auto_parallel_grad_clip.py 15.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from functools import reduce

17 18
import numpy as np

19
import paddle
20
from paddle.distributed.fleet.meta_optimizers.common import OP_ROLE_KEY, OpRole
21

22 23 24 25
from ..auto_parallel.dist_attribute import (
    OperatorDistributedAttribute,
    TensorDistributedAttribute,
)
26
from ..auto_parallel.process_group import get_world_process_group
27
from ..auto_parallel.reshard import Resharder
28 29
from ..auto_parallel.utils import (
    _get_comm_group,
30
    insert_dependencies_for_two_vars,
31 32
    is_gradient_clip_op,
    is_optimize_op,
33
    use_standalone_executor,
34
)
35
from .pass_base import PassBase, register_pass
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65


def _get_params_grads(block):
    params_grads = []
    for op in reversed(block.ops):
        if not is_optimize_op(op):
            break
        if "Param" in op.input_names and "Grad" in op.input_names:
            param_name = op.input("Param")[0]
            grad_name = op.input("Grad")[0]
            param = block.var(param_name)
            grad = block.var(grad_name)
            params_grads.append((param, grad))
    return params_grads


def _get_dpmp_topology(origin_topology, sharding_group):
    """
    Get dpmp topology from origin_topology

    Example:
        the parallel strategy: dp4-mp2-sharding2
        the complete process_mesh:
            topology: [4, 2]
            processes: [0, 1, 2, 3, 4, 5, 6, 7]
        the dpmp topology: [2, 2]
        the sharding axis: 1
    """
    sharding_axis = 1
    dp_sharding_topology = [
66 67
        origin_topology[0] // sharding_group.nranks,
        sharding_group.nranks,
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    ]
    if dp_sharding_topology[0] == 1:
        sharding_axis = 0
        dp_sharding_topology = dp_sharding_topology[1:]

    product_dp_sharding = reduce(lambda x, y: x * y, dp_sharding_topology)
    product_topology = reduce(lambda x, y: x * y, origin_topology)

    if product_topology == product_dp_sharding:
        dpmp_topology = dp_sharding_topology
    else:
        assert product_topology % product_dp_sharding == 0
        mp_degree = product_topology // product_dp_sharding
        dpmp_topology = dp_sharding_topology + [mp_degree]

    return dpmp_topology, sharding_axis


def _get_dpmp_process_mesh(rank_id, topology, processes, sharding_group):
    """
    Get dpmp process_mesh from the complete process_mesh which apply sharding.

    Example:
        the parallel strategy: dp4-mp2-sharding2
        the complete process_mesh:
            topology: [4, 2]
            processes: [0, 1, 2, 3, 4, 5, 6, 7]
        the dpmp process_mesh is:
            1) topology: [2, 2], processes: [0, 1, 4, 5]
            2) topology: [2, 2], processes: [2, 3, 6, 7]
    """
    if sharding_group is None:
        return topology, processes

    # get dpmp_topology
    dpmp_topology, sharding_axis = _get_dpmp_topology(topology, sharding_group)

    # get all sharding_groups of ranks
    sharding_groups = []
    for rank in processes:
        group = _get_comm_group(processes, dpmp_topology, sharding_axis, rank)
        if group not in sharding_groups:
            sharding_groups.append(group)

    # get dpmp_processes
    sharding_groups = np.array(sharding_groups)
    dpmp_processes_in_sharding = None
    for i in range(sharding_groups.shape[-1]):
        if rank_id in sharding_groups[:, i]:
            dpmp_processes_in_sharding = sharding_groups[:, i]

    assert dpmp_processes_in_sharding is not None
    return dpmp_topology, list(dpmp_processes_in_sharding)


123 124 125
def _is_about_global_norm(
    rank_id, tensor_shape, topology, processes, dims_mapping, sharding_group
):
126 127
    # get current process_mesh where the parameter exist.
    dpmp_topology, dpmp_processes = _get_dpmp_process_mesh(
128 129
        rank_id, topology, processes, sharding_group
    )
130

131 132 133
    complete_shape = Resharder.compute_complete_shape(
        tensor_shape, dpmp_topology, dims_mapping
    )
134 135 136 137 138

    complete_partitions = []
    complete_param_ranks = []
    for process in dpmp_processes:
        partition_index = Resharder.compute_partition_index(
139 140
            process, complete_shape, dims_mapping, dpmp_topology, dpmp_processes
        )
141 142 143 144 145 146 147
        if partition_index not in complete_partitions:
            complete_partitions.append(partition_index)
            complete_param_ranks.append(process)

    return rank_id in complete_param_ranks


148
class ClipHelper:
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    def __init__(self, params_grads, rank_id, block, dist_context):
        params, _ = zip(*params_grads)
        self.params = list(params)
        self.params_name = [p.name for p in self.params]
        self.rank_id = rank_id
        self.block = block
        self.dist_context = dist_context
        self.sharding_group = None
        self.world_ranks = get_world_process_group().ranks
        if hasattr(dist_context, '_sharding_group'):
            self.sharding_group = dist_context._sharding_group

    def _is_calcuate_norm(self, name):
        if not self._is_local_param(name):
            return False, []

        param = self.params[self.params_name.index(name)]
        dist_attr = self._get_dist_attr(name)
        topology = dist_attr.process_mesh.topology
        processes = dist_attr.process_mesh.processes
        dims_mapping = dist_attr.dims_mapping
170 171 172 173 174 175 176 177
        return _is_about_global_norm(
            self.rank_id,
            param.shape,
            topology,
            processes,
            dims_mapping,
            self.sharding_group,
        )
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

    def _get_dist_attr(self, name):
        var = self.block.vars[name]
        return self.dist_context.get_tensor_dist_attr_for_program(var)

    def _is_local_param(self, name):
        if name not in self.params_name:
            return False
        return True

    def _is_local_var(self, name):
        dist_attr = self._get_dist_attr(name)
        assert dist_attr is not None
        return self.rank_id in dist_attr.process_mesh.processes

    def _init_dist_attr(self, op):
        op_dist_attr = OperatorDistributedAttribute()
        op_dist_attr.process_mesh = self.world_ranks
        for in_name in op.input_arg_names:
            in_var = self.block.vars[in_name]
            in_dist_attr = TensorDistributedAttribute()
            in_dist_attr.process_mesh = self.world_ranks
            in_dist_attr.dims_mapping = [-1]
            self.dist_context.set_tensor_dist_attr_for_program(
202 203
                in_var, in_dist_attr
            )
204 205 206 207 208 209 210
            op_dist_attr.set_input_dist_attr(in_name, in_dist_attr)
        for out_name in op.output_arg_names:
            out_var = self.block.vars[out_name]
            out_dist_attr = TensorDistributedAttribute()
            out_dist_attr.process_mesh = self.world_ranks
            out_dist_attr.dims_mapping = [-1]
            self.dist_context.set_tensor_dist_attr_for_program(
211 212
                out_var, out_dist_attr
            )
213 214 215 216 217 218 219 220 221 222 223 224 225
            op_dist_attr.set_output_dist_attr(out_name, out_dist_attr)
        self.dist_context.set_op_dist_attr_for_program(op, op_dist_attr)


@register_pass("auto_parallel_grad_clip")
class ClipGradByGloblNormPass(PassBase):
    """
    1. Remove norm-compute op and grad-scale op when the grad is not in current rank
       or is independent of the calculation of norm.
    2. Each rank computes its own norm value, then gets global_norm by allreduce_sum only once.
    """

    def __init__(self):
226
        super().__init__()
227 228
        self.set_attr("rank_id", None)
        self.set_attr("dist_context", None)
229
        self.set_attr("params_grads", None)
230 231 232 233 234

    def _check_self(self):
        if self.get_attr("dist_context") is None:
            return False
        dist_context = self.get_attr("dist_context")
Z
zhaoyingli 已提交
235
        if dist_context._serial_optimizer._grad_clip is None:
236
            return False
237 238
        if self.get_attr("params_grads") is None:
            return False
239 240 241 242 243 244 245 246 247
        return True

    def _check_conflict(self, other_pass):
        return True

    def _apply_single_impl(self, main_program, startup_program, context):
        dist_context = self.get_attr("dist_context", None)
        rank_id = self.get_attr("rank_id", None)
        block = main_program.global_block()
248 249
        dist_params_grads = self.get_attr("params_grads", None)
        # dist_params_grads = _get_params_grads(block)
250

251 252 253
        self.clip_helper = ClipHelper(
            dist_params_grads, rank_id, block, dist_context
        )
254 255 256 257 258
        self._remove_no_need_ops_vars(block)

    def _remove_no_need_ops_vars(self, block):

        removed_op_out_type = [
259 260 261 262
            'clip_by_norm',
            'squared_l2_norm',
            'square',
            'reduce_sum',
263 264 265 266 267 268 269 270 271 272 273
        ]

        removed_op_idx = set()
        removed_tmp_var = set()
        for idx, op in enumerate(block.ops):
            if not is_gradient_clip_op(op):
                continue

            if op.type in removed_op_out_type:
                input_name = op.input("X")[0]
                if input_name.find("@GRAD") != -1:
274
                    # 'clip_by_norm', 'squared_l2_norm', 'square'
275
                    param_name = input_name[: input_name.find("@GRAD")]
276 277
                    is_local = self.clip_helper._is_local_param(param_name)
                    is_calculate = self.clip_helper._is_calcuate_norm(
278 279 280 281 282
                        param_name
                    )
                    if not is_local or (
                        not is_calculate and op.type != 'clip_by_norm'
                    ):
283 284 285 286 287 288 289 290 291 292 293
                        removed_op_idx.add(idx)
                        removed_tmp_var.update(set(op.output_arg_names))
                else:
                    # 'reduce_sum'
                    if idx - 1 in removed_op_idx:
                        removed_op_idx.add(idx)
                        removed_tmp_var.update(set(op.output_arg_names))

            elif op.type == 'elementwise_mul':
                input_name = op.input("X")[0]
                if input_name.find("@GRAD") != -1:
294
                    param_name = input_name[: input_name.find("@GRAD")]
295 296 297 298 299 300
                    is_local = self.clip_helper._is_local_param(param_name)
                    if not is_local:
                        removed_op_idx.add(idx)
                        if block.ops[idx - 1].type == 'cast':
                            removed_op_idx.add(idx - 1)
                            removed_tmp_var.update(
301 302
                                set(block.ops[idx - 1].output_arg_names)
                            )
303 304 305 306

            elif op.type == 'sum':
                reserved_vars = []
                for input_name in op.input_arg_names:
307 308 309 310
                    if (
                        input_name not in removed_tmp_var
                        and self.clip_helper._is_local_var(input_name)
                    ):
311 312 313 314 315 316 317
                        reserved_vars.append(input_name)
                if not reserved_vars:
                    removed_op_idx.add(idx)
                    removed_tmp_var.update(set(op.output_arg_names))
                    if block.ops[idx + 1].type == 'cast':
                        removed_op_idx.add(idx + 1)
                        removed_tmp_var.update(
318 319
                            set(block.ops[idx + 1].output_arg_names)
                        )
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
                else:
                    op.desc.set_input("X", reserved_vars)

        for idx, op in reversed(list(enumerate(block.ops))):
            if not is_optimize_op(op):
                break
            if not is_gradient_clip_op(op):
                continue
            if idx in removed_op_idx:
                block._remove_op(idx, sync=False)

        for idx, op in reversed(list(enumerate(block.ops))):
            if not is_optimize_op(op):
                break
            if not is_gradient_clip_op(op):
                continue
            if op.type == 'sqrt':
                input_name = op.input("X")[0]
                input_var = block.vars[input_name]
339
                insert_leaf_fill_constant_node = False
340 341 342 343 344 345 346 347 348 349 350 351 352 353
                if paddle.distributed.get_world_size() > 1:
                    offset = 0
                    if input_name in removed_tmp_var:
                        removed_tmp_var.remove(input_name)
                        fill_constant_op = block._insert_op(
                            idx,
                            type='fill_constant',
                            inputs={},
                            outputs={'Out': [input_var]},
                            attrs={
                                'shape': [1],
                                'dtype': input_var.dtype,
                                'value': 0,
                                'force_cpu': False,
354 355 356 357 358 359
                                OP_ROLE_KEY: OpRole.Optimize,
                            },
                        )
                        fill_constant_op._set_attr(
                            'op_namescope', "/gradient_clip_pass"
                        )
360 361
                        offset += 1
                        self.clip_helper._init_dist_attr(fill_constant_op)
362
                        insert_leaf_fill_constant_node = True
363 364 365 366 367 368 369 370 371 372

                    allreduce_op = block._insert_op(
                        idx + offset,
                        type='c_allreduce_sum',
                        inputs={'X': [input_var]},
                        outputs={'Out': [input_var]},
                        attrs={
                            'ring_id': 0,
                            'use_calc_stream': True,
                            OP_ROLE_KEY: OpRole.Optimize,
373 374 375 376 377
                        },
                    )
                    allreduce_op._set_attr(
                        'op_namescope', "/gradient_clip_pass"
                    )
378 379
                    self.clip_helper._init_dist_attr(allreduce_op)

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
                    if (
                        use_standalone_executor
                        and insert_leaf_fill_constant_node
                    ):

                        # NOTE add naive deps for global norm sync in graph exe
                        j = idx - 1
                        prior_op = None
                        while j > 0:
                            op_type = block.ops[j].type
                            if op_type in [
                                'update_loss_scaling',
                                'check_finite_and_unscale',
                            ] or op_type.endswith("_grad"):
                                prior_op = block.ops[j]
                                break
                            j -= 1
                            print("here: ", block.ops[j])
                        assert (
                            prior_op is not None
                        ), "Unexception: ClipByGlobalNorm could not find priory depend op"
                        prior_var = block.vars[prior_op.output_arg_names[0]]
                        assert (
                            prior_var is not None
                        ), "Unexception: ClipByGlobalNorm could not find priory depend var"
                        insert_dependencies_for_two_vars(
                            block,
                            idx,
                            prior_var,
                            input_var,
                            self.clip_helper.dist_context,
                            OpRole.Optimize,
                            process_mesh=[
                                -1
                            ],  # hack to avoid initialize the dist attr for coalesc var
                            is_recompute=False,
                            sync=False,
                        )

419 420 421 422
        for varname in removed_tmp_var:
            block._remove_var(varname, sync=False)

        block._sync_with_cpp()