test_sign_op.py 6.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
19
from op_test import OpTest
W
WangXi 已提交
20
import paddle
21
import paddle.fluid as fluid
22
import paddle.fluid.core as core
23
from paddle.fluid import Program, program_guard
24 25 26
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
27 28 29


class TestSignOp(OpTest):
30

31 32 33
    def setUp(self):
        self.op_type = "sign"
        self.inputs = {
34
            'X': np.random.uniform(-10, 10, (10, 10)).astype("float64")
35 36 37 38 39 40 41 42 43 44
        }
        self.outputs = {'Out': np.sign(self.inputs['X'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


45
class TestSignOpError(unittest.TestCase):
46

47 48 49 50 51
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of sign_op must be Variable or numpy.ndarray.
            input1 = 12
            self.assertRaises(TypeError, fluid.layers.sign, input1)
52
            # The input dtype of sign_op must be float16, float32, float64.
53 54 55 56 57 58
            input2 = fluid.layers.data(name='input2',
                                       shape=[12, 10],
                                       dtype="int32")
            input3 = fluid.layers.data(name='input3',
                                       shape=[12, 10],
                                       dtype="int64")
59 60
            self.assertRaises(TypeError, fluid.layers.sign, input2)
            self.assertRaises(TypeError, fluid.layers.sign, input3)
61 62 63
            input4 = fluid.layers.data(name='input4',
                                       shape=[4],
                                       dtype="float16")
64
            fluid.layers.sign(input4)
65 66


W
WangXi 已提交
67
class TestSignAPI(unittest.TestCase):
68

W
WangXi 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([-1., 0., -0., 1.2, 1.5], dtype='float64')
            x = paddle.to_tensor(np_x)
            z = paddle.sign(x)
            np_z = z.numpy()
            z_expected = np.sign(np_x)
            self.assertEqual((np_z == z_expected).all(), True)

    def test_static(self):
        with program_guard(Program(), Program()):
            # The input type of sign_op must be Variable or numpy.ndarray.
            input1 = 12
            self.assertRaises(TypeError, paddle.tensor.math.sign, input1)
            # The input dtype of sign_op must be float16, float32, float64.
84 85 86 87 88 89
            input2 = fluid.layers.data(name='input2',
                                       shape=[12, 10],
                                       dtype="int32")
            input3 = fluid.layers.data(name='input3',
                                       shape=[12, 10],
                                       dtype="int64")
W
WangXi 已提交
90 91
            self.assertRaises(TypeError, paddle.tensor.math.sign, input2)
            self.assertRaises(TypeError, paddle.tensor.math.sign, input3)
92 93 94
            input4 = fluid.layers.data(name='input4',
                                       shape=[4],
                                       dtype="float16")
W
WangXi 已提交
95 96 97
            paddle.sign(input4)


98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
class TestSignDoubleGradCheck(unittest.TestCase):

    def sign_wrapper(self, x):
        return paddle.sign(x[0])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [1, 4], False, dtype)
        data.persistable = True
        out = paddle.sign(data)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

        gradient_checker.double_grad_check([data],
                                           out,
                                           x_init=[data_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.double_grad_check_for_dygraph(self.sign_wrapper,
                                                       [data],
                                                       out,
                                                       x_init=[data_arr],
                                                       place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestSignTripleGradCheck(unittest.TestCase):

    def sign_wrapper(self, x):
        return paddle.sign(x[0])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [1, 4], False, dtype)
        data.persistable = True
        out = paddle.sign(data)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

        gradient_checker.triple_grad_check([data],
                                           out,
                                           x_init=[data_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.triple_grad_check_for_dygraph(self.sign_wrapper,
                                                       [data],
                                                       out,
                                                       x_init=[data_arr],
                                                       place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


172
if __name__ == "__main__":
173
    paddle.enable_static()
174
    unittest.main()