parallel.py 16.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except jin compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import warnings
17 18
from multiprocessing import Process  # noqa: F401
from multiprocessing import Manager  # noqa: F401
19
import time
20
import paddle
21 22 23

# deprecated module import
from paddle.fluid import core
L
lilong12 已提交
24
from paddle.fluid.framework import in_dygraph_mode
25 26
from paddle.fluid.framework import _set_expected_place
from paddle.fluid.dygraph import parallel_helper
X
xiongkun 已提交
27
from paddle.distributed.fleet.launch_utils import check_backend
28
from paddle.fluid.dygraph.parallel import ParallelEnv
29 30 31
from paddle.distributed.fleet.base.private_helper_function import (
    wait_server_ready,
)  # noqa: F401
L
lilong12 已提交
32 33 34
from paddle.distributed.collective import _set_group_map
from paddle.distributed.collective import _set_group_map_by_name
from paddle.distributed.collective import _get_group_map_by_name
35 36
from paddle.distributed.collective import _default_group_name
from paddle.distributed.collective import _valid_backend_list
L
lilong12 已提交
37 38
from paddle.distributed.collective import _set_default_backend
from paddle.distributed.collective import _set_default_store
39 40
from paddle.distributed.collective import _new_process_group_impl
from paddle.distributed.collective import Group
41
from paddle.distributed.collective import _set_group_map_backend
42
from paddle.distributed.communication.group import _add_new_group
43

44
__all__ = []
45 46 47

ParallelStrategy = core.ParallelStrategy

48
# NOTE(chenweihang): Maintain a global parallel env to avoid
49 50 51 52 53 54 55 56 57 58
# initializing ParallelEnv every time and improve performance
_global_parallel_env = None


def _get_global_parallel_env():
    global _global_parallel_env
    if _global_parallel_env is None:
        _global_parallel_env = ParallelEnv()
    return _global_parallel_env

59

60
def _start_kv_server(port, http_server_d, size):
61
    from paddle.distributed.fleet.utils.http_server import KVServer
62

63
    http_server = KVServer(int(port), size=size)
64
    http_server.start()
65
    wait_seconds = 3
L
lilong12 已提交
66
    while http_server_d.get("running", False) or not http_server.should_stop():
67 68 69 70
        time.sleep(wait_seconds)
    http_server.stop()


X
xiongkun 已提交
71 72
def _is_cpuonly(backend):
    check_backend(backend)
73 74 75 76 77 78 79 80 81
    if (
        backend in ['auto', 'nccl', 'bkcl', 'hccl', 'heter', 'cncl']
        and (
            core.is_compiled_with_cuda()
            or core.is_compiled_with_xpu()
            or core.is_compiled_with_npu()
            or core.is_compiled_with_mlu()
        )
    ) or backend == 'xccl':
82

83 84 85 86 87 88
        # passes 'auto' and can use cuda or xpu, use the default logics. so return False
        return False
    else:
        return True


K
kuizhiqing 已提交
89 90 91
def _check_var_exists(var_name):
    var = os.environ.get(var_name, None)
    if var is None:
92 93 94 95
        raise ValueError(
            "paddle.distributed initialize error, "
            "environment variable %s is needed, but not set." % var_name
        )
K
kuizhiqing 已提交
96 97


X
xiongkun 已提交
98
def init_parallel_env():
99
    """
100
    Initialize parallel training environment in dynamic graph mode.
101

102
    Note:
103
        Now initialize both `NCCL` and `GLOO` contexts for communication.
104

105 106 107 108 109
    Args:
        backend (string): A string represents the backend used by DataParallel,
            should be one of 'gloo'(for cpu), 'nccl'(for cuda), 'bkcl'(for xpu), 'auto'(auto detect).
            The auto detection prefer 'nccl', 'bkcl' than 'gloo'.

110 111
    Returns:
        None
112

113 114
    Examples:
        .. code-block:: python
115
            # required: gpu
116 117 118 119 120 121 122
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
            import paddle.distributed as dist

            class LinearNet(nn.Layer):
                def __init__(self):
123
                    super().__init__()
124 125
                    self._linear1 = nn.Linear(10, 10)
                    self._linear2 = nn.Linear(10, 1)
126

127 128 129 130
                def forward(self, x):
                    return self._linear2(self._linear1(x))

            def train():
131
                # 1. initialize parallel environment
132 133
                dist.init_parallel_env()

134
                # 2. create data parallel layer & optimizer
135 136 137 138 139 140 141
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)

                loss_fn = nn.MSELoss()
                adam = opt.Adam(
                    learning_rate=0.001, parameters=dp_layer.parameters())

142
                # 3. run layer
143 144 145 146
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)
147

148 149 150 151 152 153 154 155 156
                loss.backward()

                adam.step()
                adam.clear_grad()

            if __name__ == '__main__':
                dist.spawn(train)
    """

157 158 159 160 161 162 163 164 165 166 167
    # 0. get env & check world size
    global _global_parallel_env
    # when call init_parallel_env, need update `_global_parallel_env`
    _global_parallel_env = ParallelEnv()
    parallel_env = _global_parallel_env
    # if not parallel, `init_parallel_env` do nothing
    if parallel_env.world_size < 2:
        warnings.warn(
            "Currently not a parallel execution environment, `paddle.distributed.init_parallel_env` will not do anything."
        )
        return
168
    # NOTE(xiongkun): support cpu gloo only, add this environment variable to
169
    #                 enable cpu only gloo prarllel training)
X
xiongkun 已提交
170 171
    backend = os.environ.get('PADDLE_DISTRI_BACKEND', 'auto')
    is_cpu_only = _is_cpuonly(backend)
172
    # 1. gpu xpu check, must be gpu or xpu,
173 174 175 176 177 178 179
    if not (
        is_cpu_only
        or core.is_compiled_with_cuda()
        or core.is_compiled_with_xpu()
        or core.is_compiled_with_npu()
        or core.is_compiled_with_mlu()
    ):
180
        raise NotImplementedError(
181 182
            "If you want to use CPU-only version, please use 'gloo' as backend"
        )
183

184 185
    if backend == "xccl":
        FLAGS_selected_custom_devices = 'FLAGS_selected_{}s'.format(
186 187
            parallel_env.device_type
        )
188 189 190 191 192 193 194 195 196 197 198 199 200 201
        _check_var_exists(FLAGS_selected_custom_devices)
    else:
        if not is_cpu_only and core.is_compiled_with_cuda():
            _check_var_exists("FLAGS_selected_gpus")
            backend = "nccl" if backend == "auto" else backend
        elif not is_cpu_only and core.is_compiled_with_xpu():
            _check_var_exists('FLAGS_selected_xpus')
            backend = "bkcl" if backend == "auto" else backend
        elif not is_cpu_only and core.is_compiled_with_npu():
            _check_var_exists('FLAGS_selected_npus')
            backend = "hccl" if backend == "auto" else backend
        elif not is_cpu_only and core.is_compiled_with_mlu():
            _check_var_exists('FLAGS_selected_mlus')
            backend = "cncl" if backend == "auto" else backend
202

203 204 205 206 207
    _check_var_exists("PADDLE_TRAINER_ID")
    _check_var_exists("PADDLE_CURRENT_ENDPOINT")
    _check_var_exists("PADDLE_TRAINERS_NUM")
    _check_var_exists("PADDLE_TRAINER_ENDPOINTS")

208 209 210 211 212 213
    # NOTE(chenweihang): [ why config global place here? ]
    # the dygraph mode will be set to default mode,
    # users will not call `dygraph.guard` or `enable_dygraph`
    # directly, if they want to switch default place,
    # they need to call a function to change default place,
    # here just set correctly place to users
214
    if backend == "xccl":
215 216 217
        place = core.CustomPlace(
            parallel_env.device_type, parallel_env.device_id
        )
218
    elif is_cpu_only:
219 220 221 222 223 224 225 226 227 228 229 230 231
        place = core.CPUPlace()
    elif core.is_compiled_with_cuda():
        place = core.CUDAPlace(parallel_env.device_id)
    elif core.is_compiled_with_xpu():
        place = core.XPUPlace(parallel_env.device_id)
    elif core.is_compiled_with_npu():
        place = core.NPUPlace(parallel_env.device_id)
    elif core.is_compiled_with_mlu():
        place = core.MLUPlace(parallel_env.device_id)

    _set_expected_place(place)

    group = None
L
lilong12 已提交
232 233 234 235
    if backend in _valid_backend_list and in_dygraph_mode():
        if _default_group_name in _get_group_map_by_name():
            return _get_group_map_by_name()[_default_group_name]
        _set_default_backend(backend)
236 237 238 239 240
        rank = int(os.getenv("PADDLE_TRAINER_ID"))
        world_size = int(os.getenv("PADDLE_TRAINERS_NUM"))
        assert rank >= 0 and world_size > rank and world_size > 1, (
            "rank must be non-negative and world_size must be the "
            "maximum rank plus one. Moreover, at least two processes are "
241 242
            "required to create a process group."
        )
243 244
        master_addr = os.getenv("MASTER_ADDR", None)
        master_port = os.getenv("MASTER_PORT", None)
245 246 247 248 249
        endpoints = (
            ":".join([master_addr, master_port])
            if master_addr and master_port
            else None
        )
250
        if endpoints is None:
251 252 253 254 255 256 257
            endpoints = os.getenv("PADDLE_MASTER", None)
        if endpoints is None:
            endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS").split(',')[0]
        assert endpoints, (
            "The environment variable 'MASTER_ADDR' and 'MASTER_PORT' "
            "must be specified, for example 'export MASTER_ADDR=127.0.0.1' "
            "and 'export MASTER_ADDR=54612'. Or you can start your training"
258 259
            "with paddle.distributed.run module."
        )
260 261 262
        master_addr, master_port = endpoints.split(":")
        master_port = int(master_port)
        is_master = rank == 0
263
        stop_check_timeout = int(os.getenv("FLAGS_stop_check_timeout", "900"))
264 265 266 267 268 269 270
        default_store = core.TCPStore(
            master_addr,
            master_port,
            is_master,
            world_size,
            timeout=stop_check_timeout,
        )
L
lilong12 已提交
271
        _set_default_store(default_store)
272 273 274 275 276 277 278 279
        pg = _new_process_group_impl(
            backend,
            default_store,
            rank,
            world_size,
            _default_group_name,
            pg_options=None,
        )
280
        ranks = list(range(world_size))
281
        group = Group(rank, 0, ranks, pg=pg, name=_default_group_name)
L
lilong12 已提交
282 283
        _set_group_map_by_name(_default_group_name, group)
        _set_group_map(0, group)
284
        _set_group_map_backend(group, backend)
285
        _add_new_group(group)
286
        parallel_helper._set_parallel_ctx(True)
287 288

        paddle.distributed.barrier(group=group)
289 290
        return group

K
kuizhiqing 已提交
291
    node_num = set([i.split(":")[0] for i in parallel_env.trainer_endpoints])
292
    # 3: init gloo context (step 1: httpsever start)
L
lilong12 已提交
293
    init_gloo = int(os.getenv("PADDLE_WITH_GLOO", "0"))
K
kuizhiqing 已提交
294
    if is_cpu_only or init_gloo or backend == "heter":
L
lilong12 已提交
295 296 297 298 299 300 301 302
        ep_rank_0 = parallel_env.trainer_endpoints[0].split(":")
        manager = Manager()
        # glboal dict to store status
        http_server_d = manager.dict()
        http_server_d["running"] = False
        if parallel_env.rank == 0:
            # The scope for worker used by http server is '_worker'
            size = {'_worker': parallel_env.world_size}
K
kuizhiqing 已提交
303 304
            if backend == "heter":
                size = {'_worker': len(node_num)}
305 306 307 308
            http_server = Process(
                target=_start_kv_server,
                args=(int(ep_rank_0[1]), http_server_d, size),
            )
L
lilong12 已提交
309 310 311
            http_server.daemon = True
            http_server_d["running"] = True
            http_server.start()
312 313

    # 4. init NCCL ParallelStrategy
314
    strategy = ParallelStrategy()
315 316
    if parallel_helper._is_parallel_ctx_initialized():
        warnings.warn("The parallel environment has been initialized.")
317 318 319 320
    strategy.nranks = parallel_env.world_size
    strategy.local_rank = parallel_env.rank
    strategy.trainer_endpoints = parallel_env.trainer_endpoints
    strategy.current_endpoint = parallel_env.current_endpoint
321
    strategy.nrings = parallel_env.nrings
322

K
kuizhiqing 已提交
323
    # init nccl or hccl or bkcl or heter context
324 325
    if is_cpu_only:
        parallel_helper._set_parallel_ctx(
326 327 328
            core.GLOOParallelContext(strategy, place)
        )
    elif backend == "heter":
K
kuizhiqing 已提交
329
        parallel_helper._set_parallel_ctx(
330 331
            core.HeterParallelContext(strategy, parallel_env.device_id)
        )
332
    elif core.is_compiled_with_cuda():
333
        parallel_helper._set_parallel_ctx(
334 335
            core.NCCLParallelContext(strategy, place)
        )
336 337
    elif core.is_compiled_with_xpu():
        parallel_helper._set_parallel_ctx(
338 339
            core.BKCLParallelContext(strategy, place)
        )
340 341
    elif core.is_compiled_with_npu():
        parallel_helper._set_parallel_ctx(
342 343
            core.HCCLParallelContext(strategy, place)
        )
344 345
    elif core.is_compiled_with_mlu():
        parallel_helper._set_parallel_ctx(
346 347
            core.CNCLParallelContext(strategy, place)
        )
348

K
kuizhiqing 已提交
349 350 351 352 353
    if backend != "heter":
        other_endpoints = strategy.trainer_endpoints[:]
        other_endpoints.remove(strategy.current_endpoint)
        if not is_cpu_only and strategy.local_rank == 0:
            wait_server_ready(other_endpoints)
354

355
    parallel_helper._init_parallel_ctx()
K
kuizhiqing 已提交
356

357 358 359 360
    # 5: init gloo context (step 2: gloo init)
    # dividing init_gloo into two part beacause nccl and gloo
    # are separately looking for free ports which sometimes
    # leads to port-conflict.
K
kuizhiqing 已提交
361
    if (is_cpu_only or backend == "heter") and parallel_env.rank == 0:
362
        # compare to init_gloo, we don't need to
363 364 365
        # init gloo, because we do this in _init_parallel_ctx;
        http_server_d["running"] = False
        http_server.join()
L
lilong12 已提交
366

367 368
    elif init_gloo:
        wait_server_ready([parallel_env.trainer_endpoints[0]])
L
lilong12 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382
        gloo_strategy = core.GlooParallelStrategy()
        gloo_strategy.rank = parallel_env.rank
        gloo_strategy.rank_num = parallel_env.world_size
        gloo_strategy.ip_address = ep_rank_0[0]
        gloo_strategy.ip_port = int(ep_rank_0[1])
        default_init_timeout_seconds = 3600
        default_run_timeout_seconds = 9999999
        gloo_strategy.init_seconds = default_init_timeout_seconds
        gloo_strategy.run_seconds = default_run_timeout_seconds
        gloo = core.GlooParallelContext(gloo_strategy)
        gloo.init()
        if parallel_env.rank == 0:
            http_server_d["running"] = False
            http_server.join()
383
    return group
384

385

L
LiYuRio 已提交
386
def get_rank(group=None):
387
    """
L
LiYuRio 已提交
388 389
    Returns the rank of current trainer in the given group, ranks are consecutive integers in [0, ``world_size``).
    If none of the group is given, the global group will be used as default.
390

L
LiYuRio 已提交
391 392
    Args:
        group (Group, optional): The communication group you want to get rank of current trainer, use global group as default if group is None.
393 394

    Returns:
L
LiYuRio 已提交
395 396 397 398
        (int) The rank of current trainer in the given group. Return -1 if the process is not part of the given group.

    Warning:
        Argument ``group`` only supports in dygraph mode.
399 400 401 402

    Examples:
        .. code-block:: python

L
LiYuRio 已提交
403
            # Execute this script using distributed launch with one card configs.
404 405 406
            import paddle
            import paddle.distributed as dist

L
LiYuRio 已提交
407
            dist.init_parallel_env()
408 409 410
            print("The rank is %d" % dist.get_rank())
            # The rank is 0
    """
L
LiYuRio 已提交
411 412 413 414
    if in_dygraph_mode() and group:
        return group.rank

    assert group is None, "Only support group argument in eager mode."
415
    return _get_global_parallel_env().rank
416 417


L
LiYuRio 已提交
418
def get_world_size(group=None):
419
    """
L
LiYuRio 已提交
420 421
    Returns the number of trainers (number of processes participating in current job) in the given group.
    If none of the group is given, the global group will be used as default.
422

L
LiYuRio 已提交
423 424
    Args:
        group (Group, optional): The communication group you want to check world size, use global group as default if group is None.
425 426

    Returns:
L
LiYuRio 已提交
427 428 429 430
        (int) The number of trainers in the given group. Return -1 if the process if not part of the given group.

    Warning:
        Argument ``group`` only supports in dygraph mode.
431 432 433 434

    Examples:
        .. code-block:: python

L
LiYuRio 已提交
435
            # Execute this script using distributed launch with one card configs.
436 437 438
            import paddle
            import paddle.distributed as dist

L
LiYuRio 已提交
439
            dist.init_parallel_env()
440
            print("The world_size is %d" % dist.get_world_size())
L
LiYuRio 已提交
441
            # The world_size is 1
442
    """
L
LiYuRio 已提交
443 444 445 446
    if in_dygraph_mode() and group:
        return group.world_size

    assert group is None, "Only support group argument in eager mode."
447
    return _get_global_parallel_env().world_size