argmin.cc 8.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
// Copyright (c) 2022 CINN Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/cinn/hlir/op/contrib/argmin.h"

#include <iostream>
#include <vector>

#include "paddle/cinn/common/cas.h"
#include "paddle/cinn/common/cinn_value.h"
#include "paddle/cinn/common/common.h"
#include "paddle/cinn/common/context.h"
#include "paddle/cinn/common/macros.h"
#include "paddle/cinn/hlir/framework/node.h"
#include "paddle/cinn/hlir/framework/op.h"
#include "paddle/cinn/hlir/framework/op_strategy.h"
#include "paddle/cinn/hlir/op/contrib/sort.h"
#include "paddle/cinn/hlir/pe/ir_schedule_pe.h"
#include "paddle/cinn/hlir/pe/nn.h"
#include "paddle/cinn/ir/ir.h"
#include "paddle/cinn/ir/ir_base.h"
#include "paddle/cinn/ir/ir_schedule.h"
#include "paddle/cinn/ir/tensor.h"
#include "paddle/cinn/lang/builtin.h"
#include "paddle/cinn/lang/compute.h"

DECLARE_bool(cinn_ir_schedule);

namespace cinn {
namespace hlir {
namespace op {

using common::CINNValue;
using framework::shape_t;
using ir::Tensor;

std::vector<Tensor> Argmin(const Tensor &in_tensor,
                           const common::Target &target,
                           poly::StageMap stages,
                           const int &axis,
                           const bool &keep_dims,
                           const std::string &name) {
  auto shape = in_tensor->shape;
55
  auto ndim = shape.size();
56 57 58 59 60 61 62 63 64 65 66
  CHECK_GT(ndim, 0) << "tensor's dim must be more than 0";

  int pos_axis = axis;
  if (axis < 0) {
    pos_axis = static_cast<int>(ndim) + axis;
  }
  CHECK_LT(pos_axis, ndim) << "Axis must be less than tensor's dim";
  CHECK_GE(pos_axis, 0) << "Axis must be more than 0";

  std::vector<Expr> output_shape;
  for (int i = 0; i < shape.size(); ++i) {
67 68
    CHECK(shape[i].is_constant())
        << "Input tensor's shape should be constant value.";
69 70 71 72 73 74 75 76 77 78 79
    if (pos_axis == i) {
      if (keep_dims) {
        output_shape.push_back(Expr(1));
      }
    } else {
      output_shape.push_back(shape[i]);
    }
  }
  if (output_shape.empty()) {
    output_shape.push_back(Expr(1));
  }
80 81 82
  auto sort_index =
      ArgSort(in_tensor, target, stages, pos_axis, true, name + "_index");
  auto res = Compute(
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
      output_shape,
      [=](const std::vector<Expr> &indices) {
        std::vector<Expr> eval_indices(indices);
        if (!keep_dims && ndim > 1) {
          eval_indices.insert(eval_indices.begin() + pos_axis, Expr(0));
        } else {
          eval_indices[pos_axis] = Expr(0);
        }
        return sort_index.at(0)(eval_indices);
      },
      name);
  stages->InsertLazily(sort_index.at(0));
  return {res, sort_index.at(0), sort_index.at(1)};
}

98 99 100 101 102 103
std::shared_ptr<framework::OpStrategy> StrategyForArgmin(
    const framework::NodeAttr &attrs,
    const std::vector<Tensor> &inputs,
    const std::vector<Type> &out_type,
    const std::vector<std::vector<int>> &output_shapes,
    const Target &target) {
104 105 106 107 108 109 110 111 112 113 114 115
  int axis;
  bool keep_dims = false;

  if (attrs.attr_store.count("axis")) {
    axis = absl::get<int>(attrs.attr_store.at("axis"));
  } else {
    LOG(FATAL) << "reduce dimension is not set!";
  }
  if (attrs.attr_store.count("keep_dim")) {
    keep_dims = absl::get<bool>(attrs.attr_store.at("keep_dim"));
  }

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
  framework::CINNCompute argmin_compute(
      [=](lang::Args args, lang::RetValue *ret) {
        CHECK(!args.empty())
            << "The input argument of argmin compute is empty! Please check.";
        common::CINNValuePack pack_args = args[0];
        CHECK_GE(pack_args.size(), 1U)
            << "There should be 1 input args for argmax compute";
        Expr in_expr = pack_args[0];
        CHECK(in_expr.as_tensor());
        Tensor in_tensor = in_expr.as_tensor_ref();
        auto stages = CreateStages({in_tensor});
        CHECK_EQ(pack_args.size(), 2U);
        CHECK(pack_args[1].is_string());
        std::string tensor_name = pack_args[1].operator std::string();
        auto out_tensor =
            Argmin(in_tensor, target, stages, axis, keep_dims, tensor_name);

        stages->InsertLazily(out_tensor[0]);
        std::vector<CINNValue> cinn_values{CINNValue(out_tensor[0]),
                                           CINNValue(out_tensor[1]),
                                           CINNValue(out_tensor[2]),
                                           CINNValue(stages)};
        *ret = common::CINNValuePack{cinn_values};
      });
140

141 142 143 144
  framework::CINNSchedule argmin_schedule([=](lang::Args args,
                                              lang::RetValue *ret) {
    CHECK(!args.empty())
        << "The input argument of arange_schedule is empty! Please check.\n";
6
6clc 已提交
145 146 147 148 149 150
    common::CINNValuePack arg_pack = args[0];
    std::vector<Expr> vec_ast;
    for (int i = 0; i < arg_pack.size(); i++) {
      if (arg_pack[i].is_expr()) {
        Expr temp = arg_pack[i];
        vec_ast.emplace_back(temp);
151 152
      }
    }
6
6clc 已提交
153 154 155 156 157
    CHECK(!vec_ast.empty());
    ir::ModuleExpr mod_expr(vec_ast);
    ir::IRSchedule ir_sch(mod_expr);
    ir_sch.MergeExprs();
    auto blocks = ir_sch.GetAllBlocks();
158 159 160
    // TODO: It needs to be rewritten according to the reduction_min operator to
    // improve performance. Do not use local variables, because the size will
    // exceed the limit.
6
6clc 已提交
161 162
    ir_sch.SetBuffer(blocks[0], "local");
    ir_sch.SetBuffer(blocks[1], "local");
163 164 165 166
    int64_t prod_size = std::accumulate(output_shapes[0].begin(),
                                        output_shapes[0].end(),
                                        1,
                                        std::multiplies<int>());
6
6clc 已提交
167 168 169
    if (prod_size > 1 && target.arch == Target::Arch::X86) {
      pe::IRScheduleInjectiveCPU(ir_sch, output_shapes.front(), target, true);
    }
170 171
    std::vector<common::CINNValue> res{
        common::CINNValue(ir_sch.GetModule().GetExprs().at(0))};
6
6clc 已提交
172
    *ret = common::CINNValuePack{res};
173 174 175 176 177 178 179 180
  });

  auto strategy = std::make_shared<framework::OpStrategy>();
  strategy->AddImpl(argmin_compute, argmin_schedule, "strategy.argmin.x86", 1);

  return strategy;
}

181 182 183
std::vector<shape_t> InferShapeForArgmin(
    const std::vector<shape_t> &inputs_shape,
    const framework::AttrMapType &attrs) {
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
  CHECK(inputs_shape.size() == 1UL);
  auto ndim = inputs_shape[0].size();
  CHECK_GT(ndim, 0) << "tensor's dim must be more than 0";
  int axis;
  bool keep_dim;

  CHECK(attrs.find("axis") != attrs.end());
  axis = absl::get<int>(attrs.at("axis"));
  if (axis < 0) {
    axis = static_cast<int>(ndim) + axis;
  }
  CHECK_LT(axis, ndim) << "Axis must be less than tensor's dim";
  CHECK_GE(axis, 0) << "Axis must be more than 0";

  CHECK(attrs.find("keep_dim") != attrs.end());
  keep_dim = absl::get<bool>(attrs.at("keep_dim"));

  std::vector<int> out_shapes;
  for (size_t i = 0; i < ndim; ++i) {
    if (axis == i) {
      if (keep_dim) {
        out_shapes.push_back(1);
      }
    } else {
      out_shapes.push_back(inputs_shape[0][i]);
    }
  }

  if (keep_dim) {
    CHECK_EQ(ndim, out_shapes.size());
  } else {
    CHECK_EQ(ndim - 1, out_shapes.size());
  }

  if (out_shapes.empty()) {
    out_shapes.push_back(1);
  }

  return {out_shapes};
}

225 226 227 228
std::vector<Type> InferDtypeForArgmin(const std::vector<Type> &inputs_type,
                                      const framework::AttrMapType &attrs) {
  CHECK(!inputs_type.empty())
      << "The input's type size is 0! Please check again.";
229 230 231
  return {Int(32)};
}

232 233 234 235 236 237 238 239 240
std::vector<std::vector<std::string>> InferLayoutForArgmin(
    const std::vector<framework::shape_t> &input_shapes,
    const std::vector<std::string> &input_layouts,
    const framework::NodeAttr &attrs,
    const Target &target) {
  CHECK_EQ(input_shapes.size(), 1U)
      << "The input's shape size is not 1! Please check again.";
  CHECK_EQ(input_layouts.size(), 1U)
      << "The input's layout size is not 1! Please check again.";
241 242 243 244 245 246 247 248 249 250 251
  return {input_layouts, input_layouts};
}
}  // namespace op
}  // namespace hlir
}  // namespace cinn

CINN_REGISTER_HELPER(argmin_ops) {
  CINN_REGISTER_OP(argmin)
      .describe("This operator implements the op argmin.")
      .set_num_inputs(1)
      .set_num_outputs(1)
252 253 254 255 256 257 258 259
      .set_attr<cinn::hlir::framework::StrategyFunction>(
          "CINNStrategy", cinn::hlir::op::StrategyForArgmin)
      .set_attr("infershape",
                MakeOpFunction(cinn::hlir::op::InferShapeForArgmin))
      .set_attr("inferdtype",
                MakeOpFunction(cinn::hlir::op::InferDtypeForArgmin))
      .set_attr<cinn::hlir::framework::OpPatternKind>(
          "OpPattern", cinn::hlir::framework::OpPatternKind::kNonFusible)
260 261 262 263
      .set_support_level(4);

  return true;
}