reduce_split_pass.cc 10.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
// Copyright (c) 2022 CINN Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/cinn/common/graph_utils.h"
#include "paddle/cinn/common/target.h"
#include "paddle/cinn/hlir/framework/graph.h"
#include "paddle/cinn/hlir/framework/pass.h"
#include "paddle/cinn/hlir/pass/infershape.h"
#include "paddle/cinn/hlir/pe/nn_util.h"

namespace cinn {
namespace hlir {
namespace pass {
namespace {

using common::GraphNode;
using framework::Node;
using framework::NodeData;
using framework::Operator;
using framework::shape_t;

bool IsReduceOp(const framework::Node* node) {
34 35 36 37 38 39
  static std::unordered_set<std::string> reduce_op_type = {"reduce_sum",
                                                           "reduce_mean",
                                                           "reduce_max",
                                                           "reduce_min",
                                                           "reduce_all",
                                                           "reduce_any"};
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
  if (reduce_op_type.count(node->op()->name)) {
    return true;
  } else {
    return false;
  }
}

std::pair<int, int> DivideToClosetNum(int n) {
  int a = sqrt(n);
  int b = n / a;
  while (a * b != n) {
    if (a * b < n) {
      a++;
      b = n / a;
    } else {
      a--;
      b = n / a;
    }
  }
  return {a, b};
}

uint32_t NextPowerOf2(uint32_t n) {
  n--;
  n |= n >> 1;
  n |= n >> 2;
  n |= n >> 4;
  n |= n >> 8;
  n |= n >> 16;
  return n++;
}

class ReduceSplitPass {
 public:
  // Find the reduce op with nwhc format and large shape, split it into two ops
  static int Apply(framework::Graph* graph) {
76
    int MAX_NUM_THREADS = common::DefaultNVGPUTarget().max_num_threads();
77 78
    constexpr int MAX_ITER_PER_THREAD = 32;  // empirical value

79 80 81 82 83 84 85
    int cnt = 0;
    auto& shape_dict =
        graph->GetMutableAttrs<absl::flat_hash_map<std::string, shape_t>>(
            "infershape");
    auto& dtype_dict =
        graph->GetMutableAttrs<absl::flat_hash_map<std::string, Type>>(
            "inferdtype");
86 87 88 89 90 91 92 93 94

    // loop the nodes in graph and find reduce_xx op
    auto nodes_inorder = std::get<0>(graph->topological_order());
    for (auto node : nodes_inorder) {
      if (!node->safe_as<Node>()) {
        continue;
      }
      auto n = node->safe_as<Node>();
      if (IsReduceOp(n)) {
95
        auto* op = n->op();
96 97
        auto name = op->name;

98
        auto dims = absl::get<std::vector<int>>(n->attrs.attr_store.at("dim"));
99
        bool keep_dim = absl::get<bool>(n->attrs.attr_store.at("keep_dim"));
100 101
        auto in = (*n->inlinks().begin())->source()->safe_as<NodeData>();
        auto out = (*n->outlinks().begin())->sink()->safe_as<NodeData>();
102

103
        auto in_shape = shape_dict.at(in->id());
104 105 106 107 108 109 110 111 112 113 114
        auto out_shape = shape_dict.at(out->id());
        // all preceding reduced
        CHECK(in_shape.size() > 1);
        // [NHWC]->[C], only the last dim kept
        bool all_preceding_dim_reduced = true;
        for (auto i = 0; i < in_shape.size() - 1; ++i) {
          if (std::find(dims.begin(), dims.end(), i) == dims.end()) {
            all_preceding_dim_reduced = false;
          }
        }
        bool reduce_all =
115 116 117
            all_preceding_dim_reduced &&
            std::find(dims.begin(), dims.end(), in_shape.size() - 1) !=
                dims.end();
118 119 120
        if (!all_preceding_dim_reduced || reduce_all) {
          continue;
        }
121 122 123 124
        int numel = std::accumulate(
            in_shape.begin(), in_shape.end(), 1, std::multiplies<int>());
        int reduce_numel = std::accumulate(
            in_shape.begin(), in_shape.end() - 1, 1, std::multiplies<int>());
125 126 127
        CHECK(reduce_numel > 0);
        // if the numel is not large enough, it is no need to split
        // if loop times is too large with reduce optimize
128 129 130
        int size = std::accumulate(
            in_shape.begin(), (in_shape.end() - 1), 1, std::multiplies<int>());
        int tail = 0;
131
        bool bound = true;
132 133
        auto shape = pe::GetFirstStepReduceShape(
            {size, in_shape.back()}, {0}, bound, tail);
134 135 136
        CHECK(bound);
        CHECK_EQ(shape.size(), 3);

137
        auto res = DivideToClosetNum(reduce_numel);
138 139 140 141
        int reduce_numel0 = std::get<0>(res), reduce_numel1 = std::get<1>(res);

        VLOG(3) << "InShape -> "
                << std::accumulate(
142 143 144 145
                       in_shape.begin(),
                       in_shape.end(),
                       std::string(""),
                       [](const std::string& left, const int right) {
146 147
                         return left + std::to_string(right) + " ";
                       });
148 149
        VLOG(3) << "  reduce  split : " << reduce_numel0 << " " << reduce_numel1
                << " " << in_shape.back();
150
        VLOG(3) << "  reshape split : "
151 152 153 154 155 156
                << std::accumulate(shape.begin(),
                                   shape.end(),
                                   std::string(""),
                                   [](std::string left, int right) {
                                     return left + std::to_string(right) + " ";
                                   });
157 158 159 160

        // Two do reduce split:
        //   1. reshape_loop > split_loop
        //   2. reshape thread > max_threads.
161 162
        if (shape[0] <= reduce_numel0 &&
            shape[1] * shape[2] <= common::GetMaxThreads()) {
163 164 165 166 167 168
          VLOG(3) << "  Don't Do Reduce Split!";
          continue;
        }
        VLOG(3) << "  Do Reduce Split!";

        /*
169 170
        if ((!all_preceding_dim_reduced) || numel <= MAX_NUM_THREADS *
        MAX_ITER_PER_THREAD || reduce_all) { continue;
171 172 173
        }
        */
        // create reshape node0
174 175 176 177 178
        Node* reshape0 = new Node(Operator::Get("reshape"),
                                  "reshape",
                                  common::UniqName("reshape_split"));
        reshape0->attrs.attr_store["shape"] = std::vector<int>{
            reduce_numel0, reduce_numel1, in_shape[in_shape.size() - 1]};
179 180 181 182
        graph->RegisterNode(reshape0->id(), reshape0);
        in->LinkTo(reshape0);
        in->UnLinkSingleTo(node);
        node->UnLinkSingleTo(out);
183 184
        auto reshape0_data = new NodeData(
            Shared<Node>(reshape0), 0, 0, common::UniqName("var"), false);
185 186
        graph->RegisterNode(reshape0_data->id(), reshape0_data);
        reshape0->LinkTo(reshape0_data);
187 188 189 190
        shape_dict[reshape0_data->id()] =
            absl::get<std::vector<int>>(reshape0->attrs.attr_store.at("shape"));
        dtype_dict[reshape0_data->id()] =
            common::Str2Type(common::Type2Str(dtype_dict[in->id()]));
191 192

        // create reduce node0
193 194 195 196 197
        Node* reduce0 = new Node(
            Operator::Get(name), name, common::UniqName(name + "_split"));
        reduce0->attrs.attr_store["dim"] = std::vector<int>{0};
        reduce0->attrs.attr_store["keep_dim"] =
            absl::get<bool>(n->attrs.attr_store.at("keep_dim"));
198 199
        graph->RegisterNode(reduce0->id(), reduce0);
        reshape0_data->LinkTo(reduce0);
200 201
        auto reduce0_data = new NodeData(
            Shared<Node>(reduce0), 0, 0, common::UniqName("var"), false);
202 203
        graph->RegisterNode(reduce0_data->id(), reduce0_data);
        reduce0->LinkTo(reduce0_data);
204 205 206 207 208 209 210 211
        shape_dict[reduce0_data->id()] =
            keep_dim ? std::vector<int>{1,
                                        reduce_numel1,
                                        in_shape[in_shape.size() - 1]}
                     : std::vector<int>{reduce_numel1,
                                        in_shape[in_shape.size() - 1]};
        dtype_dict[reduce0_data->id()] =
            common::Str2Type(common::Type2Str(dtype_dict[in->id()]));
212 213

        // create reduce node1
214 215 216 217 218 219
        Node* reduce1 = new Node(
            Operator::Get(name), name, common::UniqName(name + "_split"));
        reduce1->attrs.attr_store["dim"] =
            keep_dim ? std::vector<int>{0, 1} : std::vector<int>{0};
        reduce1->attrs.attr_store["keep_dim"] =
            absl::get<bool>(n->attrs.attr_store.at("keep_dim"));
220 221
        graph->RegisterNode(reduce1->id(), reduce1);
        reduce0_data->LinkTo(reduce1);
222 223
        auto reduce1_data = new NodeData(
            Shared<Node>(reduce1), 0, 0, common::UniqName("var"), false);
224 225
        graph->RegisterNode(reduce1_data->id(), reduce1_data);
        reduce1->LinkTo(reduce1_data);
226 227 228 229 230
        shape_dict[reduce1_data->id()] =
            keep_dim ? std::vector<int>{1, 1, in_shape[in_shape.size() - 1]}
                     : std::vector<int>{in_shape[in_shape.size() - 1]};
        dtype_dict[reduce1_data->id()] =
            common::Str2Type(common::Type2Str(dtype_dict[in->id()]));
231 232

        // create reshape node1
233 234 235
        Node* reshape1 = new Node(Operator::Get("reshape"),
                                  "reshape",
                                  common::UniqName("reshape_split"));
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
        reshape1->attrs.attr_store["shape"] = out_shape;
        graph->RegisterNode(reshape1->id(), reshape1);
        reduce1_data->LinkTo(reshape1);
        reshape1->LinkTo(out);
        out->source_node = common::Shared<Node>(reshape1);

        // drop old node
        graph->DropNode(node);

        cnt++;
      }
    }
    return cnt;
  }

 private:
};

}  // namespace

void ReduceSplitFunc(framework::Graph* graph) {
  int n = ReduceSplitPass::Apply(graph);
  VLOG(3) << "ReduceSplit was performed " << n << " times.";
}

}  // namespace pass
}  // namespace hlir
}  // namespace cinn

CINN_REGISTER_HELPER(ReduceSplit) {
  CINN_REGISTER_PASS(ReduceSplit)
      .describe("")
      .set_change_structure(true)
      .provide_graph_attr("infershape")
      .provide_graph_attr("inferdtype")
      .set_body(cinn::hlir::pass::ReduceSplitFunc);
  return true;
}