test_detach.py 7.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import unittest

17 18
import numpy as np

19 20
import paddle
import paddle.fluid as fluid
21
from paddle.fluid.dygraph.base import to_variable
22
from paddle.nn import Linear
23 24 25 26


class Test_Detach(unittest.TestCase):
    def generate_Data(self):
27 28 29
        data = np.array([[1, 8, 3, 9], [7, 20, 9, 6], [4, 6, 8, 10]]).astype(
            'float32'
        )
30 31 32 33 34
        return data

    def no_detach_multi(self):
        data = self.generate_Data()
        with fluid.dygraph.guard():
35 36
            linear_w_param_attrs = paddle.ParamAttr(
                initializer=paddle.nn.initializer.Constant(5.0)
37
            )
38 39
            linear_b_param_attrs = paddle.ParamAttr(
                initializer=paddle.nn.initializer.Constant(6.0)
40 41 42 43
            )
            linear = Linear(
                4,
                10,
44
                weight_attr=linear_w_param_attrs,
45 46
                bias_attr=linear_b_param_attrs,
            )
47 48
            linear1_w_param_attrs = paddle.ParamAttr(
                initializer=paddle.nn.initializer.Constant(7.0)
49
            )
50 51
            linear1_b_param_attrs = paddle.ParamAttr(
                initializer=paddle.nn.initializer.Constant(8.0)
52 53 54 55
            )
            linear1 = Linear(
                10,
                1,
56
                weight_attr=linear1_w_param_attrs,
57 58
                bias_attr=linear1_b_param_attrs,
            )
59 60
            linear2_w_param_attrs = paddle.ParamAttr(
                initializer=paddle.nn.initializer.Constant(9.0)
61
            )
62 63
            linear2_b_param_attrs = paddle.ParamAttr(
                initializer=paddle.nn.initializer.Constant(10.0)
64 65 66 67
            )
            linear2 = Linear(
                10,
                1,
68
                weight_attr=linear2_w_param_attrs,
69 70
                bias_attr=linear2_b_param_attrs,
            )
71
            data = to_variable(data)
72 73 74
            x = linear(data)
            x1 = linear1(x)
            x2 = linear2(x)
75 76 77 78 79 80 81 82
            loss = x1 + x2
            # print(loss, loss.shape)
            loss.backward()
            return x.gradient()

    def no_detach_single(self):
        data = self.generate_Data()
        with fluid.dygraph.guard():
83 84
            linear_w_param_attrs = paddle.ParamAttr(
                initializer=paddle.nn.initializer.Constant(5.0)
85
            )
86 87
            linear_b_param_attrs = paddle.ParamAttr(
                initializer=paddle.nn.initializer.Constant(6.0)
88 89 90 91
            )
            linear = Linear(
                4,
                10,
92
                weight_attr=linear_w_param_attrs,
93 94
                bias_attr=linear_b_param_attrs,
            )
95 96
            linear1_w_param_attrs = paddle.ParamAttr(
                initializer=paddle.nn.initializer.Constant(7.0)
97
            )
98 99
            linear1_b_param_attrs = paddle.ParamAttr(
                initializer=paddle.nn.initializer.Constant(8.0)
100 101 102 103
            )
            linear1 = Linear(
                10,
                1,
104
                weight_attr=linear1_w_param_attrs,
105 106
                bias_attr=linear1_b_param_attrs,
            )
107
            data = to_variable(data)
108 109
            x = linear(data)
            x1 = linear1(x)
110 111 112 113 114 115 116 117
            loss = x1
            # print(loss, loss.shape)
            loss.backward()
            return x.gradient()

    def detach_multi(self):
        data = self.generate_Data()
        with fluid.dygraph.guard():
118 119
            linear_w_param_attrs = paddle.ParamAttr(
                initializer=paddle.nn.initializer.Constant(5.0)
120
            )
121
            linear_b_param_attrs = fluid.ParamAttr(
122 123 124 125 126
                initializer=fluid.initializer.Constant(6.0)
            )
            linear = Linear(
                4,
                10,
127
                weight_attr=linear_w_param_attrs,
128 129
                bias_attr=linear_b_param_attrs,
            )
130 131
            linear1_w_param_attrs = paddle.ParamAttr(
                initializer=paddle.nn.initializer.Constant(7.0)
132
            )
133
            linear1_b_param_attrs = fluid.ParamAttr(
134 135 136 137 138
                initializer=fluid.initializer.Constant(8.0)
            )
            linear1 = Linear(
                10,
                1,
139
                weight_attr=linear1_w_param_attrs,
140 141
                bias_attr=linear1_b_param_attrs,
            )
142 143
            linear2_w_param_attrs = paddle.ParamAttr(
                initializer=paddle.nn.initializer.Constant(9.0)
144
            )
145 146
            linear2_b_param_attrs = paddle.ParamAttr(
                initializer=paddle.nn.initializer.Constant(10.0)
147 148 149 150
            )
            linear2 = Linear(
                10,
                1,
151
                weight_attr=linear2_w_param_attrs,
152 153
                bias_attr=linear2_b_param_attrs,
            )
154
            data = to_variable(data)
155
            x = linear(data)
156
            x_detach = x.detach()
157 158
            x1 = linear1(x)
            x2 = linear2(x_detach)
159 160 161 162 163 164
            loss = x1 + x2
            # print(loss, loss.shape)
            loss.backward()
            return x.gradient()

    def test_NoDetachMulti_DetachMulti(self):
165
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
166 167 168 169
        array_no_detach_multi = self.no_detach_multi()
        array_detach_multi = self.detach_multi()

        assert not np.array_equal(array_no_detach_multi, array_detach_multi)
170
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
171 172 173 174 175 176 177

    def test_NoDetachSingle_DetachMulti(self):
        array_no_detach_single = self.no_detach_single()
        array_detach_multi = self.detach_multi()
        assert np.array_equal(array_no_detach_single, array_detach_multi)


178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
class TestInplace(unittest.TestCase):
    def test_forward_version(self):
        with paddle.fluid.dygraph.guard():
            var = paddle.to_tensor(np.ones((4, 2, 3)).astype(np.float32))
            self.assertEqual(var.inplace_version, 0)
            detach_var_1 = var.detach()
            self.assertEqual(detach_var_1.inplace_version, 0)

            var[0] = 1.1
            self.assertEqual(var.inplace_version, 1)

            detach_var_2 = var.detach()
            self.assertEqual(detach_var_2.inplace_version, 1)

            var[0] = 3
            self.assertEqual(detach_var_1.inplace_version, 2)
            self.assertEqual(detach_var_2.inplace_version, 2)

    def test_backward_error(self):
        # It raises an error because the inplace operator will result
        # in incorrect gradient computation.
        with paddle.fluid.dygraph.guard():
            var_a = paddle.ones(shape=[4, 2, 3], dtype="float32")
            var_a.stop_gradient = False

            var_b = var_a**2

            # Here, the gradient computation will use the value of var_b
            var_c = var_b**2
            detach_var_b = var_b.detach()
            detach_var_b[1:2] = 3.3  # var_b is modified inplace

            var_d = var_b**2

            loss = paddle.nn.functional.relu(var_c + var_d)
            with self.assertRaisesRegexp(
214 215 216 217 218
                RuntimeError,
                "received tensor_version:{} != wrapper_version_snapshot:{}".format(
                    1, 0
                ),
            ):
219 220 221
                loss.backward()


222 223
if __name__ == '__main__':
    unittest.main()