conv.py 69.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from __future__ import print_function
15

16
import numpy as np
L
LielinJiang 已提交
17
from ...device import get_cudnn_version
18
from ...static import Variable
Z
zhiboniu 已提交
19
from ...fluid import dygraph_utils
20 21
from ...fluid.layers.utils import convert_to_list, _is_symmetric_padding, _contain_var, _convert_to_tensor_list
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype
22
from ...framework import ParamAttr
23
from ...fluid.layer_helper import LayerHelper
24 25 26
from ...tensor.manipulation import unsqueeze, squeeze
from ...tensor.math import add
from ...fluid.layers import nn
27
from paddle import _C_ops, _legacy_C_ops
F
From00 已提交
28 29
from paddle import get_flags
from paddle import in_dynamic_mode
Z
zhiboniu 已提交
30 31
from paddle.device import is_compiled_with_cuda
from paddle.device import is_compiled_with_npu
H
hong 已提交
32 33
from paddle import in_dynamic_mode
from paddle import get_flags
F
From00 已提交
34 35 36 37
from paddle.device import is_compiled_with_rocm
from paddle.fluid.framework import _global_flags
from paddle.fluid.framework import _in_legacy_dygraph
from paddle.fluid.framework import in_dygraph_mode
38
from paddle.fluid.framework import _non_static_mode
39

40 41
__all__ = []

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
    else:
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]


def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_


def _update_padding_nd(padding, channel_last, num_dims):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".
                format(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
                raise ValueError(
                    "Non-zero padding({}) in the batch or channel dimensions "
                    "is not supported.".format(padding))
            padding_algorithm = "EXPLICIT"
83 84
            padding = _exclude_padding_in_batch_and_channel(
                padding, channel_last)
85
            if _is_symmetric_padding(padding, num_dims):
86 87 88 89
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
90 91
            padding = convert_to_list(padding, 2 * num_dims, 'padding')
            if _is_symmetric_padding(padding, num_dims):
92 93 94 95
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
96
            padding = convert_to_list(padding, num_dims, 'padding')
97 98 99 100 101
        else:
            raise ValueError("In valid padding: {}".format(padding))
    # for integer padding
    else:
        padding_algorithm = "EXPLICIT"
102
        padding = convert_to_list(padding, num_dims, 'padding')
103 104
    if not all([p >= 0 for p in padding]):
        raise ValueError(
105 106
            "Invalid padding, all value should be larger than or equal to 0, but received: {}"
            .format(padding))
107 108 109
    return padding, padding_algorithm


L
LielinJiang 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
def _conv_nd(x,
             weight,
             bias=None,
             stride=1,
             padding=0,
             padding_algorithm=None,
             dilation=1,
             groups=1,
             data_format="NCHW",
             channel_dim=1,
             op_type="conv2d",
             use_cudnn=True,
             use_mkldnn=False,
             name=None):

125
    # Due to the poor performance of NHWC, we transpose the input to NCHW.
H
hong 已提交
126
    if in_dygraph_mode() and op_type == "conv2d":
127 128 129
        pre_bias = _C_ops.conv2d(x, weight, stride, padding, padding_algorithm,
                                 groups, dilation, data_format, False, -1,
                                 False)
H
hong 已提交
130
        if bias is not None:
131 132
            channel_dim = channel_dim + len(
                x.shape) if channel_dim < 0 else channel_dim
133 134 135 136
            if isinstance(x, tuple):
                x = x[0]
            if isinstance(bias, tuple):
                bias = bias[0]
C
Chen Weihang 已提交
137
            if len(bias.shape) < len(x.shape):
138
                tmp_bias = _C_ops.reshape(
139
                    bias, [1 for i in range(channel_dim)] + bias.shape +
C
Chen Weihang 已提交
140
                    [1 for i in range(len(x.shape) - channel_dim - 1)])
141
                return _C_ops.add(pre_bias, tmp_bias)
C
Chen Weihang 已提交
142
            else:
143
                return _C_ops.add(pre_bias, bias)
H
hong 已提交
144 145
        else:
            return pre_bias
146 147

    if in_dygraph_mode() and op_type == "depthwise_conv2d":
148 149 150 151
        pre_bias = _C_ops.depthwise_conv2d(x, weight, stride, padding,
                                           padding_algorithm, groups, dilation,
                                           data_format, False, -1, False, False,
                                           use_cudnn)
152 153 154
        if bias is not None:
            channel_dim = channel_dim + len(
                x.shape) if channel_dim < 0 else channel_dim
155
            tmp_bias = _C_ops.reshape(
156 157
                bias,
                bias.shape + [1 for i in range(len(x.shape) - channel_dim - 1)])
158
            return _C_ops.add(pre_bias, tmp_bias)
159 160 161 162
        else:
            return pre_bias

    if in_dygraph_mode() and op_type == "conv3d":
163 164 165
        pre_bias = _C_ops.conv3d(x, weight, stride, padding, padding_algorithm,
                                 groups, dilation, data_format, False, -1,
                                 False)
166 167 168
        if bias is not None:
            channel_dim = channel_dim + len(
                x.shape) if channel_dim < 0 else channel_dim
169
            tmp_bias = _C_ops.reshape(
170 171
                bias,
                bias.shape + [1 for i in range(len(x.shape) - channel_dim - 1)])
172
            return _C_ops.add(pre_bias, tmp_bias)
173 174 175
        else:
            return pre_bias

Z
zhiboniu 已提交
176
    if in_dynamic_mode():
L
LielinJiang 已提交
177 178 179 180 181
        attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
                 'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn',
                 use_mkldnn, 'fuse_relu_before_depthwise_conv', False,
                 "padding_algorithm", padding_algorithm, "data_format",
                 data_format)
182
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
L
LielinJiang 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
        if bias is not None:
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            out = pre_bias
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format
        }
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 op_type)
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        pre_bias = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [pre_bias]}
206 207 208 209
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
L
LielinJiang 已提交
210 211
        if bias is not None:
            out = helper.create_variable_for_type_inference(dtype)
212 213 214 215 216 217 218 219 220 221
            helper.append_op(type='elementwise_add',
                             inputs={
                                 'X': [pre_bias],
                                 'Y': [bias]
                             },
                             outputs={'Out': [out]},
                             attrs={
                                 'axis': channel_dim,
                                 'use_mkldnn': use_mkldnn
                             })
L
LielinJiang 已提交
222 223 224 225 226
        else:
            out = pre_bias
    return out


W
whs 已提交
227 228 229 230 231 232 233 234 235
def conv1d(x,
           weight,
           bias=None,
           stride=1,
           padding=0,
           dilation=1,
           groups=1,
           data_format='NCL',
           name=None):
236
    r"""
W
whs 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
    The convolution1D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCL format, where N is batch size, C is the number of
    channels, L is the length of the feature.
    Filter is in MCK format, where M is the number of output image channels,
    C is the number of input image channels, K is the size of the kernel.
    If the groups is greater than 1, C will equal the number of input image
    channels divided by the groups. If bias attribution and activation type
    are provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
252
        Out = \sigma (W \ast X + b)
W
whs 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

    Where:

    * :math:`X`: Input value, a tensor with NCL format.
    * :math:`W`: Kernel value, a tensor with MCK format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

W
whs 已提交
279
            L_{out} = \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
W
whs 已提交
280 281

    Args:
282
        x (Tensor): The input is 3-D Tensor with shape [N, C, L], the data type
W
whs 已提交
283 284
            of input is float16 or float32 or float64.
        weight (Tensor): The convolution kernel with shape [M, C/g, K], where M is
285
            the number of output channels, g is the number of groups, K is the kernel's size.
W
whs 已提交
286
        bias (Tensor, optional): The bias with shape [M,]. Default: None.
287
        stride (int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
W
whs 已提交
288
            contain one integers, (stride_size). Default: 1.
289
        padding(int|str|tuple|list, optional): The padding size. Padding could be in one of the following forms.
W
whs 已提交
290 291 292 293 294 295
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            4. a list[int] or tuple[int] whose length is 2. It has the form  [pad_before, pad_after].
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
296
        dilation (int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
W
whs 已提交
297 298 299 300 301 302
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv1d function. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
303
        data_format (str, optional): Specify the data format of the input, and the data format of the output
W
whs 已提交
304 305 306
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, feature_length]`.
307 308
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
W
whs 已提交
309 310 311
           None by default.

    Returns:
312
        A tensor representing the conv1d, whose data type is the
W
whs 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
        same with input.

    Examples:
        .. code-block:: python

          import paddle
          import paddle.nn.functional as F
          import numpy as np
          x = np.array([[[4, 8, 1, 9],
            [7, 2, 0, 9],
            [6, 9, 2, 6]]]).astype(np.float32)
          w=np.array(
          [[[9, 3, 4],
            [0, 0, 7],
            [2, 5, 6]],
           [[0, 3, 4],
            [2, 9, 7],
            [5, 6, 8]]]).astype(np.float32)
331

W
whs 已提交
332 333 334 335 336
          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
          y_var = F.conv1d(x_var, w_var)
          y_np = y_var.numpy()
          print(y_np)
337

W
whs 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350
          # [[[133. 238.]
          #   [160. 211.]]]
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ["NCL", "NLC"]:
        raise ValueError("Attr(data_format) should be 'NCL' or 'NLC'. "
                         "Received Attr(data_format): {}.".format(data_format))

L
LielinJiang 已提交
351
    channel_last = (data_format == "NLC")
W
whs 已提交
352 353
    channel_dim = -1 if channel_last else 1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"
354 355 356 357
    if len(x.shape) != 3:
        raise ValueError(
            "Input x should be 3D tensor, but received x with the shape of {}".
            format(x.shape))
W
whs 已提交
358 359 360
    num_channels = x.shape[channel_dim]
    num_filters = weight.shape[0]
    if num_channels < 0:
361
        raise ValueError("The channel dimension of the input({}) "
W
whs 已提交
362 363
                         "should be defined. Received: {}.".format(
                             x.shape, num_channels))
364 365
    if groups <= 0:
        raise ValueError(
366 367
            "The groups of conv1d should be greater than 0. Received groups: {}"
            .format(groups))
W
whs 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
            ", the groups is {}".format(num_channels, x.shape, groups))
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
            ", the groups is {}".format(num_filters, weight.shape, groups))

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)
381

W
whs 已提交
382
    if len(padding) == 2:
383
        padding = [0] * 2 + padding
W
whs 已提交
384
    elif len(padding) == 1:
385
        padding = [0] + padding
W
whs 已提交
386 387
    else:
        raise ValueError(
388 389
            "The size of padding's dimension should be 1 or 2. But got padding={}"
            .format(padding))
390 391 392
    stride = [1] + convert_to_list(stride, 1, 'stride')
    dilation = [1] + convert_to_list(dilation, 1, 'dilation')
    weight = unsqueeze(weight, axis=[-2])
W
whs 已提交
393 394

    l_type = "conv2d"
395 396

    # When "groups==num_channels and num_filters% num_channels == 0" using depthwise_conv2d has better performance
397 398
    if (is_compiled_with_cuda() and num_channels == groups and num_channels != 1
            and num_filters % num_channels == 0):
W
whs 已提交
399 400 401
        l_type = 'depthwise_conv2d'
        use_cudnn = False

402
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
403
    if is_compiled_with_npu():
404 405 406 407 408
        if (num_channels == groups and num_channels == num_filters):
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

409
    squeeze_aixs = -3 if channel_last else -2
410
    x = unsqueeze(x, axis=[squeeze_aixs])
411

412 413 414 415 416 417 418 419
    if in_dygraph_mode():
        out = getattr(_C_ops,
                      l_type)(x, weight, stride, padding, padding_algorithm,
                              groups, dilation, conv2d_data_format, False, -1,
                              False, False, use_cudnn)
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    elif _in_legacy_dygraph():
W
whs 已提交
420 421 422 423
        attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
                 'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn', False,
                 'fuse_relu_before_depthwise_conv', False, "padding_algorithm",
                 padding_algorithm, "data_format", conv2d_data_format)
424
        out = getattr(_legacy_C_ops, l_type)(x, weight, *attrs)
W
whs 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": conv2d_data_format
        }
        check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                                 'conv2d')
        helper = LayerHelper(l_type, **locals())
443
        dtype = helper.input_dtype(input_param_name='x')
W
whs 已提交
444 445
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
446 447 448 449
        helper.append_op(type=l_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
W
whs 已提交
450 451
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
452
    out = squeeze(out, axis=[squeeze_aixs])
W
whs 已提交
453 454 455
    return out


456
def conv2d(x,
457 458 459
           weight,
           bias=None,
           stride=1,
460
           padding=0,
461 462 463 464
           dilation=1,
           groups=1,
           data_format="NCHW",
           name=None):
465
    r"""
S
swtkiwi 已提交
466

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

484
    ..  math::
485

486
        Out = \sigma (W \ast X + b)
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510

    Where:

    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

511
        ..  math::
512

513 514
            H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
515 516

    Args:
517
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type
518
            of input is float16 or float32 or float64.
519
        weight (Tensor): The convolution kernel with shape [M, C/g, kH, kW], where M is
520
            the number of output channels, g is the number of groups, kH is the filter's
521
            height, kW is the filter's width.
522
        bias (Tensor, optional): The bias with shape [M,].
523 524
        stride (int|list|tuple): The stride size. It means the stride in convolution.
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width).
525
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
526 527 528 529
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
530 531
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0],
532
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
533
            when `data_format` is `"NHWC"`, `padding` can be in the form
534 535
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
536
        dilation (int|list|tuple): The dilation size. It means the spacing between the kernel
537 538
            points. If dilation is a list/tuple, it must contain two integers, (dilation_height,
            dilation_width). Otherwise, dilation_height = dilation_width = dilation.
539
            Default: dilation = 1.
C
cnn 已提交
540
        groups (int): The groups number of the Conv2D Layer. According to grouped
541 542 543 544
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
545
        data_format (str, optional): Specify the data format of the input, and the data format of the output
546 547 548
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
549 550
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
551 552 553
           None by default.

    Returns:
554
        A Tensor representing the conv2d result, whose data type is the same with input.
555 556 557 558

    Examples:
        .. code-block:: python

559
          import paddle
560 561
          import paddle.nn.functional as F

562 563
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((6, 3, 3, 3), dtype='float32')
564 565 566 567

          y_var = F.conv2d(x_var, w_var)
          y_np = y_var.numpy()

568 569 570 571 572 573 574 575 576 577
          print(y_np.shape)
          # (2, 6, 6, 6)
    """
    # entry checks
    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError("Attr(data_format) should be 'NCHW' or 'NHWC'. "
                         "Received Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NHWC")
    channel_dim = -1 if channel_last else 1
578 579 580 581
    if len(x.shape) != 4:
        raise ValueError(
            "Input x should be 4D tensor, but received x with the shape of {}".
            format(x.shape))
582
    num_channels = x.shape[channel_dim]
583 584
    num_filters = weight.shape[0]
    if num_channels < 0:
585
        raise ValueError("The channel dimension of the input({}) "
586
                         "should be defined. Received: {}.".format(
587
                             x.shape, num_channels))
588 589
    if groups <= 0:
        raise ValueError(
590 591
            "The groups of conv2d should be greater than 0. Received groups: {}"
            .format(groups))
592 593 594 595
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
596
            ", the groups is {}".format(num_channels, x.shape, groups))
597 598 599 600 601 602
    if num_filters % groups != 0:
        raise ValueError(
            "the number of filters must be divisible by groups,"
            "received: the number of filters is {}, the shape of weight is {}"
            ", the groups is {}".format(num_filters, weight.shape, groups))

603 604
    cudnn_version = get_cudnn_version()

605 606
    use_cudnn = True if (is_compiled_with_cuda()
                         and cudnn_version is not None) else False
607

608 609
    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
610 611
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
612 613

    l_type = "conv2d"
614 615
    if (num_channels == groups and num_channels != 1
            and num_filters % num_channels == 0):
616
        l_type = 'depthwise_conv2d'
Z
zhiboniu 已提交
617
        if is_compiled_with_rocm():
618 619 620
            use_cudnn = True
        else:
            use_cudnn = False
H
hong 已提交
621 622
    else:
        if in_dygraph_mode():
623 624 625
            pre_bias = _C_ops.conv2d(x, weight, stride, padding,
                                     padding_algorithm, groups, dilation,
                                     data_format, False, -1, False)
H
hong 已提交
626 627 628 629 630 631 632
            if bias is not None:
                out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
                return out
            else:
                return pre_bias

    use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
633

634
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
Z
zhiboniu 已提交
635
    if is_compiled_with_npu():
636 637 638 639 640
        if (num_channels == groups and num_channels == num_filters):
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

641 642
    if (is_compiled_with_cuda() and get_flags("FLAGS_conv2d_disable_cudnn")
        ["FLAGS_conv2d_disable_cudnn"]):
643
        use_cudnn = False
644

L
LielinJiang 已提交
645 646 647
    return _conv_nd(x, weight, bias, stride, padding, padding_algorithm,
                    dilation, groups, data_format, channel_dim, l_type,
                    use_cudnn, use_mkldnn, name)
648 649


650
def conv1d_transpose(x,
651 652 653 654 655 656 657 658 659 660
                     weight,
                     bias=None,
                     stride=1,
                     padding=0,
                     output_padding=0,
                     groups=1,
                     dilation=1,
                     output_size=None,
                     data_format="NCL",
                     name=None):
661
    r"""
662 663 664 665 666 667 668 669 670 671 672 673 674 675
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

W
whs 已提交
676
        Out = \sigma (W \ast X + b)
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a 3-D Tensor with 'MCK' format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' or 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

           L^\prime_{out} &= (L_{in} - 1) * stride - pad_top - pad_bottom + dilation * (L_f - 1) + 1 + output_padding \\\\
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
712
          and :math:`L^\prime_{out} + stride`.
713 714 715 716 717 718 719 720 721

    Args:
        x(Tensor): 3-D tensor with [N, C, L] or [N, L, C] format,
                         its data type is float32 or float64.
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, K],
            where M is the number of output channels(filters), g is the number of groups,
            K is the size of the kernel.
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
722
            If stride is a list/tuple, it must contain one integer, `(stride_size)`.
723 724 725 726 727 728 729
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
730
             If it is a list/tuple, it must contain one integer. Default: 0.
731 732 733 734 735 736 737
        groups(int, optional): The groups number of the conv1d transpose function. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
738
            If dilation is a list/tuple, it must contain one integer, `(dilation_size)`.
739 740
            Default: dilation = 1.
        output_size(int|tuple|list, optional): The output image size. If output size is a
741
            tuple/list, it must contain one integer, `(feature_length)`. None if use
742
            filter_size(shape of weight), padding, and stride to calculate output_size.
743
        data_format (str, optional): Specify the data format of the input, and the data format of the output
744 745 746
            will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
            The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
            `[batch_size, input_channels, input_length]`.
747 748
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
           None by default.

    Returns:
        A  tensor representing the result of 1-D transpose convolution, whose
        data type is the same with input. And its shape is (num_batches, channels, length)
        when data_format is `"NCL"` and (num_batches, length, channels) when data_format is
        `"NLC"`.

    Examples:
        .. code-block:: python



          import paddle
          import paddle.nn.functional as F
          import numpy as np
765

766 767 768 769
          # shape: (1, 2, 4)
          x=np.array([[[4, 0, 9, 7],
                       [8, 0, 9, 2,]]]).astype(np.float32)
          # shape: (2, 1, 2)
W
whs 已提交
770
          w=np.array([[[7, 0]],
771 772 773
                      [[4, 2]]]).astype(np.float32)
          x_var = paddle.to_tensor(x)
          w_var = paddle.to_tensor(w)
774
          y_var = F.conv1d_transpose(x_var, w_var)
W
whs 已提交
775
          print(y_var)
776

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
          # [[[60. 16. 99. 75.  4.]]]
    """
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None:
        use_cudnn = True
    else:
        use_cudnn = False

    if data_format not in ['NCL', 'NLC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCL' or 'NLC' are supported.".format(
                data_format))
    channel_last = (data_format == "NLC")
    channel_dim = -1 if channel_last else 1
792 793 794 795
    if len(x.shape) != 3:
        raise ValueError(
            "Input x should be 3D tensor, but received x with the shape of {}".
            format(x.shape))
796 797 798

    num_channels = x.shape[channel_dim]
    if num_channels < 0:
799
        raise ValueError("The channel dimension of the input({}) "
800 801
                         "should be defined. Received: {}.".format(
                             x.shape, num_channels))
802 803
    if groups <= 0:
        raise ValueError(
804 805
            "The groups of conv1d_transpose should be greater than 0. Received groups: {}"
            .format(groups))
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
            ", the groups is {}".format(num_channels, x.shape, groups))

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)

    if len(padding) == 2:
        padding = padding + [0] * 2
    elif len(padding) == 1:
        padding = padding + [0]
    else:
        raise ValueError(
821
            "The size of padding's dimension should 1 or 2. But got padding={}".
822 823
            format(padding))

824 825
    stride = convert_to_list(stride, 1, 'stride') + [1]
    dilation = convert_to_list(dilation, 1, 'dilation') + [1]
826 827 828 829

    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
830 831 832 833
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
834
            output_size = convert_to_list(output_size, 1, 'output_size') + [1]
L
LielinJiang 已提交
835 836 837 838 839 840 841
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
842 843
        output_padding = convert_to_list(output_padding, 1,
                                         'output_padding') + [0]
L
LielinJiang 已提交
844 845 846 847

    if len(output_padding) > 0 and output_padding[0] > stride[0]:
        raise ValueError(
            "The size of output_padding should not be greater than stride."
848 849
            "But got output_padding={} and stride={}".format(
                output_padding[0], stride[0]))
850 851 852

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
853 854
    if (num_channels == groups and num_channels != 1 and num_filters == 1
            and not use_cudnn):
855 856 857 858 859 860
        op_type = 'depthwise_conv2d_transpose'
        use_cudnn = False

    squeeze_axis = -2 if channel_last else -1
    conv2d_data_format = "NHWC" if channel_last else "NCHW"

861 862
    x = unsqueeze(x, axis=[squeeze_axis])
    weight = unsqueeze(weight, axis=[-1])
863

864 865 866 867 868 869 870 871
    if in_dygraph_mode():
        out = getattr(_C_ops,
                      op_type)(x, weight, stride, padding, output_padding,
                               output_size, padding_algorithm, groups, dilation,
                               conv2d_data_format)
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    elif _in_legacy_dygraph():
L
LielinJiang 已提交
872 873 874 875
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'strides', stride, 'paddings', padding, 'padding_algorithm',
                 padding_algorithm, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, 'data_format', conv2d_data_format)
876
        out = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
877 878 879 880 881
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)
    else:
        inputs = {'Input': [x], 'Filter': [weight]}
        attrs = {
L
LielinJiang 已提交
882
            'output_padding': output_padding,
883 884 885 886 887 888 889 890 891 892 893 894
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': conv2d_data_format
        }
        check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                                 'conv2d_transpose')
        helper = LayerHelper(op_type, **locals())
895
        dtype = helper.input_dtype(input_param_name='x')
896 897
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Output": [out]}
898 899 900 901
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
902 903 904
        if bias is not None:
            out = nn.elementwise_add(out, bias, axis=channel_dim)

905
    out = squeeze(out, axis=[squeeze_axis])
906 907 908
    return out


909
def conv2d_transpose(x,
910 911 912
                     weight,
                     bias=None,
                     stride=1,
L
LielinJiang 已提交
913 914 915
                     padding=0,
                     output_padding=0,
                     dilation=1,
916
                     groups=1,
L
LielinJiang 已提交
917
                     output_size=None,
918
                     data_format='NCHW',
919
                     name=None):
920
    r"""
S
swtkiwi 已提交
921

922 923 924 925 926 927 928 929 930 931 932
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
933
    See more detail in :ref:`api_nn_conv_ConvTranspose2d` .
934 935 936

    For each input :math:`X`, the equation is:

937
    ..  math::
938

939
        Out = \sigma (W \ast X + b)
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963

    Where:

    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

964
        ..  math::
965 966 967 968 969 970 971

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

    Note:
972 973
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d,
          when stride > 1, conv2d maps multiple input shape to the same output shape,
974
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
975 976 977
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`;
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must
978
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`.
979 980

    Args:
L
LielinJiang 已提交
981
        x(Tensor): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
982
            whose data type is float32 or float64.
L
LielinJiang 已提交
983
        weight(Tensor): The convolution kernel, a Tensor with shape [C, M/g, kH, kW],
984 985
            where M is the number of output channels(filters), g is the number of groups,
            kH is the height of the kernel, and kW is the width of the kernel.
L
LielinJiang 已提交
986
        bias(Tensor, optional): The bias, a Tensor with shape [M, ].
987 988
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a list/tuple, it must contain two integers, (stride_height, stride_width).
L
LielinJiang 已提交
989
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
990 991
        padding(str|int|list|tuple, optional): The padding size. It means the number of zero-paddings
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
992
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
993
            it could be in three forms: `[pad_height, pad_width]` or
994
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
995
            and when `data_format` is `"NCHW"`, `padding` can be in the form
996
            `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
997
            when `data_format` is `"NHWC"`, `padding` can be in the form
998 999
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1000 1001
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1002
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
1003 1004 1005 1006 1007
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
1008 1009
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a list/tuple, it must contain two integers, (dilation_height, dilation_width).
1010
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
L
LielinJiang 已提交
1011
        output_size(int|tuple|list, optional): The output image size. If output size is a
1012
            tuple/list, it must contain two integers, (image_height, image_width). None if use
1013
            filter_size(shape of weight), padding, and stride to calculate output_size.
1014
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1015 1016 1017
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1018 1019
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1020 1021 1022
           None by default.

    Returns:
1023
        A Tensor representing the conv2d_transpose, whose
1024 1025
        data type is the same with input and shape is (num_batches, channels, out_h,
        out_w) or (num_batches, out_h, out_w, channels). The tensor variable storing
L
LielinJiang 已提交
1026
        transposed convolution result.
1027 1028 1029 1030

    Examples:
        .. code-block:: python

L
LielinJiang 已提交
1031 1032
          import paddle
          import paddle.nn.functional as F
1033

1034 1035
          x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
1036

1037
          y_var = F.conv2d_transpose(x_var, w_var)
L
LielinJiang 已提交
1038
          y_np = y_var.numpy()
1039

1040
          print(y_np.shape)
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
          # (2, 6, 10, 10)
    """

    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of conv2d_transpose got wrong value: "
            "received {}, but only 'NCHW' or 'NHWC' are supported.".format(
                data_format))
    channel_last = (data_format == "NHWC")
    channel_dim = -1 if channel_last else 1
1051 1052 1053 1054
    if len(x.shape) != 4:
        raise ValueError(
            "Input x should be 4D tensor, but received x with the shape of {}".
            format(x.shape))
L
LielinJiang 已提交
1055
    num_channels = x.shape[channel_dim]
1056
    if num_channels < 0:
1057
        raise ValueError("The channel dimension of the input({}) "
1058
                         "should be defined. Received: {}.".format(
L
LielinJiang 已提交
1059
                             x.shape, num_channels))
1060 1061
    if groups <= 0:
        raise ValueError(
1062 1063
            "The groups of conv2d_transpose should be greater than 0. Received groups: {}"
            .format(groups))
1064 1065 1066 1067
    if num_channels % groups != 0:
        raise ValueError(
            "the channel of input must be divisible by groups,"
            "received: the channel of input is {}, the shape of input is {}"
L
LielinJiang 已提交
1068 1069 1070 1071
            ", the groups is {}".format(num_channels, x.shape, groups))

    cudnn_version = get_cudnn_version()

1072 1073
    use_cudnn = True if (is_compiled_with_cuda()
                         and cudnn_version is not None) else False
1074 1075 1076

    # update attrs
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 2)
1077 1078
    stride = convert_to_list(stride, 2, 'stride')
    dilation = convert_to_list(dilation, 2, 'dilation')
L
LielinJiang 已提交
1079

1080 1081 1082
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1083 1084 1085
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
1086 1087 1088 1089 1090 1091
        if isinstance(output_size, (list, tuple)):
            if _contain_var(output_size):
                output_size = _convert_to_tensor_list(output_size)
            else:
                output_size = convert_to_list(output_size, 2, 'output_size')
        elif isinstance(output_size, int):
1092
            output_size = convert_to_list(output_size, 2, 'output_size')
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
        elif isinstance(output_size, Variable):
            check_dtype(output_size.dtype, 'output_size', ['int32', 'int64'],
                        'conv2d_transpose')
            if len(output_size.shape) == 1 and (output_size.shape[0] == 1
                                                or output_size.shape[0] == 2):
                if output_size.shape[0] == 1:
                    output_size = [output_size, output_size]
            else:
                raise ValueError(
                    "output_size must contain one or two integers.")
L
LielinJiang 已提交
1103 1104
        else:
            raise ValueError(
1105 1106
                "output_size should be int or Tensor or list, tuple of ints or Tensor"
            )
L
LielinJiang 已提交
1107 1108 1109 1110

    if output_padding == 0:
        output_padding = []
    else:
1111
        output_padding = convert_to_list(output_padding, 2, 'output_padding')
1112 1113 1114

    op_type = 'conv2d_transpose'
    num_filters = weight.shape[1]
L
LielinJiang 已提交
1115
    if (num_channels == groups and num_channels != 1 and num_filters == 1):
1116
        op_type = 'depthwise_conv2d_transpose'
L
LielinJiang 已提交
1117
        use_cudnn = False
1118

F
From00 已提交
1119
    if in_dygraph_mode():
1120 1121 1122
        op = _C_ops.conv2d_transpose if op_type == 'conv2d_transpose' else _C_ops.depthwise_conv2d_transpose
        pre_bias = op(x, weight, stride, padding, output_padding, output_size,
                      padding_algorithm, groups, dilation, data_format)
F
From00 已提交
1123 1124 1125 1126 1127 1128
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
L
LielinJiang 已提交
1129 1130 1131 1132
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'strides', stride, 'paddings', padding, 'padding_algorithm',
                 padding_algorithm, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, 'data_format', data_format)
1133
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1134
        if bias is not None:
L
LielinJiang 已提交
1135
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1136
        else:
L
LielinJiang 已提交
1137
            out = pre_bias
1138
    else:
L
LielinJiang 已提交
1139
        inputs = {'Input': [x], 'Filter': [weight]}
1140
        attrs = {
L
LielinJiang 已提交
1141
            'output_padding': output_padding,
1142 1143 1144 1145 1146 1147 1148 1149 1150
            'output_size': output_size,
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': data_format
        }
L
LielinJiang 已提交
1151
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
1152 1153
                                 'conv2d_transpose')
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1154
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1155
        outputs = {"Output": [pre_bias]}
1156 1157 1158 1159
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
L
LielinJiang 已提交
1160

1161
        if bias is not None:
L
LielinJiang 已提交
1162
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1163
        else:
L
LielinJiang 已提交
1164 1165
            out = pre_bias

1166 1167 1168
    return out


1169
def conv3d(x,
1170 1171 1172
           weight,
           bias=None,
           stride=1,
1173
           padding=0,
1174 1175 1176 1177
           dilation=1,
           groups=1,
           data_format="NCDHW",
           name=None):
1178
    r"""
S
swtkiwi 已提交
1179

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

1191
    ..  math::
1192

1193
        Out = \sigma (W \ast X + b)
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1217
        ..  math::
1218 1219 1220 1221 1222 1223

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
1224
        x (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W], the data
1225
            type of input is float16 or float32 or float64.
1226
        weight (Tensor): The convolution kernel, a Tensor with shape [M, C/g, kD, kH, kW],
1227 1228
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
1229
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1230 1231
        stride (int|list|tuple, optional): The stride size. It means the stride in convolution. If stride is a
            list/tuple, it must contain three integers, (stride_depth, stride_height, stride_width).
1232
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
1233
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings
1234 1235 1236 1237
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1238
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1239
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1240
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1241 1242
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
1243
        dilation (int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
1244
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
1245
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
1246
            Default: dilation = 1.
1247
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
1248 1249 1250 1251
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
1252
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1253 1254 1255
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
1256 1257
        name(str|None, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1258 1259 1260
           None by default.

    Returns:
1261 1262 1263
        A Tensor representing the conv3d, whose data type is
        the same with input. If act is None, the tensor storing the
        convolution result, and if act is not None, the tensor storing
1264 1265 1266 1267 1268
        convolution and non-linearity activation result.

    Examples:
        .. code-block:: python

1269 1270
            import paddle
            import paddle.nn.functional as F
1271

1272 1273
            x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
            w_var = paddle.randn((6, 3, 3, 3, 3), dtype='float32')
1274

1275 1276
            y_var = F.conv3d(x_var, w_var)
            y_np = y_var.numpy()
1277

1278
            print(y_np.shape)
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
            # (2, 6, 6, 6, 6)
    """
    # entry check
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NDHWC")
    channel_dim = -1 if channel_last else 1
1289 1290 1291 1292
    if len(x.shape) != 5:
        raise ValueError(
            "Input x should be 5D tensor, but received x with the shape of {}".
            format(x.shape))
1293
    num_channels = x.shape[channel_dim]
1294 1295 1296
    num_filters = weight.shape[0]
    if num_channels < 0:
        raise ValueError(
1297
            "The channel dimension of the input({}) should be defined. "
1298
            "Received: {}.".format(x.shape, num_channels))
1299 1300
    if groups <= 0:
        raise ValueError(
1301 1302
            "The groups of conv3d should be greater than 0. Received groups: {}"
            .format(groups))
1303 1304 1305
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1306 1307
            "Received: number of channels({}), groups({}).".format(
                num_channels, groups))
1308 1309 1310
    if num_filters % groups != 0:
        raise ValueError(
            "The number of filters must be divisible by Attr(groups). "
1311 1312
            "Received: number of filters({}), groups({}).".format(
                num_filters, groups))
1313

1314
    cudnn_version = get_cudnn_version()
1315 1316
    use_cudnn = True if (is_compiled_with_cuda()
                         and cudnn_version is not None) else False
1317

1318
    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1319 1320
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1321 1322
    op_type = "conv3d"

L
LielinJiang 已提交
1323 1324 1325
    return _conv_nd(x, weight, bias, stride, padding, padding_algorithm,
                    dilation, groups, data_format, channel_dim, op_type,
                    use_cudnn, False, name)
1326 1327


1328
def conv3d_transpose(x,
1329 1330 1331
                     weight,
                     bias=None,
                     stride=1,
L
LielinJiang 已提交
1332 1333
                     padding=0,
                     output_padding=0,
1334
                     groups=1,
L
LielinJiang 已提交
1335 1336
                     dilation=1,
                     output_size=None,
1337
                     data_format='NCDHW',
1338
                     name=None):
1339
    r"""
L
LielinJiang 已提交
1340
    The convolution3d transpose layer calculates the output based on the input,
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
L
LielinJiang 已提交
1351
    See more detail in :ref:`api_nn_conv_ConvTranspose3d` .
1352 1353 1354

    For each input :math:`X`, the equation is:

1355
    ..  math::
1356

1357
        Out = \sigma (W \ast X + b)
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381

    In the above equation:

    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

1382
        ..  math::
1383 1384 1385 1386 1387 1388 1389 1390 1391

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]

    Note:
1392 1393
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
          when stride > 1, conv3d maps multiple input shape to the same output shape,
1394 1395
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
1396 1397 1398 1399
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`,
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must
1400
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`.
1401 1402

    Args:
1403
        x(Tensor): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type
1404
            of input is float32 or float64.
L
LielinJiang 已提交
1405
        weight (Tensor): The convolution kernel, a Tensor with shape [C, M/g, kD, kH, kW],
1406 1407
            where M is the number of filters(output channels), g is the number of groups,
            kD, kH, kW are the filter's depth, height and width respectively.
L
LielinJiang 已提交
1408
        bias (Tensor, optional): The bias, a Tensor of shape [M, ].
1409 1410 1411
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height,
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
L
LielinJiang 已提交
1412
            Default: stride = 1.
1413
        padding (string|int|list|tuple, optional): The padding size. It means the number of zero-paddings
1414 1415 1416
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
1417
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
L
LielinJiang 已提交
1418
            and when `data_format` is `"NCDHW"`, `padding` can be in the form
1419
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
LielinJiang 已提交
1420
            when `data_format` is `"NDHWC"`, `padding` can be in the form
1421 1422
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
LielinJiang 已提交
1423 1424
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
C
cnn 已提交
1425
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1426 1427 1428 1429 1430
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
1431 1432 1433
        dilation(int|list|tuple, optional): The dilation size. It means the spacing between the kernel points.
            If dilation is a list/tuple, it must contain three integers, (dilation_depth, dilation_height,
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation.
1434
            Default: dilation = 1.
L
LielinJiang 已提交
1435
        output_size(int|list|tuple, optional): The output image size. If output size is a
1436
            list/tuple, it must contain three integers, (image_depth, image_height, image_width).
1437
            None if use filter_size(shape of weight), padding, and stride to calculate output_size.
1438
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1439 1440 1441
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
1442 1443
        name(str, optional): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
1444 1445 1446
           None by default.

    Returns:
1447
        A Tensor representing the conv3d_transpose, whose data
1448 1449 1450
        type is the same with input and shape is (num_batches, channels, out_d, out_h,
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor
        variable storing the transposed convolution result, and if act is not None, the tensor
1451 1452 1453 1454
        variable storing transposed convolution and non-linearity activation result.

    Examples:
       .. code-block:: python
1455

L
LielinJiang 已提交
1456
          import paddle
1457 1458
          import paddle.nn.functional as F

1459 1460
          x_var = paddle.randn((2, 3, 8, 8, 8), dtype='float32')
          w_var = paddle.randn((3, 6, 3, 3, 3), dtype='float32')
1461

1462
          y_var = F.conv3d_transpose(x_var, w_var)
L
LielinJiang 已提交
1463
          y_np = y_var.numpy()
1464

1465
          print(y_np.shape)
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
          # (2, 6, 10, 10, 10)
    """
    # entry checks
    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): {}.".format(data_format))

    channel_last = (data_format == "NDHWC")
    channel_dim = -1 if channel_last else 1
1476 1477 1478 1479
    if len(x.shape) != 5:
        raise ValueError(
            "Input x should be 5D tensor, but received x with the shape of {}".
            format(x.shape))
L
LielinJiang 已提交
1480
    num_channels = x.shape[channel_dim]
1481 1482 1483
    num_filters = weight.shape[1]
    if num_channels < 0:
        raise ValueError(
1484
            "The channel dimension of the input({}) should be defined. "
L
LielinJiang 已提交
1485
            "Received: {}.".format(x.shape, num_channels))
1486 1487
    if groups <= 0:
        raise ValueError(
1488 1489
            "The groups of conv3d_transpose should be greater than 0. Received groups: {}"
            .format(groups))
1490 1491 1492
    if num_channels % groups != 0:
        raise ValueError(
            "The number of input channels must be divisible by Attr(groups). "
1493 1494
            "Received: number of channels({}), groups({}).".format(
                num_channels, groups))
1495 1496

    padding, padding_algorithm = _update_padding_nd(padding, channel_last, 3)
1497 1498
    stride = convert_to_list(stride, 3, 'stride')
    dilation = convert_to_list(dilation, 3, 'dilation')
1499 1500 1501
    if output_size is None:
        output_size = []
    else:
L
LielinJiang 已提交
1502 1503 1504 1505
        if output_padding != 0:
            raise ValueError('output_padding option is mutually exclusive with '
                             'output_size')
        if isinstance(output_size, (list, tuple, int)):
1506
            output_size = convert_to_list(output_size, 3, 'output_size')
L
LielinJiang 已提交
1507 1508 1509 1510 1511 1512 1513
        else:
            raise ValueError(
                "output_size should be int, or list, tuple of ints")

    if output_padding == 0:
        output_padding = []
    else:
1514
        output_padding = convert_to_list(output_padding, 3, 'output_padding')
L
LielinJiang 已提交
1515 1516 1517 1518

    cudnn_version = get_cudnn_version()

    #TODO(LielinJiang): whether to use cudnn according to the version of cudnn
1519 1520
    use_cudnn = True if (is_compiled_with_cuda()
                         and cudnn_version is not None) else False
1521 1522 1523 1524

    op_type = 'conv3d_transpose'
    data_format_ = "NHWC" if channel_last else "NCHW"

F
From00 已提交
1525
    if in_dygraph_mode():
1526 1527 1528 1529
        pre_bias = _C_ops.conv3d_transpose(x, weight, stride, padding,
                                           output_padding, output_size,
                                           padding_algorithm, groups, dilation,
                                           data_format_)
F
From00 已提交
1530 1531 1532 1533 1534 1535
        if bias is not None:
            return nn.elementwise_add(pre_bias, bias, axis=channel_dim)
        else:
            return pre_bias

    if _in_legacy_dygraph():
L
LielinJiang 已提交
1536 1537 1538 1539
        attrs = ('output_padding', output_padding, 'output_size', output_size,
                 'paddings', padding, "padding_algorithm", padding_algorithm,
                 'strides', stride, 'dilations', dilation, 'groups', groups,
                 'use_cudnn', use_cudnn, "data_format", data_format_)
1540
        pre_bias = getattr(_legacy_C_ops, op_type)(x, weight, *attrs)
1541
        if bias is not None:
L
LielinJiang 已提交
1542
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1543
        else:
L
LielinJiang 已提交
1544
            out = pre_bias
1545
    else:
L
LielinJiang 已提交
1546
        inputs = {'Input': [x], 'Filter': [weight]}
1547
        attrs = {
L
LielinJiang 已提交
1548
            'output_padding': output_padding,
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
            'output_size': output_size,
            'paddings': padding,
            "padding_algorithm": padding_algorithm,
            'strides': stride,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            "data_format": data_format_
        }
        helper = LayerHelper(op_type, **locals())
L
LielinJiang 已提交
1559 1560
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'conv3d')
1561

L
LielinJiang 已提交
1562
        pre_bias = helper.create_variable_for_type_inference(x.dtype)
1563 1564
        outputs = {"Output": [pre_bias]}

1565 1566 1567 1568
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
1569
        if bias is not None:
L
LielinJiang 已提交
1570
            out = nn.elementwise_add(pre_bias, bias, axis=channel_dim)
1571
        else:
L
LielinJiang 已提交
1572
            out = pre_bias
1573 1574

    return out