test_mean_op.py 16.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

L
liaogang 已提交
15
import unittest
16 17

import gradient_checker
L
liaogang 已提交
18
import numpy as np
19
from decorator_helper import prog_scope
20
from op_test import OpTest, OpTestTool, convert_float_to_uint16
21 22
from test_sum_op import TestReduceOPTensorAxisBase

23
import paddle
24
import paddle.fluid as fluid
25 26
import paddle.fluid.core as core
from paddle.fluid import Program, program_guard
27

28 29
np.random.seed(10)

L
liaogang 已提交
30

31
def mean_wrapper(x, axis=None, keepdim=False, reduce_all=False):
32
    if reduce_all:
33
        return paddle.mean(x, list(range(len(x.shape))), keepdim)
34 35 36 37
    return paddle.mean(x, axis, keepdim)


def reduce_mean_wrapper(x, axis=0, keepdim=False, reduce_all=False):
38
    if reduce_all:
39
        return paddle.mean(x, list(range(len(x.shape))), keepdim)
40 41 42
    return paddle.mean(x, axis, keepdim)


Q
qijun 已提交
43
class TestMeanOp(OpTest):
L
liaogang 已提交
44
    def setUp(self):
Q
qijun 已提交
45
        self.op_type = "mean"
46
        self.python_api = paddle.mean
47
        self.dtype = np.float64
C
chengduo 已提交
48 49
        self.init_dtype_type()
        self.inputs = {'X': np.random.random((10, 10)).astype(self.dtype)}
Q
qijun 已提交
50
        self.outputs = {'Out': np.mean(self.inputs["X"])}
L
liaogang 已提交
51

C
chengduo 已提交
52 53 54
    def init_dtype_type(self):
        pass

Q
qijun 已提交
55
    def test_check_output(self):
56
        self.check_output(check_eager=True)
L
liaogang 已提交
57

Q
qijun 已提交
58
    def test_checkout_grad(self):
59
        self.check_grad(['X'], 'Out', check_eager=True)
60 61


62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
class TestMeanOp_ZeroDim(OpTest):
    def setUp(self):
        self.op_type = "mean"
        self.python_api = paddle.mean
        self.dtype = np.float64
        self.inputs = {'X': np.random.random([]).astype(self.dtype)}
        self.outputs = {'Out': np.mean(self.inputs["X"])}

    def test_check_output(self):
        self.check_output(check_eager=True)

    def test_checkout_grad(self):
        self.check_grad(['X'], 'Out', check_eager=True)


77
class TestMeanOpError(unittest.TestCase):
78 79 80 81
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of mean_op must be Variable.
            input1 = 12
82
            self.assertRaises(TypeError, paddle.mean, input1)
83
            # The input dtype of mean_op must be float16, float32, float64.
G
GGBond8488 已提交
84 85
            input2 = paddle.static.data(
                name='input2', shape=[-1, 12, 10], dtype="int32"
86
            )
87
            self.assertRaises(TypeError, paddle.mean, input2)
G
GGBond8488 已提交
88 89
            input3 = paddle.static.data(
                name='input3', shape=[-1, 4], dtype="float16"
90
            )
91
            paddle.nn.functional.softmax(input3)
92 93


94 95 96
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
C
chengduo 已提交
97 98 99
class TestFP16MeanOp(TestMeanOp):
    def init_dtype_type(self):
        self.dtype = np.float16
S
sneaxiy 已提交
100
        self.__class__.no_need_check_grad = True
C
chengduo 已提交
101 102 103 104

    def test_check_output(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
105
            self.check_output_with_place(place, check_eager=True)
C
chengduo 已提交
106 107 108 109

    def test_checkout_grad(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
S
sneaxiy 已提交
110 111 112 113
            with fluid.dygraph.guard():
                x_np = np.random.random((10, 10)).astype(self.dtype)
                x = paddle.to_tensor(x_np)
                x.stop_gradient = False
114
                y = paddle.mean(x)
S
sneaxiy 已提交
115 116
                dx = paddle.grad(y, x)[0].numpy()
                dx_expected = self.dtype(1.0 / np.prod(x_np.shape)) * np.ones(
117 118
                    x_np.shape
                ).astype(self.dtype)
119
                np.testing.assert_array_equal(dx, dx_expected)
C
chengduo 已提交
120 121


A
arlesniak 已提交
122 123 124 125 126 127 128
@OpTestTool.skip_if_not_cpu_bf16()
class TestBF16MeanOp(TestMeanOp):
    def init_dtype_type(self):
        self.dtype = np.uint16

    def test_check_output(self):
        paddle.enable_static()
129
        self.check_output_with_place(core.CPUPlace(), check_eager=True)
A
arlesniak 已提交
130 131 132

    def test_checkout_grad(self):
        place = core.CPUPlace()
133
        self.check_grad_with_place(place, ['X'], 'Out', check_eager=True)
A
arlesniak 已提交
134 135


136 137 138 139 140 141 142 143
def ref_reduce_mean(x, axis=None, keepdim=False, reduce_all=False):
    if isinstance(axis, list):
        axis = tuple(axis)
    if reduce_all:
        axis = None
    return np.mean(x, axis=axis, keepdims=keepdim)


144 145 146 147 148
@unittest.skipIf(
    not core.is_compiled_with_cuda()
    or not core.is_float16_supported(core.CUDAPlace(0)),
    "core is not compiled with CUDA",
)
149 150 151
class TestReduceMeanOp(OpTest):
    def setUp(self):
        self.op_type = 'reduce_mean'
152
        self.python_api = reduce_mean_wrapper
153 154 155 156 157 158 159 160
        self.dtype = 'float64'
        self.shape = [2, 3, 4, 5]
        self.axis = [0]
        self.keepdim = False
        self.set_attrs()

        np.random.seed(10)
        x_np = np.random.uniform(-1, 1, self.shape).astype(self.dtype)
S
sneaxiy 已提交
161 162 163
        if not hasattr(self, "reduce_all"):
            self.reduce_all = (not self.axis) or len(self.axis) == len(x_np)

164 165 166 167 168 169
        out_np = ref_reduce_mean(x_np, self.axis, self.keepdim, self.reduce_all)
        self.inputs = {'X': x_np}
        self.outputs = {'Out': out_np}
        self.attrs = {
            'dim': self.axis,
            'keep_dim': self.keepdim,
170
            'reduce_all': self.reduce_all,
171 172 173 174 175 176
        }

    def set_attrs(self):
        pass

    def test_check_output(self):
S
sneaxiy 已提交
177
        if self.dtype != 'float16':
178
            self.check_output(check_eager=True)
S
sneaxiy 已提交
179 180 181
        else:
            place = paddle.CUDAPlace(0)
            self.check_output_with_place(place=place)
182 183

    def test_check_grad(self):
S
sneaxiy 已提交
184
        if self.dtype != 'float16':
185
            self.check_grad(['X'], ['Out'], check_eager=True)
S
sneaxiy 已提交
186 187
        else:
            place = paddle.CUDAPlace(0)
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
            self.check_grad_with_place(
                place, ['X'], ['Out'], numeric_grad_delta=0.5
            )


@unittest.skipIf(
    not core.is_compiled_with_cuda()
    or not core.is_bfloat16_supported(core.CUDAPlace(0)),
    "core is not compiled with CUDA and do not support bfloat16",
)
class TestReduceMeanBF16Op(OpTest):
    def setUp(self):
        self.op_type = 'reduce_mean'
        self.python_api = reduce_mean_wrapper
        self.dtype = np.uint16
        self.shape = [2, 3, 4, 5]
        self.axis = [0]
        self.keepdim = False
        self.set_attrs()

        np.random.seed(10)
        x_np = np.random.uniform(-1, 1, self.shape).astype(np.float32)
        if not hasattr(self, "reduce_all"):
            self.reduce_all = (not self.axis) or len(self.axis) == len(x_np)

        out_np = ref_reduce_mean(x_np, self.axis, self.keepdim, self.reduce_all)
        self.inputs = {'X': convert_float_to_uint16(x_np)}
        self.outputs = {'Out': convert_float_to_uint16(out_np)}
        self.attrs = {
            'dim': self.axis,
            'keep_dim': self.keepdim,
            'reduce_all': self.reduce_all,
        }

    def set_attrs(self):
        pass

    def test_check_output(self):
        place = paddle.CUDAPlace(0)
        self.check_output_with_place(place)

    def test_check_grad(self):
        place = paddle.CUDAPlace(0)
        self.check_grad_with_place(
            place, ['X'], ['Out'], numeric_grad_delta=0.05
        )
234 235 236 237 238


class TestReduceMeanOpDefaultAttrs(TestReduceMeanOp):
    def setUp(self):
        self.op_type = 'reduce_mean'
239
        self.python_api = reduce_mean_wrapper
240 241 242 243 244 245 246 247 248 249 250 251 252 253
        self.dtype = 'float64'
        self.shape = [2, 3, 4, 5]

        x_np = np.random.uniform(-1, 1, self.shape).astype(self.dtype)
        out_np = np.mean(x_np, axis=0)
        self.inputs = {'X': x_np}
        self.outputs = {'Out': out_np}


class TestReduceMeanOpFloat32(TestReduceMeanOp):
    def set_attrs(self):
        self.dtype = 'float32'


S
sneaxiy 已提交
254 255 256 257 258
class TestReduceMeanOpFloat16(TestReduceMeanOp):
    def set_attrs(self):
        self.dtype = 'float16'


259 260 261 262 263
class TestReduceMeanOpShape1D(TestReduceMeanOp):
    def set_attrs(self):
        self.shape = [100]


S
sneaxiy 已提交
264 265 266 267 268 269
class TestReduceMeanOpShape1DFP16(TestReduceMeanOp):
    def set_attrs(self):
        self.shape = [100]
        self.dtype = 'float16'


270 271 272 273 274
class TestReduceMeanOpShape6D(TestReduceMeanOp):
    def set_attrs(self):
        self.shape = [2, 3, 4, 5, 6, 7]


275 276 277 278 279
class TestReduceMeanOpShape6DBF16(TestReduceMeanBF16Op):
    def set_attrs(self):
        self.shape = [2, 3, 4, 5, 6, 7]


S
sneaxiy 已提交
280 281 282 283 284 285
class TestReduceMeanOpShape6DFP16(TestReduceMeanOp):
    def set_attrs(self):
        self.shape = [2, 3, 4, 5, 6, 7]
        self.dtype = 'float16'


286 287 288 289 290
class TestReduceMeanOpAxisAll(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = [0, 1, 2, 3]


S
sneaxiy 已提交
291 292 293 294 295 296
class TestReduceMeanOpAxisAllFP16(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = [0, 1, 2, 3]
        self.dtype = 'float16'


297 298 299 300 301
class TestReduceMeanOpAxisAllBF16(TestReduceMeanBF16Op):
    def set_attrs(self):
        self.axis = [0, 1, 2, 3]


302 303 304 305 306
class TestReduceMeanOpAxisTuple(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = (0, 1, 2)


S
sneaxiy 已提交
307 308 309 310 311 312
class TestReduceMeanOpAxisTupleFP16(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = (0, 1, 2)
        self.dtype = 'float16'


313 314 315 316 317
class TestReduceMeanOpAxisTupleBF16(TestReduceMeanBF16Op):
    def set_attrs(self):
        self.axis = (0, 1, 2)


318 319 320 321 322
class TestReduceMeanOpAxisNegative(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = [-2, -1]


S
sneaxiy 已提交
323 324 325 326 327 328
class TestReduceMeanOpAxisNegativeFP16(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = [-2, -1]
        self.dtype = 'float16'


329 330 331 332 333
class TestReduceMeanOpAxisNegativeBF16(TestReduceMeanBF16Op):
    def set_attrs(self):
        self.axis = [-2, -1]


334 335 336 337 338
class TestReduceMeanOpKeepdimTrue1(TestReduceMeanOp):
    def set_attrs(self):
        self.keepdim = True


S
sneaxiy 已提交
339 340 341 342 343 344
class TestReduceMeanOpKeepdimTrue1FP16(TestReduceMeanOp):
    def set_attrs(self):
        self.keepdim = True
        self.dtype = 'float16'


345 346 347 348 349
class TestReduceMeanOpKeepdimTrue1BF16(TestReduceMeanBF16Op):
    def set_attrs(self):
        self.keepdim = True


350 351 352 353 354 355
class TestReduceMeanOpKeepdimTrue2(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = [0, 1, 2, 3]
        self.keepdim = True


S
sneaxiy 已提交
356 357 358 359 360 361 362
class TestReduceMeanOpKeepdimTrue2FP16(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = [0, 1, 2, 3]
        self.keepdim = True
        self.dtype = 'float16'


363 364 365 366 367 368
class TestReduceMeanOpKeepdimTrue2BF16(TestReduceMeanBF16Op):
    def set_attrs(self):
        self.axis = [0, 1, 2, 3]
        self.keepdim = True


369 370 371 372 373
class TestReduceMeanOpReduceAllTrue(TestReduceMeanOp):
    def set_attrs(self):
        self.reduce_all = True


S
sneaxiy 已提交
374 375 376 377 378 379
class TestReduceMeanOpReduceAllTrueFP16(TestReduceMeanOp):
    def set_attrs(self):
        self.reduce_all = True
        self.dtype = 'float16'


380 381 382 383 384
class TestReduceMeanOpReduceAllTrueBF16(TestReduceMeanBF16Op):
    def set_attrs(self):
        self.reduce_all = True


385
class TestMeanAPI(unittest.TestCase):
386
    # test paddle.tensor.stat.mean
387 388 389 390

    def setUp(self):
        self.x_shape = [2, 3, 4, 5]
        self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32)
391 392 393
        self.place = (
            paddle.CUDAPlace(0)
            if core.is_compiled_with_cuda()
394
            else paddle.CPUPlace()
395
        )
396 397

    def test_api_static(self):
Z
Fix  
zhupengyang 已提交
398
        paddle.enable_static()
399
        with paddle.static.program_guard(paddle.static.Program()):
400
            x = paddle.fluid.data('X', self.x_shape)
401 402 403 404 405 406 407 408
            out1 = paddle.mean(x)
            out2 = paddle.tensor.mean(x)
            out3 = paddle.tensor.stat.mean(x)
            axis = np.arange(len(self.x_shape)).tolist()
            out4 = paddle.mean(x, axis)
            out5 = paddle.mean(x, tuple(axis))

            exe = paddle.static.Executor(self.place)
409 410 411
            res = exe.run(
                feed={'X': self.x}, fetch_list=[out1, out2, out3, out4, out5]
            )
412 413
        out_ref = np.mean(self.x)
        for out in res:
414
            np.testing.assert_allclose(out, out_ref, rtol=0.0001)
415

Z
Fix  
zhupengyang 已提交
416 417 418
    def test_api_dygraph(self):
        paddle.disable_static(self.place)

419
        def test_case(x, axis=None, keepdim=False):
Z
Zhou Wei 已提交
420
            x_tensor = paddle.to_tensor(x)
421 422 423 424 425 426
            out = paddle.mean(x_tensor, axis, keepdim)
            if isinstance(axis, list):
                axis = tuple(axis)
                if len(axis) == 0:
                    axis = None
            out_ref = np.mean(x, axis, keepdims=keepdim)
427
            np.testing.assert_allclose(out.numpy(), out_ref, rtol=0.0001)
428 429 430 431 432 433 434 435 436 437 438

        test_case(self.x)
        test_case(self.x, [])
        test_case(self.x, -1)
        test_case(self.x, keepdim=True)
        test_case(self.x, 2, keepdim=True)
        test_case(self.x, [0, 2])
        test_case(self.x, (0, 2))
        test_case(self.x, [0, 1, 2, 3])
        paddle.enable_static()

439 440 441
    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            x = fluid.data("x", shape=[10, 10], dtype="float32")
442
            out = paddle.mean(x=x, axis=1)
443 444 445 446
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            x_np = np.random.rand(10, 10).astype(np.float32)
            res = exe.run(feed={"x": x_np}, fetch_list=[out])
447
        np.testing.assert_allclose(res[0], np.mean(x_np, axis=1), rtol=1e-05)
448 449 450 451

        with fluid.dygraph.guard():
            x_np = np.random.rand(10, 10).astype(np.float32)
            x = fluid.dygraph.to_variable(x_np)
452
            out = paddle.mean(x=x, axis=1)
453 454 455
        np.testing.assert_allclose(
            out.numpy(), np.mean(x_np, axis=1), rtol=1e-05
        )
456

457
    def test_errors(self):
458 459 460 461 462
        paddle.disable_static()
        x = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        x = paddle.to_tensor(x)
        self.assertRaises(Exception, paddle.mean, x, -3)
        self.assertRaises(Exception, paddle.mean, x, 2)
Z
Fix  
zhupengyang 已提交
463
        paddle.enable_static()
464
        with paddle.static.program_guard(paddle.static.Program()):
465
            x = paddle.fluid.data('X', [10, 12], 'int32')
466 467 468
            self.assertRaises(TypeError, paddle.mean, x)


469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
class TestMeanWithTensorAxis1(TestReduceOPTensorAxisBase):
    def init_data(self):
        self.pd_api = paddle.mean
        self.np_api = np.mean
        self.x = paddle.randn([10, 5, 9, 9], dtype='float64')
        self.np_axis = np.array([1, 2], dtype='int64')
        self.tensor_axis = paddle.to_tensor([1, 2], dtype='int64')


class TestMeanWithTensorAxis2(TestReduceOPTensorAxisBase):
    def init_data(self):
        self.pd_api = paddle.mean
        self.np_api = np.mean
        self.x = paddle.randn([10, 10, 9, 9], dtype='float64')
        self.np_axis = np.array([0, 1, 2], dtype='int64')
        self.tensor_axis = [
            0,
            paddle.to_tensor([1], 'int64'),
487
            paddle.to_tensor([2], 'int64'),
488 489 490
        ]


491 492 493 494 495 496 497 498 499 500
class TestMeanDoubleGradCheck(unittest.TestCase):
    def mean_wrapper(self, x):
        return paddle.mean(x[0])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
501
        data = paddle.static.data('data', [3, 4, 5], dtype)
502 503 504 505
        data.persistable = True
        out = paddle.mean(data)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

506 507 508 509 510 511
        gradient_checker.double_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.mean_wrapper, [data], out, x_init=[data_arr], place=place
        )
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestMeanTripleGradCheck(unittest.TestCase):
    def mean_wrapper(self, x):
        return paddle.mean(x[0])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
532
        data = paddle.static.data('data', [3, 4, 5], dtype)
533 534 535 536
        data.persistable = True
        out = paddle.mean(data)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

537 538 539 540 541 542
        gradient_checker.triple_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
        gradient_checker.triple_grad_check_for_dygraph(
            self.mean_wrapper, [data], out, x_init=[data_arr], place=place
        )
543 544 545 546 547 548 549 550 551 552

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


Q
qijun 已提交
553
if __name__ == "__main__":
554
    paddle.enable_static()
L
liaogang 已提交
555
    unittest.main()