MKLDNNFcLayer.cpp 10.6 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "MKLDNNFcLayer.h"
T
tensor-tang 已提交
16
#include "paddle/utils/Logging.h"
T
tensor-tang 已提交
17

T
tensor-tang 已提交
18 19 20
using namespace mkldnn;  // NOLINT
typedef memory::format format;

T
tensor-tang 已提交
21 22
namespace paddle {

23
REGISTER_LAYER(mkldnn_fc, MKLDNNFcLayer);
T
tensor-tang 已提交
24

25
bool MKLDNNFcLayer::init(const LayerMap& layerMap,
T
tensor-tang 已提交
26
                         const ParameterMap& parameterMap) {
27
  if (!MKLDNNLayer::init(layerMap, parameterMap)) {
T
tensor-tang 已提交
28 29 30
    return false;
  }

T
tensor-tang 已提交
31
  CHECK_EQ(inputLayers_.size(), 1) << "Only support one input layer yet";
T
tensor-tang 已提交
32 33 34 35 36 37 38
  CHECK_EQ(inputLayers_.size(), parameters_.size());
  CHECK(!parameters_[0]->isSparse()) << "Do not support sparse yet";

  // output size, cat not be changed
  oc_ = getSize();
  oh_ = 1;
  ow_ = 1;
39 40
  ih_ = 1;
  iw_ = 1;
T
tensor-tang 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

  // input size can not change in FC
  iLayerSize_ = inputLayers_[0]->getSize();
  CHECK_EQ(parameters_[0]->getSize(), iLayerSize_ * oc_);

  // create weight
  weight_ =
      std::unique_ptr<Weight>(new Weight(oc_, iLayerSize_, parameters_[0], 0));

  // create biases
  if (biasParameter_.get() != NULL) {
    biases_ = std::unique_ptr<Weight>(new Weight(1, oc_, biasParameter_));
  }
  return true;
}

57
void MKLDNNFcLayer::convertWeightsFromPaddle() {
T
tensor-tang 已提交
58
  if (hasInitedWgt_) {
T
tensor-tang 已提交
59 60 61
    return;
  }

T
tensor-tang 已提交
62 63 64 65 66
  CHECK(wgtVal_) << "should have been initialized";
  bool hasNoSpatial_ = ih_ == 1 && iw_ == 1;
  auto targetDim = wgtVal_->getDims();
  auto srcFmt = hasNoSpatial_ ? memory::format::io : memory::format::ihwo;
  wgtVal_->reorderDataFrom(wgtVal_, srcFmt, targetDim);
T
tensor-tang 已提交
67 68 69
  hasInitedWgt_ = true;
}

70
void MKLDNNFcLayer::convertWeightsToPaddle() {
T
tensor-tang 已提交
71 72 73 74 75
  CHECK(wgtVal_) << "should have been initialized";
  bool hasNoSpatial_ = ih_ == 1 && iw_ == 1;
  auto targetDim = wgtVal_->getDims();
  auto dstFmt = hasNoSpatial_ ? memory::format::io : memory::format::ihwo;
  wgtVal_->reorderDataTo(wgtVal_, dstFmt, targetDim);
T
tensor-tang 已提交
76 77
}

78 79 80
void MKLDNNFcLayer::reshape(
    int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) {
  reshapeInput(bs, ih, iw);
81

T
tensor-tang 已提交
82
  CHECK_EQ(iLayerSize_, inputLayers_[0]->getSize());
83 84 85
  ic = iLayerSize_ / (ih * iw);
  CHECK_EQ(size_t(ic * ih * iw), iLayerSize_) << "not divisible";
  CHECK_EQ(size_t(oc), getSize());
T
tensor-tang 已提交
86

87 88
  reshapeOutput(oh, ow);
  resizeOutput(bs, oc);
T
tensor-tang 已提交
89

90
  printSizeInfo();
T
tensor-tang 已提交
91 92
}

93
void MKLDNNFcLayer::resetFwd(std::vector<primitive>& pipeline,
94 95 96 97
                             MKLDNNMatrixPtr& in,
                             MKLDNNMatrixPtr& wgt,
                             MKLDNNMatrixPtr& bias,
                             MKLDNNMatrixPtr& out) {
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
  resetFwdBuffers(in, wgt, bias, out);

  resetFwdPD(fwdPD_, in, wgt, bias, out);

  resetFwdPipeline(pipeline, fwdPD_, in, wgt, bias, out);

  printValueFormatFlow();
}

void MKLDNNFcLayer::resetBwd(std::vector<primitive>& pipeline,
                             MKLDNNMatrixPtr& in,
                             MKLDNNMatrixPtr& wgt,
                             MKLDNNMatrixPtr& bias,
                             MKLDNNMatrixPtr& out) {
  std::shared_ptr<fc_bwdWgt::primitive_desc> bwdWgtPD;
  std::shared_ptr<fc_bwdData::primitive_desc> bwdDataPD;

  resetBwdBuffers(in, wgt, bias, out);

  resetBwdWgtPD(bwdWgtPD, wgt, bias, out);

  resetBwdDataPD(bwdDataPD, in, out);

  resetBwdPipeline(pipeline, bwdWgtPD, bwdDataPD, in, wgt, bias, out);

  printGradFormatFlow();
}

void MKLDNNFcLayer::updateInputData() {
  inVal_->setData(getInputValue(0, CPU_DEVICE)->getData());
}
T
tensor-tang 已提交
129

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
void MKLDNNFcLayer::updateWeights(const UpdateCallback& callback) {
  weight_->getParameterPtr()->incUpdate(callback);
  if (biases_ && biases_->getWGrad()) {
    biases_->getParameterPtr()->incUpdate(callback);
  }
}

void MKLDNNFcLayer::resetFwdBuffers(MKLDNNMatrixPtr& in,
                                    MKLDNNMatrixPtr& wgt,
                                    MKLDNNMatrixPtr& bias,
                                    MKLDNNMatrixPtr& out) {
  resetInValue(in);

  resetWgtBiasValue(wgt, bias);

  resetOutValue(out);
}

void MKLDNNFcLayer::resetInValue(MKLDNNMatrixPtr& in) {
T
rename  
tensor-tang 已提交
149
  if (inputIsOnlyMKLDNN()) {
150 151
    const MatrixPtr& dnnIn = getInputValue(0);
    in = std::dynamic_pointer_cast<MKLDNNMatrix>(dnnIn);
152
    CHECK(in) << "Input should be MKLDNNMatrix";
T
tensor-tang 已提交
153
  } else {
154
    CHECK_EQ(getPrev(0)->getDeviceId(), CPU_DEVICE) << "Only support CPU yet";
155
    const MatrixPtr& cpuIn = getInputValue(0, CPU_DEVICE);
156
    in = MKLDNNMatrix::create(
157
        cpuIn, {bs_, ic_, ih_, iw_}, format::nchw, engine_);
T
tensor-tang 已提交
158
  }
159
  in->downSpatial();
160 161 162 163
}

void MKLDNNFcLayer::resetWgtBiasValue(MKLDNNMatrixPtr& wgt,
                                      MKLDNNMatrixPtr& bias) {
164
  wgt = MKLDNNMatrix::create(
165
      weight_->getW(), {oc_, ic_, ih_, iw_}, format::oihw, engine_);
166
  wgt->downSpatial();
T
tensor-tang 已提交
167

168 169 170 171 172 173 174
  bias = (biases_ && biases_->getW())
             ? MKLDNNMatrix::create(biases_->getW(), {oc_}, format::x, engine_)
             : nullptr;
}

void MKLDNNFcLayer::resetOutValue(MKLDNNMatrixPtr& out) {
  out = MKLDNNMatrix::create(output_.value, {bs_, oc_}, format::nc, engine_);
T
rename  
tensor-tang 已提交
175
  if (!outputIsOnlyMKLDNN()) {
T
tensor-tang 已提交
176 177
    // fc cpu output value do not need create convert
    // just share point
178
    getOutput(CPU_DEVICE).value->setData(out->getData());
179
  }
180
}
T
tensor-tang 已提交
181

182 183 184 185 186 187 188 189
void MKLDNNFcLayer::resetFwdPD(std::shared_ptr<fc_fwd::primitive_desc>& pd,
                               MKLDNNMatrixPtr in,
                               MKLDNNMatrixPtr wgt,
                               MKLDNNMatrixPtr bias,
                               MKLDNNMatrixPtr out) {
  CHECK(in);
  CHECK(wgt);
  CHECK(out);
T
tensor-tang 已提交
190
  prop_kind pk = prop_kind::forward;
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
  fc_fwd::desc fwdDesc = bias != nullptr ? fc_fwd::desc(pk,
                                                        in->getMemoryDesc(),
                                                        wgt->getMemoryDesc(),
                                                        bias->getMemoryDesc(),
                                                        out->getMemoryDesc())
                                         : fc_fwd::desc(pk,
                                                        in->getMemoryDesc(),
                                                        wgt->getMemoryDesc(),
                                                        out->getMemoryDesc());
  pd.reset(new fc_fwd::primitive_desc(fwdDesc, engine_));
}

void MKLDNNFcLayer::resetFwdPipeline(
    std::vector<primitive>& pipeline,
    std::shared_ptr<fc_fwd::primitive_desc>& pd,
    MKLDNNMatrixPtr& in,
    MKLDNNMatrixPtr& wgt,
    MKLDNNMatrixPtr& bias,
    MKLDNNMatrixPtr& out) {
  pipeline.clear();

  if (bias) {
    fwd_.reset(new fc_fwd(*pd, *in, *wgt, *bias, *out));
T
tensor-tang 已提交
214
  } else {
215
    fwd_.reset(new fc_fwd(*pd, *in, *wgt, *out));
T
tensor-tang 已提交
216
  }
217

218
  pipeline.push_back(*fwd_);
T
tensor-tang 已提交
219 220
}

221 222 223 224 225 226 227
void MKLDNNFcLayer::resetBwdBuffers(MKLDNNMatrixPtr& in,
                                    MKLDNNMatrixPtr& wgt,
                                    MKLDNNMatrixPtr& bias,
                                    MKLDNNMatrixPtr& out) {
  resetOutGrad(out);

  resetWgtBiasGrad(wgt, bias);
T
tensor-tang 已提交
228

229 230
  resetInGrad(in);
}
T
tensor-tang 已提交
231

232
void MKLDNNFcLayer::resetOutGrad(MKLDNNMatrixPtr& out) {
T
refine  
tensor-tang 已提交
233
  // TODO(TJ): merge outgrad
T
rename  
tensor-tang 已提交
234
  int device = outputIsOnlyMKLDNN() ? MKLDNN_DEVICE : CPU_DEVICE;
T
tensor-tang 已提交
235
  output_.grad->setData(getOutput(device).grad->getData());
T
rename  
tensor-tang 已提交
236 237 238 239 240 241 242
  // for MKLDNN device:
  // can not directly cast outputgrad to mkldnnmatrix,
  // since each layer can not write the inputgrad to mkldnn inputgrad.
  // So just create from matrix with outputvalue format.
  // for CPU device:
  // fc do not need to convert from cpu device since output is always nc format
  // only need create from cpu device
243 244 245 246 247 248 249 250 251 252 253 254 255
  CHECK(outVal_);
  out =
      MKLDNNMatrix::create(getOutput(device).grad, outVal_->getPrimitiveDesc());
}

void MKLDNNFcLayer::resetWgtBiasGrad(MKLDNNMatrixPtr& wgt,
                                     MKLDNNMatrixPtr& bias) {
  CHECK(wgtVal_);
  wgt = MKLDNNMatrix::create(weight_->getWGrad(), wgtVal_->getPrimitiveDesc());

  bias = nullptr;
  if (biasVal_ == nullptr) {
    return;
T
tensor-tang 已提交
256
  }
257 258 259
  bias =
      MKLDNNMatrix::create(biases_->getWGrad(), biasVal_->getPrimitiveDesc());
}
T
tensor-tang 已提交
260

261 262
void MKLDNNFcLayer::resetInGrad(MKLDNNMatrixPtr& in) {
  in = nullptr;
263 264
  const MatrixPtr& inGrad = inputLayers_[0]->getOutput().grad;
  if (inGrad == nullptr) {
T
refine  
tensor-tang 已提交
265 266
    return;
  }
267 268 269 270
  // TODO(TJ): use outputMaps_ ways to get the inGrad_ when merge outgrad done
  CHECK(inVal_);
  in = MKLDNNMatrix::create(inGrad, inVal_->getPrimitiveDesc());
}
T
tensor-tang 已提交
271

272 273 274 275 276 277 278 279 280 281 282 283 284 285
void MKLDNNFcLayer::resetBwdWgtPD(
    std::shared_ptr<fc_bwdWgt::primitive_desc>& pd,
    MKLDNNMatrixPtr& wgt,
    MKLDNNMatrixPtr& bias,
    MKLDNNMatrixPtr& out) {
  CHECK(inVal_);
  fc_bwdWgt::desc bwdWgtDesc = bias ? fc_bwdWgt::desc(inVal_->getMemoryDesc(),
                                                      wgt->getMemoryDesc(),
                                                      bias->getMemoryDesc(),
                                                      out->getMemoryDesc())
                                    : fc_bwdWgt::desc(inVal_->getMemoryDesc(),
                                                      wgt->getMemoryDesc(),
                                                      out->getMemoryDesc());
  pd.reset(new fc_bwdWgt::primitive_desc(bwdWgtDesc, engine_, *fwdPD_));
T
tensor-tang 已提交
286 287
}

288 289 290 291 292 293 294 295 296 297 298 299
void MKLDNNFcLayer::resetBwdDataPD(
    std::shared_ptr<fc_bwdData::primitive_desc>& pd,
    MKLDNNMatrixPtr& in,
    MKLDNNMatrixPtr& out) {
  pd = nullptr;
  if (in == nullptr) {
    return;
  }
  CHECK(wgtVal_);
  fc_bwdData::desc bwdDataDesc = fc_bwdData::desc(
      in->getMemoryDesc(), wgtVal_->getMemoryDesc(), out->getMemoryDesc());
  pd.reset(new fc_bwdData::primitive_desc(bwdDataDesc, engine_, *fwdPD_));
T
tensor-tang 已提交
300 301
}

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
void MKLDNNFcLayer::resetBwdPipeline(
    std::vector<primitive>& pipeline,
    std::shared_ptr<fc_bwdWgt::primitive_desc>& bwdWgtPD,
    std::shared_ptr<fc_bwdData::primitive_desc>& bwdDataPD,
    MKLDNNMatrixPtr& in,
    MKLDNNMatrixPtr& wgt,
    MKLDNNMatrixPtr& bias,
    MKLDNNMatrixPtr& out) {
  pipeline.clear();
  CHECK(inVal_);
  if (bias) {
    bwdWgt_.reset(new fc_bwdWgt(*bwdWgtPD, *inVal_, *out, *wgt, *bias));
  } else {
    bwdWgt_.reset(new fc_bwdWgt(*bwdWgtPD, *inVal_, *out, *wgt));
  }
  pipeline.push_back(*bwdWgt_);

  if (bwdDataPD == nullptr) {
    return;
T
tensor-tang 已提交
321
  }
322 323 324
  CHECK(wgtVal_) << "Should have weight memory";
  bwdData_.reset(new fc_bwdData(*bwdDataPD, *out, *wgtVal_, *in));
  pipeline.push_back(*bwdData_);
T
tensor-tang 已提交
325
}
326

T
tensor-tang 已提交
327
}  // namespace paddle