elementwise_mul_op.cu 6.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_mul_op.h"
16
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
17 18
#include "paddle/fluid/platform/complex128.h"
#include "paddle/fluid/platform/complex64.h"
W
Wu Yi 已提交
19
#include "paddle/fluid/platform/float16.h"
20 21

namespace ops = paddle::operators;
W
Wu Yi 已提交
22
namespace plat = paddle::platform;
23

24 25 26
namespace paddle {
namespace operators {

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
template <typename T>
struct SameDimsElemwiseMul<platform::CUDADeviceContext, T> {
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor* x, const framework::Tensor* y,
                  framework::Tensor* z) {
    MulRangeFunctor<T> functor(x->data<T>(), y->data<T>(), z->data<T>());
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    platform::ForRange<platform::CUDADeviceContext> for_range(dev_ctx,
                                                              x->numel());
    for_range(functor);
  }
};

template <>
struct SameDimsElemwiseMul<platform::CUDADeviceContext, platform::float16> {
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor* x, const framework::Tensor* y,
                  framework::Tensor* z) {
    auto size = x->numel();
46
    dim3 grid_size = dim3(((size + 7) / 8 + PADDLE_CUDA_THREAD_SIZE - 1) /
47 48
                              PADDLE_CUDA_THREAD_SIZE,
                          1);
49 50 51 52 53 54 55
    dim3 block_size = dim3(PADDLE_CUDA_THREAD_SIZE, 1);
    const half* x2 =
        reinterpret_cast<const half*>(x->data<platform::float16>());
    const half* y2 =
        reinterpret_cast<const half*>(y->data<platform::float16>());
    half* z2 = reinterpret_cast<half*>(z->data<platform::float16>());
    SameDimsElemwiseMulCUDAKernel<<<
56
        grid_size, block_size, 0,
57 58 59 60 61
        ctx.template device_context<platform::CUDADeviceContext>().stream()>>>(
        x2, y2, z2, size);
  }
};

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
template <typename T>
static __global__ void SimpleElemwiseMulGradCUDAKernel(const T* x, const T* y,
                                                       const T* out,
                                                       const T* dout,
                                                       int64_t size, T* dx,
                                                       T* dy) {
  int col = blockIdx.x * blockDim.x + threadIdx.x;

  while (col < size) {
    T o = dout[col];
    dx[col] = y[col] * o;
    dy[col] = x[col] * o;
    col += blockDim.x * gridDim.x;
  }
}

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
template <>
__global__ void SimpleElemwiseMulGradCUDAKernel<plat::complex64>(
    const plat::complex64* x, const plat::complex64* y,
    const plat::complex64* out, const plat::complex64* dout, int64_t size,
    plat::complex64* dx, plat::complex64* dy) {
  int col = blockIdx.x * blockDim.x + threadIdx.x;

  while (col < size) {
    plat::complex64 o = dout[col];
    dx[col] = plat::complex64(y[col].real, -y[col].imag) * o;
    dy[col] = plat::complex64(x[col].real, -x[col].imag) * o;
    col += blockDim.x * gridDim.x;
  }
}

template <>
__global__ void SimpleElemwiseMulGradCUDAKernel<plat::complex128>(
    const plat::complex128* x, const plat::complex128* y,
    const plat::complex128* out, const plat::complex128* dout, int64_t size,
    plat::complex128* dx, plat::complex128* dy) {
  int col = blockIdx.x * blockDim.x + threadIdx.x;

  while (col < size) {
    plat::complex128 o = dout[col];
    dx[col] = plat::complex128(y[col].real, -y[col].imag) * o;
    dy[col] = plat::complex128(x[col].real, -x[col].imag) * o;
    col += blockDim.x * gridDim.x;
  }
}

108 109 110 111 112 113 114 115 116 117
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, plat::CUDADeviceContext>::value>::type
elementwise_mul_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
  dim3 block_size = dim3(PADDLE_CUDA_THREAD_SIZE, 1);
  auto size = x->numel();
118
  dim3 grid_size =
119 120
      dim3((size + PADDLE_CUDA_THREAD_SIZE - 1) / PADDLE_CUDA_THREAD_SIZE, 1);
  SimpleElemwiseMulGradCUDAKernel<
121
      T><<<grid_size, block_size, 0,
122 123 124 125
           ctx.template device_context<plat::CUDADeviceContext>().stream()>>>(
      x->data<T>(), y->data<T>(), out->data<T>(), dout->data<T>(), size,
      dx->mutable_data<T>(ctx.GetPlace()), dy->mutable_data<T>(ctx.GetPlace()));
}
126 127 128 129

}  // namespace operators
}  // namespace paddle

Q
QI JUN 已提交
130
REGISTER_OP_CUDA_KERNEL(
W
Wu Yi 已提交
131 132 133 134
    elementwise_mul, ops::ElementwiseMulKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, int>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, int64_t>,
135 136 137
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::float16>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::complex64>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::complex128>);
Q
QI JUN 已提交
138
REGISTER_OP_CUDA_KERNEL(
139
    elementwise_mul_grad,
W
Wu Yi 已提交
140 141 142 143
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, int>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, int64_t>,
144 145 146
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, plat::float16>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, plat::complex64>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, plat::complex128>);
147 148 149 150 151
REGISTER_OP_CUDA_KERNEL(
    elementwise_mul_grad_grad,
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, int>,
152
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, int64_t>,
153
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, plat::float16>,
154
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext,
155 156 157
                                        plat::complex64>,
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext,
                                        plat::complex128>);