parallel_dygraph_mnist.py 3.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np

import paddle
import paddle.fluid as fluid
19
from paddle.fluid.dygraph.nn import Pool2D, Linear
20 21 22 23 24 25
from paddle.fluid.dygraph.base import to_variable

from test_dist_base import runtime_main, TestParallelDyGraphRunnerBase


class SimpleImgConvPool(fluid.dygraph.Layer):
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
    def __init__(
        self,
        num_channels,
        num_filters,
        filter_size,
        pool_size,
        pool_stride,
        pool_padding=0,
        pool_type='max',
        global_pooling=False,
        conv_stride=1,
        conv_padding=0,
        conv_dilation=1,
        conv_groups=1,
        act=None,
        use_cudnn=False,
        param_attr=None,
        bias_attr=None,
    ):
45
        super().__init__()
46

47 48 49 50
        self._conv2d = paddle.nn.Conv2D(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
51 52 53 54
            stride=conv_stride,
            padding=conv_padding,
            dilation=conv_dilation,
            groups=conv_groups,
55
            weight_attr=None,
56 57 58 59 60 61 62 63 64 65 66
            bias_attr=None,
        )

        self._pool2d = Pool2D(
            pool_size=pool_size,
            pool_type=pool_type,
            pool_stride=pool_stride,
            pool_padding=pool_padding,
            global_pooling=global_pooling,
            use_cudnn=use_cudnn,
        )
67 68 69 70 71 72 73 74

    def forward(self, inputs):
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x


class MNIST(fluid.dygraph.Layer):
75
    def __init__(self):
76
        super().__init__()
77

78 79 80
        self._simple_img_conv_pool_1 = SimpleImgConvPool(
            1, 20, 5, 2, 2, act="relu"
        )
81

82 83 84
        self._simple_img_conv_pool_2 = SimpleImgConvPool(
            20, 50, 5, 2, 2, act="relu"
        )
85

86
        self.pool_2_shape = 50 * 4 * 4
87
        SIZE = 10
88 89 90 91 92 93 94 95 96 97 98
        scale = (2.0 / (self.pool_2_shape**2 * SIZE)) ** 0.5
        self._fc = Linear(
            self.pool_2_shape,
            10,
            param_attr=fluid.param_attr.ParamAttr(
                initializer=fluid.initializer.NormalInitializer(
                    loc=0.0, scale=scale
                )
            ),
            act="softmax",
        )
99

Y
Yan Xu 已提交
100
    def forward(self, inputs, label):
101 102
        x = self._simple_img_conv_pool_1(inputs)
        x = self._simple_img_conv_pool_2(x)
103
        x = paddle.reshape(x, shape=[-1, self.pool_2_shape])
Y
Yan Xu 已提交
104 105
        cost = self._fc(x)
        loss = fluid.layers.cross_entropy(cost, label)
106
        avg_loss = paddle.mean(loss)
Y
Yan Xu 已提交
107
        return avg_loss
108 109 110 111


class TestMnist(TestParallelDyGraphRunnerBase):
    def get_model(self):
112
        model = MNIST()
113 114 115 116 117 118
        train_reader = paddle.batch(
            paddle.dataset.mnist.train(), batch_size=2, drop_last=True
        )
        opt = paddle.optimizer.Adam(
            learning_rate=1e-3, parameters=model.parameters()
        )
119 120 121 122
        return model, train_reader, opt

    def run_one_loop(self, model, opt, data):
        batch_size = len(data)
123 124 125 126 127 128 129 130
        dy_x_data = np.array([x[0].reshape(1, 28, 28) for x in data]).astype(
            'float32'
        )
        y_data = (
            np.array([x[1] for x in data])
            .astype('int64')
            .reshape(batch_size, 1)
        )
131 132 133 134
        img = to_variable(dy_x_data)
        label = to_variable(y_data)
        label.stop_gradient = True

Y
Yan Xu 已提交
135 136
        avg_loss = model(img, label)

137 138 139 140 141
        return avg_loss


if __name__ == "__main__":
    runtime_main(TestMnist)