test_elementwise_div_op.py 14.6 KB
Newer Older
1
#  Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

G
gongweibao 已提交
15
import unittest
16

G
gongweibao 已提交
17
import numpy as np
18 19
from op_test import OpTest, convert_float_to_uint16, skip_check_grad_ci

20 21 22
import paddle
from paddle import fluid
from paddle.fluid import core
23
from paddle.fluid.framework import _test_eager_guard
G
gongweibao 已提交
24 25 26 27 28


class ElementwiseDivOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_div"
H
hong 已提交
29
        self.python_api = paddle.divide
30
        self.init_args()
W
Wu Yi 已提交
31
        self.init_dtype()
32 33 34 35 36 37 38
        self.init_shape()

        x = self.gen_data(self.x_shape).astype(self.val_dtype)
        y = self.gen_data(self.y_shape).astype(self.val_dtype)
        out = self.compute_output(x, y).astype(self.val_dtype)
        grad_out = np.ones(out.shape).astype(self.val_dtype)
        grad_x = self.compute_gradient_x(grad_out, y).astype(self.val_dtype)
39 40 41
        grad_y = self.compute_gradient_y(grad_out, out, y).astype(
            self.val_dtype
        )
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

        # Convert np.float32 data to np.uint16 for bfloat16 Paddle OP
        if self.dtype == np.uint16:
            x = convert_float_to_uint16(x)
            y = convert_float_to_uint16(y)
            out = convert_float_to_uint16(out)
            grad_out = convert_float_to_uint16(grad_out)
            grad_x = convert_float_to_uint16(grad_x)
            grad_y = convert_float_to_uint16(grad_y)

        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': out}
        self.grad_out = grad_out
        self.grad_x = grad_x
        self.grad_y = grad_y

    def init_args(self):
        self.check_dygraph = True
        self.place = None
H
hong 已提交
61

62 63 64
    def init_dtype(self):
        self.dtype = np.float64
        self.val_dtype = np.float64
G
gongweibao 已提交
65

66 67 68
    def init_shape(self):
        self.x_shape = [13, 17]
        self.y_shape = [13, 17]
H
hong 已提交
69

70 71
    def gen_data(self, shape):
        return np.random.uniform(0.1, 1, shape)
G
gongweibao 已提交
72

73 74
    def compute_output(self, x, y):
        return x / y
G
gongweibao 已提交
75

76 77
    def compute_gradient_x(self, grad_out, y):
        return grad_out / y
G
gongweibao 已提交
78

79 80
    def compute_gradient_y(self, grad_out, out, y):
        return -1 * grad_out * out / y
G
gongweibao 已提交
81

82 83 84 85 86 87 88 89
    def test_check_output(self):
        if self.place is None:
            self.check_output()
        else:
            self.check_output_with_place(self.place)

    def test_check_gradient(self):
        check_list = []
90 91 92 93 94 95 96 97 98 99 100 101 102
        check_list.append(
            {
                'grad': ['X', 'Y'],
                'no_grad': None,
                'val_grad': [self.grad_x, self.grad_y],
            }
        )
        check_list.append(
            {'grad': ['Y'], 'no_grad': set('X'), 'val_grad': [self.grad_y]}
        )
        check_list.append(
            {'grad': ['X'], 'no_grad': set('Y'), 'val_grad': [self.grad_x]}
        )
103 104 105 106 107 108
        for check_option in check_list:
            check_args = [check_option['grad'], 'Out']
            check_kwargs = {
                'no_grad_set': check_option['no_grad'],
                'user_defined_grads': check_option['val_grad'],
                'user_defined_grad_outputs': [self.grad_out],
109
                'check_dygraph': self.check_dygraph,
110 111 112 113 114 115
            }
            if self.place is None:
                self.check_grad(*check_args, **check_kwargs)
            else:
                check_args.insert(0, self.place)
                self.check_grad_with_place(*check_args, **check_kwargs)
W
Wu Yi 已提交
116

G
gongweibao 已提交
117

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
class TestElementwiseDivOp_ZeroDim1(ElementwiseDivOp):
    def init_shape(self):
        self.x_shape = []
        self.y_shape = []


class TestElementwiseDivOp_ZeroDim2(ElementwiseDivOp):
    def init_shape(self):
        self.x_shape = [13, 17]
        self.y_shape = []

    def compute_output(self, x, y):
        return x / y.reshape([1, 1])

    def compute_gradient_x(self, grad_out, y):
        return grad_out / y.reshape([1, 1])

    def compute_gradient_y(self, grad_out, out, y):
        return np.sum(-1 * grad_out * out / y.reshape([1, 1]))


class TestElementwiseDivOp_ZeroDim3(ElementwiseDivOp):
    def init_shape(self):
        self.x_shape = []
        self.y_shape = [13, 17]

    def compute_output(self, x, y):
        return x.reshape([1, 1]) / y

    def compute_gradient_x(self, grad_out, y):
        return np.sum(grad_out / y)

    def compute_gradient_y(self, grad_out, out, y):
        return -1 * grad_out * out / y


154 155 156 157 158
@unittest.skipIf(
    not core.is_compiled_with_cuda()
    or not core.is_bfloat16_supported(core.CUDAPlace(0)),
    "core is not compiled with CUDA or not support the bfloat16",
)
159 160 161 162 163 164 165
class TestElementwiseDivOpBF16(ElementwiseDivOp):
    def init_args(self):
        # In due to output data type inconsistence of bfloat16 paddle op, we disable the dygraph check.
        self.check_dygraph = False
        self.place = core.CUDAPlace(0)

    def init_dtype(self):
166
        self.dtype = np.uint16
167
        self.val_dtype = np.float32
168

169 170 171
    def init_shape(self):
        self.x_shape = [12, 13]
        self.y_shape = [12, 13]
172 173


174
@skip_check_grad_ci(
175 176
    reason="[skip shape check] Use y_shape(1) to test broadcast."
)
177 178 179 180
class TestElementwiseDivOpScalar(ElementwiseDivOp):
    def init_shape(self):
        self.x_shape = [20, 3, 4]
        self.y_shape = [1]
181

182 183
    def compute_gradient_y(self, grad_out, out, y):
        return np.array([np.sum(-1 * grad_out * out / y)])
184 185


186 187 188 189
class TestElementwiseDivOpVector(ElementwiseDivOp):
    def init_shape(self):
        self.x_shape = [100]
        self.y_shape = [100]
190

191

192 193 194 195 196
class TestElementwiseDivOpBroadcast0(ElementwiseDivOp):
    def init_shape(self):
        self.x_shape = [100, 3, 4]
        self.y_shape = [100]
        self.attrs = {'axis': 0}
197

198 199
    def compute_output(self, x, y):
        return x / y.reshape(100, 1, 1)
200

201 202
    def compute_gradient_x(self, grad_out, y):
        return grad_out / y.reshape(100, 1, 1)
G
gongweibao 已提交
203

204 205
    def compute_gradient_y(self, grad_out, out, y):
        return np.sum(-1 * grad_out * out / y.reshape(100, 1, 1), axis=(1, 2))
G
gongweibao 已提交
206

207

208 209 210 211 212
class TestElementwiseDivOpBroadcast1(ElementwiseDivOp):
    def init_shape(self):
        self.x_shape = [2, 100, 4]
        self.y_shape = [100]
        self.attrs = {'axis': 1}
G
gongweibao 已提交
213

214 215
    def compute_output(self, x, y):
        return x / y.reshape(1, 100, 1)
G
gongweibao 已提交
216

217 218
    def compute_gradient_x(self, grad_out, y):
        return grad_out / y.reshape(1, 100, 1)
219

220 221
    def compute_gradient_y(self, grad_out, out, y):
        return np.sum(-1 * grad_out * out / y.reshape(1, 100, 1), axis=(0, 2))
G
gongweibao 已提交
222 223


224 225 226 227
class TestElementwiseDivOpBroadcast2(ElementwiseDivOp):
    def init_shape(self):
        self.x_shape = [2, 3, 100]
        self.y_shape = [100]
228

229 230
    def compute_output(self, x, y):
        return x / y.reshape(1, 1, 100)
G
gongweibao 已提交
231

232 233
    def compute_gradient_x(self, grad_out, y):
        return grad_out / y.reshape(1, 1, 100)
G
gongweibao 已提交
234

235 236
    def compute_gradient_y(self, grad_out, out, y):
        return np.sum(-1 * grad_out * out / y.reshape(1, 1, 100), axis=(0, 1))
G
gongweibao 已提交
237

238

239 240 241 242
class TestElementwiseDivOpBroadcast3(ElementwiseDivOp):
    def init_shape(self):
        self.x_shape = [2, 10, 12, 5]
        self.y_shape = [10, 12]
G
gongweibao 已提交
243 244
        self.attrs = {'axis': 1}

245 246
    def compute_output(self, x, y):
        return x / y.reshape(1, 10, 12, 1)
G
gongweibao 已提交
247

248 249
    def compute_gradient_x(self, grad_out, y):
        return grad_out / y.reshape(1, 10, 12, 1)
250

251
    def compute_gradient_y(self, grad_out, out, y):
252 253 254
        return np.sum(
            -1 * grad_out * out / y.reshape(1, 10, 12, 1), axis=(0, 3)
        )
255 256


257 258 259 260
class TestElementwiseDivOpBroadcast4(ElementwiseDivOp):
    def init_shape(self):
        self.x_shape = [2, 3, 50]
        self.y_shape = [2, 1, 50]
261

262 263
    def compute_gradient_y(self, grad_out, out, y):
        return np.sum(-1 * grad_out * out / y, axis=(1)).reshape(2, 1, 50)
264

265

266 267 268 269
class TestElementwiseDivOpBroadcast5(ElementwiseDivOp):
    def init_shape(self):
        self.x_shape = [2, 3, 4, 20]
        self.y_shape = [2, 3, 1, 20]
270

271 272
    def compute_gradient_y(self, grad_out, out, y):
        return np.sum(-1 * grad_out * out / y, axis=(2)).reshape(2, 3, 1, 20)
273

274

275 276 277 278
class TestElementwiseDivOpCommonuse1(ElementwiseDivOp):
    def init_shape(self):
        self.x_shape = [2, 3, 100]
        self.y_shape = [1, 1, 100]
279

280 281 282 283 284 285 286 287 288 289 290
    def compute_gradient_y(self, grad_out, out, y):
        return np.sum(-1 * grad_out * out / y, axis=(0, 1)).reshape(1, 1, 100)


class TestElementwiseDivOpCommonuse2(ElementwiseDivOp):
    def init_shape(self):
        self.x_shape = [30, 3, 1, 5]
        self.y_shape = [30, 1, 4, 1]

    def compute_gradient_x(self, grad_out, y):
        return np.sum(grad_out / y, axis=(2)).reshape(30, 3, 1, 5)
291

292 293 294 295 296 297 298 299
    def compute_gradient_y(self, grad_out, out, y):
        return np.sum(-1 * grad_out * out / y, axis=(1, 3)).reshape(30, 1, 4, 1)


class TestElementwiseDivOpXsizeLessThanYsize(ElementwiseDivOp):
    def init_shape(self):
        self.x_shape = [10, 12]
        self.y_shape = [2, 3, 10, 12]
300 301
        self.attrs = {'axis': 2}

302 303
    def compute_gradient_x(self, grad_out, y):
        return np.sum(grad_out / y, axis=(0, 1))
304 305


306 307
class TestElementwiseDivOpInt(ElementwiseDivOp):
    def init_dtype(self):
308
        self.dtype = np.int32
309
        self.val_dtype = np.int32
310

311 312
    def gen_data(self, shape):
        return np.random.randint(1, 5, size=shape)
313

314 315
    def compute_output(self, x, y):
        return x // y
316 317


318 319 320
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
W
Wu Yi 已提交
321 322 323
class TestElementwiseDivOpFp16(ElementwiseDivOp):
    def init_dtype(self):
        self.dtype = np.float16
324
        self.val_dtype = np.float16
W
Wu Yi 已提交
325 326


327 328 329
class TestElementwiseDivBroadcast(unittest.TestCase):
    def test_shape_with_batch_sizes(self):
        with fluid.program_guard(fluid.Program()):
330 331 332 333
            x_var = fluid.data(
                name='x', dtype='float32', shape=[None, 3, None, None]
            )
            one = 2.0
334 335 336
            out = one / x_var
            exe = fluid.Executor(fluid.CPUPlace())
            x = np.random.uniform(0.1, 0.6, (1, 3, 32, 32)).astype("float32")
337
            (out_result,) = exe.run(feed={'x': x}, fetch_list=[out])
338 339 340
            self.assertEqual((out_result == (2 / x)).all(), True)


S
ShenLiang 已提交
341 342 343 344 345
class TestDivideOp(unittest.TestCase):
    def test_name(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name="x", shape=[2, 3], dtype="float32")
            y = fluid.data(name='y', shape=[2, 3], dtype='float32')
346

S
ShenLiang 已提交
347 348
            y_1 = paddle.divide(x, y, name='div_res')
            self.assertEqual(('div_res' in y_1.name), True)
349 350

    def test_dygraph(self):
S
ShenLiang 已提交
351 352 353 354 355 356 357
        with fluid.dygraph.guard():
            np_x = np.array([2, 3, 4]).astype('float64')
            np_y = np.array([1, 5, 2]).astype('float64')
            x = paddle.to_tensor(np_x)
            y = paddle.to_tensor(np_y)
            z = paddle.divide(x, y)
            np_z = z.numpy()
358
            z_expected = np.array([2.0, 0.6, 2.0])
S
ShenLiang 已提交
359
            self.assertEqual((np_z == z_expected).all(), True)
360 361


362 363 364
class TestComplexElementwiseDivOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_div"
H
hong 已提交
365
        self.python_api = paddle.divide
366 367 368 369 370 371
        self.init_base_dtype()
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
372
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y),
373 374 375 376 377 378 379 380
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
381 382 383 384 385 386
        self.x = np.random.random((2, 3, 4, 5)).astype(
            self.dtype
        ) + 1j * np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.y = np.random.random((2, 3, 4, 5)).astype(
            self.dtype
        ) + 1j * np.random.random((2, 3, 4, 5)).astype(self.dtype)
387 388 389
        self.out = self.x / self.y

    def init_grad_input_output(self):
390 391 392
        self.grad_out = np.ones((2, 3, 4, 5), self.dtype) + 1j * np.ones(
            (2, 3, 4, 5), self.dtype
        )
393 394 395 396
        self.grad_x = self.grad_out / np.conj(self.y)
        self.grad_y = -self.grad_out * np.conj(self.x / self.y / self.y)

    def test_check_output(self):
H
hong 已提交
397
        self.check_output(check_eager=False)
398 399

    def test_check_grad_normal(self):
400 401 402 403 404 405
        self.check_grad(
            ['X', 'Y'],
            'Out',
            user_defined_grads=[self.grad_x, self.grad_y],
            user_defined_grad_outputs=[self.grad_out],
        )
406 407

    def test_check_grad_ingore_x(self):
408 409 410 411 412 413 414
        self.check_grad(
            ['Y'],
            'Out',
            no_grad_set=set("X"),
            user_defined_grads=[self.grad_y],
            user_defined_grad_outputs=[self.grad_out],
        )
415 416

    def test_check_grad_ingore_y(self):
417 418 419 420 421 422 423
        self.check_grad(
            ['X'],
            'Out',
            no_grad_set=set('Y'),
            user_defined_grads=[self.grad_x],
            user_defined_grad_outputs=[self.grad_out],
        )
424 425


C
chentianyu03 已提交
426 427 428
class TestRealComplexElementwiseDivOp(TestComplexElementwiseDivOp):
    def init_input_output(self):
        self.x = np.random.random((2, 3, 4, 5)).astype(self.dtype)
429 430 431
        self.y = np.random.random((2, 3, 4, 5)).astype(
            self.dtype
        ) + 1j * np.random.random((2, 3, 4, 5)).astype(self.dtype)
C
chentianyu03 已提交
432 433 434
        self.out = self.x / self.y

    def init_grad_input_output(self):
435 436 437
        self.grad_out = np.ones((2, 3, 4, 5), self.dtype) + 1j * np.ones(
            (2, 3, 4, 5), self.dtype
        )
C
chentianyu03 已提交
438 439 440 441
        self.grad_x = np.real(self.grad_out / np.conj(self.y))
        self.grad_y = -self.grad_out * np.conj(self.x / self.y / self.y)


442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
class TestElementwiseDivop(unittest.TestCase):
    def func_dygraph_div(self):
        paddle.disable_static()

        np_a = np.random.random((2, 3, 4)).astype(np.float32)
        np_b = np.random.random((2, 3, 4)).astype(np.float32)
        np_a[np.abs(np_a) < 0.0005] = 0.002
        np_b[np.abs(np_b) < 0.0005] = 0.002

        tensor_a = paddle.to_tensor(np_a, dtype="float32")
        tensor_b = paddle.to_tensor(np_b, dtype="float32")

        # normal case: nparray / tenor
        expect_out = np_a / np_b
        actual_out = np_a / tensor_b
        np.testing.assert_allclose(actual_out, expect_out)

        # normal case: tensor / nparray
        actual_out = tensor_a / np_b
        np.testing.assert_allclose(actual_out, expect_out)

        paddle.enable_static()

    def test_dygraph_div(self):
        with _test_eager_guard():
            self.func_dygraph_div()


G
gongweibao 已提交
470
if __name__ == '__main__':
471
    paddle.enable_static()
G
gongweibao 已提交
472
    unittest.main()