conv_grad_kernel.cu 12.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
zhangkaihuo 已提交
15
#include "paddle/phi/kernels/sparse/conv_grad_kernel.h"
16

17
#include "glog/logging.h"
18 19 20 21
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/core/kernel_registry.h"
22
#include "paddle/phi/core/tensor_utils.h"
23
#include "paddle/phi/core/visit_type.h"
24 25
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/math_function.h"
26
#include "paddle/phi/kernels/sparse/gpu/conv.cu.h"
27
#if defined(PADDLE_WITH_CUTLASS) && SPCONV_WITH_CUTLASS
28 29
#include "paddle/phi/kernels/sparse/gpu/gather_gemm_scatter.h"
#endif
30 31 32

namespace phi {
namespace sparse {
33
extern size_t workspace_size;
34 35 36 37 38 39 40 41 42

// rulebook[3, rulebook_len]:
//[
//  [kernel_index],
//  [in_i],
//  [out_i],
//]
// x_grad = out_grad * transpose(kenrel)
// kernel_grad = transpose(x) * out_grad
43
template <typename T, typename IntT>
Z
zhangkaihuo 已提交
44 45 46
void Conv3dCooGradGPUKernel(const GPUContext& dev_ctx,
                            const SparseCooTensor& x,
                            const DenseTensor& kernel,
47
                            const SparseCooTensor& out,
Z
zhangkaihuo 已提交
48
                            const DenseTensor& rulebook,
49
                            const DenseTensor& counter,
Z
zhangkaihuo 已提交
50 51 52 53 54 55
                            const SparseCooTensor& out_grad,
                            const std::vector<int>& paddings,
                            const std::vector<int>& dilations,
                            const std::vector<int>& strides,
                            const int groups,
                            const bool subm,
56
                            const std::string& key,
Z
zhangkaihuo 已提交
57 58
                            SparseCooTensor* x_grad,
                            DenseTensor* kernel_grad) {
59
  const auto& kernel_dims = kernel.dims();
60 61 62 63 64 65
  const bool is2D = kernel_dims.size() == 4 ? true : false;
  const int kernel_size =
      is2D ? kernel_dims[0] * kernel_dims[1]
           : kernel_dims[0] * kernel_dims[1] * kernel_dims[2];
  const int in_channels = is2D ? kernel_dims[2] : kernel_dims[3];
  const int out_channels = is2D ? kernel_dims[3] : kernel_dims[4];
66

67 68 69 70
  int rulebook_len = 0;
  const IntT* rulebook_ptr = phi::funcs::sparse::GetRulebookPtr<IntT>(
      out, rulebook, key, &rulebook_len);
  const int* counter_ptr = phi::funcs::sparse::GetCounterPtr(out, counter, key);
71 72

  phi::DenseTensor in_features =
73
      phi::Empty<T>(dev_ctx, {rulebook_len, in_channels});
74
  phi::DenseTensor d_x_features =
75
      phi::Empty<T>(dev_ctx, {rulebook_len, in_channels});
76
  phi::DenseTensor out_grad_features =
77
      phi::Empty<T>(dev_ctx, {rulebook_len, out_channels});
78 79 80 81

  T* in_features_ptr = in_features.data<T>();
  T* d_x_features_ptr = d_x_features.data<T>();
  T* out_grad_features_ptr = out_grad_features.data<T>();
82
  *kernel_grad = phi::EmptyLike<T>(dev_ctx, kernel);
83
  T* d_kernel_ptr = kernel_grad->data<T>();
84 85
  phi::backends::gpu::GpuMemsetAsync(
      d_kernel_ptr, 0, sizeof(T) * kernel_grad->numel(), dev_ctx.stream());
86

Z
zhangkaihuo 已提交
87
  int half_kernel_size = kernel_size / 2;
88
  auto blas = phi::funcs::GetBlas<GPUContext, T>(dev_ctx);
89
  DenseTensor x_grad_indices = phi::EmptyLike<IntT>(dev_ctx, x.indices());
90
  DenseTensor x_grad_values = phi::EmptyLike<T>(dev_ctx, x.values());
91
  T* x_grad_values_ptr = x_grad_values.data<T>();
92 93 94 95 96 97
  phi::backends::gpu::GpuMemsetAsync(x_grad_values_ptr,
                                     0,
                                     sizeof(T) * x_grad_values.numel(),
                                     dev_ctx.stream());
  phi::backends::gpu::GpuMemsetAsync(
      d_x_features_ptr, 0, sizeof(T) * d_x_features.numel(), dev_ctx.stream());
98 99
  phi::Copy<GPUContext>(
      dev_ctx, x.indices(), dev_ctx.GetPlace(), false, &x_grad_indices);
100
  x_grad->SetMember(x_grad_indices, x_grad_values, x.dims(), true);
Z
zhangkaihuo 已提交
101

102
  std::vector<int> offsets(kernel_size + 1);
103

104
  int offset = 0, max_count = 0;
105 106
  for (int i = 0; i < kernel_size; i++) {
    offsets[i] = offset;
107
    offset += counter_ptr[i];
Z
zhangkaihuo 已提交
108
    if (i < half_kernel_size) {
109
      max_count = std::max(max_count, counter_ptr[i]);
Z
zhangkaihuo 已提交
110
    }
111 112 113
  }
  offsets[kernel_size] = offset;

Z
zhangkaihuo 已提交
114
  if (subm) {
115 116 117 118 119 120 121 122 123
    phi::funcs::sparse::SubmPreProcess<T, GPUContext>(dev_ctx,
                                                      x,
                                                      kernel,
                                                      out_grad.values(),
                                                      in_channels,
                                                      out_channels,
                                                      half_kernel_size,
                                                      kernel_grad,
                                                      &x_grad_values);
Z
zhangkaihuo 已提交
124 125 126 127 128
    if (max_count == 0) {
      return;
    }
  }

129 130 131
  auto config =
      phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, rulebook_len, 1);
  DenseTensor unique_value = phi::Empty<int>(
132
      dev_ctx, {static_cast<int>(x_grad->nnz() * kernel_size * 2)});
133 134 135 136 137 138
  DenseTensor out_index =
      phi::Empty<int>(dev_ctx, {static_cast<int>(x.nnz() * 2)});
  int* out_index_ptr = out_index.data<int>();
  int* unique_value_ptr = unique_value.data<int>();
  phi::backends::gpu::GpuMemsetAsync(
      out_index_ptr, 0, sizeof(int) * x.nnz() * 2, dev_ctx.stream());
Z
zhangkaihuo 已提交
139

140
#if defined(PADDLE_WITH_CUTLASS) && SPCONV_WITH_CUTLASS
141 142
  bool cutlass = true;
  if (dev_ctx.GetComputeCapability() < 80) cutlass = false;
Z
zhangkaihuo 已提交
143

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
  if (in_channels % 4 != 0 || out_channels % 4 != 0) cutlass = false;

  if (std::is_same<T, phi::dtype::float16>::value ||
      std::is_same<T, double>::value)
    cutlass = false;

  if (!std::is_same<IntT, int32_t>::value) cutlass = false;

  if (!cutlass) {
#endif

    GroupIndexsV2<<<config.block_per_grid,
                    config.thread_per_block,
                    0,
                    dev_ctx.stream()>>>(rulebook_len,
                                        x.nnz(),
                                        kernel_size,
                                        offsets[kernel_size / 2],
                                        rulebook_ptr,
                                        out_index_ptr,
                                        unique_value_ptr);

    GatherV2<T, IntT>(dev_ctx,
                      x.values().data<T>(),
                      out_index_ptr,
                      unique_value_ptr,
                      x.nnz(),
                      kernel_size,
                      in_channels,
                      2,
                      in_features_ptr);

    Gather<T, IntT>(dev_ctx,
                    out_grad.values().data<T>(),
                    rulebook_ptr + rulebook_len,
                    rulebook_len,
                    out_channels,
                    out_grad_features_ptr);

183
#if defined(PADDLE_WITH_CUTLASS) && SPCONV_WITH_CUTLASS
184 185
  }
#endif
186 187
  const T* kernel_ptr = kernel.data<T>();
  for (int i = 0; i < kernel_size; i++) {
188
    if (counter_ptr[i] <= 0 || (subm && i == half_kernel_size)) {
189 190 191
      continue;
    }

192
    const int M = counter_ptr[i];
193 194 195 196 197
    const int K = in_channels;
    const int N = out_channels;
    T* tmp_in_ptr = in_features_ptr + offsets[i] * in_channels;
    T* tmp_out_grad_ptr = out_grad_features_ptr + offsets[i] * out_channels;
    const T* tmp_kernel_ptr = kernel_ptr + i * in_channels * out_channels;
198
    T* tmp_d_x_ptr = d_x_features_ptr + offsets[i] * in_channels;
199 200
    T* tmp_d_kernel_ptr = d_kernel_ptr + i * in_channels * out_channels;

201
#if defined(PADDLE_WITH_CUTLASS) && SPCONV_WITH_CUTLASS
202 203 204 205 206 207 208 209 210
    if (cutlass) {
      const IntT* gather_x_indices = rulebook_ptr + offsets[i];
      const IntT* scatter_x_indices = rulebook_ptr + offsets[i];
      const IntT* gather_out_indices = rulebook_ptr + rulebook_len + offsets[i];
      const size_t key = autotune::GenKey(M / features_num_range, N, K);
      // call gemm: d_kernel = transpose(x) * out_grad
      // (in_channels, n) * (n, out_channels)
      static cutlass::device_memory::allocation<uint8_t> workspace(
          workspace_size);
211
      GatherGemmScatterDriver<80, true, false>(
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
          dev_ctx,
          key,
          x.values().data<T>(),
          out_grad.values().data<T>(),
          tmp_d_kernel_ptr,
          tmp_d_kernel_ptr,
          in_channels,
          out_channels,
          counter_ptr[i],
          gather_x_indices,
          gather_out_indices,
          static_cast<const IntT*>(nullptr),
          static_cast<const T>(1.0),
          static_cast<const T>(0.0),
          &workspace);
      // call gemm: d_x = out_grad * transpose(kernel)
      // (n, out_channels) * (out_channels, in_channels)
229
      GatherGemmScatterDriver<80, false, true>(
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
          dev_ctx,
          key,
          out_grad.values().data<T>(),
          tmp_kernel_ptr,
          x_grad_values_ptr,
          x_grad_values_ptr,
          counter_ptr[i],
          in_channels,
          out_channels,
          gather_out_indices,
          static_cast<const IntT*>(nullptr),
          scatter_x_indices,
          static_cast<const T>(1.0),
          static_cast<const T>(1.0),
          nullptr);
    } else {
#endif
      // call gemm: d_kernel = transpose(x) * out_grad
      // (in_channels, n) * (n, out_channels)
      blas.GEMM(CblasTrans,
                CblasNoTrans,
                K,
                N,
                M,
                static_cast<T>(1),
                tmp_in_ptr,
                tmp_out_grad_ptr,
                static_cast<T>(0),
                tmp_d_kernel_ptr);

      // call gemm: d_x = out_grad * transpose(kernel)
      // (n, out_channels) * (out_channels, in_channels)
      blas.GEMM(CblasNoTrans,
                CblasTrans,
                M,
                K,
                N,
                static_cast<T>(1),
                tmp_out_grad_ptr,
                tmp_kernel_ptr,
                static_cast<T>(0),
                tmp_d_x_ptr);
272
#if defined(PADDLE_WITH_CUTLASS) && SPCONV_WITH_CUTLASS
273 274
    }
#endif
275 276 277
  }

  // 4. scatter
278
#if defined(PADDLE_WITH_CUTLASS) && SPCONV_WITH_CUTLASS
279 280 281 282 283 284 285 286 287 288 289
  if (!cutlass) {
#endif
    phi::funcs::sparse::ScatterV2<T>(dev_ctx,
                                     d_x_features_ptr,
                                     out_index.data<int>(),
                                     unique_value.data<int>(),
                                     x_grad->nnz(),
                                     kernel_size,
                                     in_channels,
                                     2,
                                     x_grad_values_ptr);
290
#if defined(PADDLE_WITH_CUTLASS) && SPCONV_WITH_CUTLASS
291 292
  }
#endif
293 294
}

295
template <typename T, typename Context>
Z
zhangkaihuo 已提交
296 297 298
void Conv3dCooGradKernel(const Context& dev_ctx,
                         const SparseCooTensor& x,
                         const DenseTensor& kernel,
299
                         const SparseCooTensor& out,
Z
zhangkaihuo 已提交
300
                         const DenseTensor& rulebook,
301
                         const DenseTensor& counter,
Z
zhangkaihuo 已提交
302 303 304 305 306 307
                         const SparseCooTensor& out_grad,
                         const std::vector<int>& paddings,
                         const std::vector<int>& dilations,
                         const std::vector<int>& strides,
                         const int groups,
                         const bool subm,
308
                         const std::string& key,
Z
zhangkaihuo 已提交
309 310
                         SparseCooTensor* x_grad,
                         DenseTensor* kernel_grad) {
Z
zhangkaihuo 已提交
311
  PD_VISIT_BASE_INTEGRAL_TYPES(
312
      x.indices().dtype(), "Conv3dCooGradGPUKernel", ([&] {
Z
zhangkaihuo 已提交
313 314 315
        Conv3dCooGradGPUKernel<T, data_t>(dev_ctx,
                                          x,
                                          kernel,
316
                                          out,
Z
zhangkaihuo 已提交
317
                                          rulebook,
318
                                          counter,
Z
zhangkaihuo 已提交
319 320 321 322 323 324
                                          out_grad,
                                          paddings,
                                          dilations,
                                          strides,
                                          groups,
                                          subm,
325
                                          key,
Z
zhangkaihuo 已提交
326 327
                                          x_grad,
                                          kernel_grad);
328 329
      }));
}
330 331 332
}  // namespace sparse
}  // namespace phi

Z
zhangkaihuo 已提交
333
PD_REGISTER_KERNEL(conv3d_coo_grad,
334 335
                   GPU,
                   ALL_LAYOUT,
Z
zhangkaihuo 已提交
336
                   phi::sparse::Conv3dCooGradKernel,
337 338 339 340 341
                   float,
                   double,
                   phi::dtype::float16) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}