1554
        cur_dist_attr = auto_utils.get_dist_attr(program, dist_context)
1555 1556 1557 1558 1559
        converter = Converter(state_dict, dist_attr, cur_dist_attr)
        state_dict = converter.convert(strict=strict)
        program.set_state_dict(state_dict)

    def save(self, path, training=True):
1560 1561
        """
        Saves the model, parameters, optimizer state to path.
1562 1563 1564 1565 1566 1567 1568
        If `training` is set to False, only inference model will be saved.

        Args:
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
            training (bool, optional): Whether to save for training. If not, save
1569
                for inference only. If `training` is set to True, the optimizer state
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
                will be saved. Otherwise, only the model and parameters are saved.
                This function will silently overwrite existing file at the target
                location. Default: True.

        Returns:
            None

        Examples:

            .. code-block:: python
                import paddle
                import paddle.vision.transforms as T
1582
                from paddle.distributed.fleet import auto
1583 1584 1585 1586 1587 1588 1589 1590 1591
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
1592
                loss = paddle.nn.CrossEntropyLoss()
1593 1594 1595 1596
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1597
                engine = auto.Engine(model, loss, optimizer, metrics)
1598 1599 1600 1601
                engine.fit(train_dataset,
                           epochs=1,
                           batch_size=64)
                engine.save("./my_model")
1602

1603
        """
1604
        if training:
Z
zhaoyingli 已提交
1605 1606 1607 1608
            assert self._mode in self._serial_main_progs
            serial_program = self._serial_main_progs[self._mode]
            dist_main_prog = self._dist_main_progs[self._mode][self._cur_rank]
            dist_context = self._dist_contexts[self._mode]
1609 1610 1611 1612 1613 1614
            self._saver.save(
                path,
                serial_program=serial_program,
                dist_main_program=dist_main_prog,
                dist_context=dist_context,
            )
1615
        else:
Z
zhaoyingli 已提交
1616 1617 1618 1619
            assert "predict" in self._dist_main_progs
            feed_vars = self._feed_vars["predict"]['inputs']
            fetch_vars = self._fetch_vars["predict"]['outputs']
            dist_main_prog = self._dist_main_progs["predict"][self._cur_rank]
1620
            if self._strategy.qat.enable and self._strategy.qat.onnx_format:
1621
                from paddle.static.quantization import QuantWeightPass
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633

                self._logger.info("export quantized model.")
                self._logger.info(
                    "convert config {}".format(self._strategy.qat.to_dict())
                )
                test_graph = IrGraph(
                    core.Graph(dist_main_prog.desc), for_test=True
                )
                quant_weight_pass = QuantWeightPass(global_scope(), self._place)
                for sub_graph in test_graph.all_sub_graphs():
                    quant_weight_pass.apply(sub_graph)
                dist_main_prog = test_graph.to_program()
1634 1635 1636 1637 1638 1639 1640
            self._saver.save_inference_model(
                path,
                feed_vars,
                fetch_vars,
                self._executor,
                program=dist_main_prog,
            )
1641

1642 1643 1644 1645 1646 1647
    def load(self, path, strict=True, load_optimizer=True):
        """
        Load the stored model, parameters and optimizer states.

        Args:
            path (str): The prefix of files storing the model states and
1648
                optimizer states.
1649 1650 1651
            strict (bool, optional): Whether to skip the loading of mismatch
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
1652
                mismatch shape). Default: True.
1653
            load_optimizer (bool, optional): If True, the stored optimizer
1654
                states is restored. Otherwise, the optimizer states is initialized
1655
                from scratch. Default: True.
1656 1657 1658 1659 1660 1661 1662 1663 1664

        Returns:
            None

        Examples:

            .. code-block:: python
                import paddle
                import paddle.vision.transforms as T
1665
                from paddle.distributed.fleet import auto
1666 1667 1668 1669 1670 1671 1672 1673 1674
                from paddle.vision.datasets import MNIST

                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                train_dataset = MNIST(mode='train', transform=transform)

                model = paddle.vision.models.LeNet()
1675
                loss = paddle.nn.CrossEntropyLoss()
1676 1677 1678 1679
                optimizer = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=model.parameters())
                metrics = paddle.metric.Accuracy(topk=(1, 2))

1680
                engine = auto.Engine(model, loss, optimizer, metrics)
1681 1682 1683 1684 1685
                engine.fit(train_dataset,
                           epochs=1,
                           batch_size=64)
                engine.save("./my_model")
                engine.load("./my_model")
1686

1687 1688 1689
        """
        self._strict = strict
        self._state_dict, self._dist_attr = self._saver.load(
1690 1691
            path, load_optimizer
        )
1692
        return self._state_dict, self._dist_attr
1693

1694
    def cost(self, inputs_spec=None, labels_spec=None, mode=None):
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
        """
        Get and Print cost, including memory of every rank,
        max memory among all ranks, and the global cost of one step based on
        communication cost(computation cost is 0 by default).
        In the future, the flops information of every rank and global cost including
        computation cost will be added.

        Args:
            inputs_spec(InputSpec): The specification of inputs. Default: None.
            labels_spec(InputSpec): The specification of labels. Default: None.
1705
            mode (str): The engine mode must be in ["train", "predict", "eval"]. Default: None.
1706 1707 1708 1709 1710 1711 1712

        Returns:
            Return the global execution time (ms) and max memory (B).

        """
        # Check parallel mode
        if self._strategy.auto_mode == "full":
1713
            self._logger.info(
1714 1715 1716 1717 1718
                "The cost will be calcudated in the search process when the auto mode is full."
            )
            return

        # Check mode
1719 1720 1721
        mode = mode if mode is not None else self._mode
        assert mode is not None, "Please set mode."
        if mode not in self._has_prepared:
1722 1723
            raise ValueError(
                "The mode {} is not in accepted modes {}".format(
1724
                    mode, list(self._has_prepared.keys())
1725 1726
                )
            )
1727 1728
        self.to_mode(mode)

1729 1730 1731
        if inputs_spec is not None and not self._has_prepared[mode]:
            self._inputs_spec = self._validate_spec(inputs_spec)
            self._labels_spec = self._validate_spec(labels_spec)
1732 1733 1734
            self._build(mode)
            self._plan(mode)
        else:
1735
            if in_dygraph_mode() or self._dygraph_mode:
1736
                raise ValueError(
1737 1738 1739 1740 1741
                    "Please call `prepare()` or `fit()` or  `evaluate()` or  `predict()` before calling `cost()`."
                )
            else:
                self._logger.info(
                    "The program whose cost to be estimated must be static default program. Otherwise, please call `prepare()`before calling `cost()`."
1742
                )
1743 1744 1745 1746 1747 1748 1749 1750
                program = paddle.static.default_main_program()
                if (
                    not program.global_block().ops
                    or not program.global_block().ops
                ) and not self._has_prepared[mode]:
                    raise ValueError(
                        "Please call `prepare()` or `fit()` or  `evaluate()` or  `predict()` before calling `cost()`."
                    )
1751 1752 1753 1754 1755 1756

        # Estimate the exec cost and max memory
        global_cost, max_memory = get_cost_from_engine(self, mode)

        return global_cost.time, max_memory

1757 1758
    @property
    def main_program(self):
1759
        return self._dist_main_progs[self._mode][self._cur_rank]
1760 1761 1762

    @property
    def startup_program(self):
1763
        return self._dist_startup_progs[self._mode][self._cur_rank]
1764 1765 1766

    @property
    def dist_context(self):
1767
        return self._dist_contexts[self._mode]
1768 1769 1770

    @property
    def serial_main_program(self):
1771
        return self._serial_main_progs[self._mode]
1772 1773 1774

    @property
    def serial_startup_program(self):
1775
        return self._serial_startup_progs[self._mode]
1776 1777 1778

    @property
    def fetch_vars(self):
1779
        return self._fetch_vars[self._mode]
1780 1781 1782

    @property
    def inputs(self):
1783
        return self._inputs
1784 1785 1786

    @property
    def labels(self):
1787
        return self._labels