operator.cc 45.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include <gflags/gflags.h>
#include <glog/logging.h>
17

18
#include <algorithm>
P
peizhilin 已提交
19 20
#include <sstream>
#include <string>
S
sneaxiy 已提交
21
#include <unordered_set>
P
peizhilin 已提交
22
#include <vector>
Y
Yi Wang 已提交
23
#include "paddle/fluid/framework/data_transform.h"
W
WangXi 已提交
24
#include "paddle/fluid/framework/details/nan_inf_utils.h"
Y
Yi Wang 已提交
25
#include "paddle/fluid/framework/executor.h"
26
#include "paddle/fluid/framework/lod_tensor.h"
27
#include "paddle/fluid/framework/op_call_stack.h"
28
#include "paddle/fluid/framework/op_proto_maker.h"
29
#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
30
#include "paddle/fluid/framework/shape_inference.h"
31
#include "paddle/fluid/framework/transfer_scope_cache.h"
32
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/var_type.h"
34
#include "paddle/fluid/platform/profiler.h"
Q
Qiao Longfei 已提交
35

36 37 38 39
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

D
dzhwinter 已提交
40
DECLARE_bool(benchmark);
41
DECLARE_bool(check_nan_inf);
42
DECLARE_bool(enable_unused_var_check);
Q
Qiao Longfei 已提交
43
DEFINE_int32(inner_op_parallelism, 0, "number of threads for inner op");
P
pkpk 已提交
44 45 46
DEFINE_bool(fast_check_nan_inf, false,
            "Fast checking NAN/INF after each operation. It will be a little"
            "bit slow, much faster than check_nan_inf");
D
dzhwinter 已提交
47

Q
Qiao Longfei 已提交
48 49 50
namespace paddle {
namespace framework {

51 52 53 54 55 56
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
57

58 59
static DDim GetDimsDebug(const Scope& scope, const std::string& name,
                         bool get_actual_dim = false) {
60
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
61 62
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
63 64
  }

M
minqiyang 已提交
65 66 67 68 69 70 71 72 73
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
74 75 76 77 78
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
79 80 81 82 83 84
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
85 86 87 88 89
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
90

M
minqiyang 已提交
91 92 93
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
94 95
      return "";
    }
Y
Yu Yang 已提交
96
    return DataTypeToString(tensor.type());
M
minqiyang 已提交
97
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
98 99 100 101
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
Y
Yu Yang 已提交
102
      return DataTypeToString(tensor.type());
Q
Qiao Longfei 已提交
103
    }
D
dzhwinter 已提交
104 105 106 107 108
  } else {
    return "";
  }
}

109 110 111 112 113 114
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
115 116
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
117 118 119 120 121
  }

  return -1;
}

122
static LoD GetLoDDebug(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
123 124 125 126 127 128 129
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
130 131 132
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
133 134 135 136 137
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
138 139 140 141 142
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
143
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
144 145 146 147 148 149
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
150
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
151 152 153 154 155 156
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

157
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
158 159 160
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
161
#ifndef PADDLE_WITH_CUDA
P
peizhilin 已提交
162
      PADDLE_THROW("Cannot run operator on place %s", place);
163
#else
P
peizhilin 已提交
164 165
      auto dev_id = boost::get<platform::CUDAPlace>(place).device;
      platform::SetDeviceId(dev_id);
166
#endif
P
peizhilin 已提交
167
    }
P
peizhilin 已提交
168

169
    {
170
      platform::RecordEvent record_event(Type());
P
peizhilin 已提交
171 172
      RunImpl(scope, place);
    }
173

P
peizhilin 已提交
174
    VLOG(3) << place << " " << DebugStringEx(&scope);
175
  } catch (platform::EnforceNotMet& exception) {
176
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
177
    throw std::move(exception);
178 179 180 181 182 183
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
184
  } catch (...) {
185
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
186
    std::rethrow_exception(std::current_exception());
187
  }
188 189
}

190
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
191
  return inputs_.find(name) != inputs_.end();
192 193
}

194
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
195
  auto& ins = Inputs(name);
196 197 198 199 200
  PADDLE_ENFORCE_LE(
      ins.size(), 1UL,
      platform::errors::AlreadyExists(
          "Operator %s's input %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
201
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
202 203
}

Y
Yu Yang 已提交
204 205
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
206
  auto it = inputs_.find(name);
207 208
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
209
  return it->second;
Y
Yan Chunwei 已提交
210 211
}

212
bool OperatorBase::HasOutputs(const std::string& name) const {
213
  if (outputs_.find(name) != outputs_.end()) {
214 215 216 217 218 219
    return true;
  } else {
    return false;
  }
}

220
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
221
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
222
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
223 224
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
225
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
226 227
}

Y
Yu Yang 已提交
228 229
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
230
  auto it = outputs_.find(name);
231 232
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
233
  return it->second;
Y
Yan Chunwei 已提交
234 235
}

236
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
237
  std::stringstream ss;
Y
Yu Yang 已提交
238
  ss << "Op(" << type_ << "), inputs:{";
239

240
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
241 242
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
243 244
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
245 246
  }

Y
Yu Yang 已提交
247 248
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
249 250
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
251 252
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
253 254
      auto var_name = input.second[i];
      ss << var_name;
255
      if (scope) {
Q
Qiao Longfei 已提交
256 257 258 259 260 261 262
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
263 264 265
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
266
          ss << ":" << dtype;
267 268
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
269
        }
270
      }
Y
Yu Yang 已提交
271 272 273
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
274
    }
Y
Yu Yang 已提交
275
    ss << "]";
Y
Yu Yang 已提交
276 277
    ++it;
    if (it != inputs_.end()) {
278 279
      ss << ", ";
    }
Q
Qiao Longfei 已提交
280
  }
Y
Yu Yang 已提交
281
  ss << "}, outputs:{";
Y
Yu Yang 已提交
282 283
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
284 285
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
286 287
      auto var_name = output.second[i];
      ss << var_name;
288
      if (scope) {
Q
Qiao Longfei 已提交
289 290 291 292 293 294 295
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
296 297
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
298 299
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
300
        }
301
      }
Y
Yu Yang 已提交
302 303 304
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
305
    }
Y
Yu Yang 已提交
306
    ss << "]";
Y
Yu Yang 已提交
307 308
    ++it;
    if (it != outputs_.end()) {
309 310
      ss << ", ";
    }
Q
Qiao Longfei 已提交
311
  }
Y
Yu Yang 已提交
312
  ss << "}.";
Q
Qiao Longfei 已提交
313 314 315
  return ss.str();
}

Y
Yu Yang 已提交
316
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
317 318
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
319
                           const AttributeMap& attrs)
S
sneaxiy 已提交
320 321 322 323 324 325
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
326 327 328 329 330 331 332 333
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
Y
Yu Yang 已提交
334
}
335

Q
qijun 已提交
336 337
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
338
  for (auto& o : inputs_) {
Q
qijun 已提交
339 340 341 342 343 344
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
345 346 347 348 349 350 351 352 353 354
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
355
  auto& info = Info();
Y
Yu Yang 已提交
356 357

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
358
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
359 360 361 362 363 364 365 366 367
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
368 369
}

370
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
371
  if (info_ == nullptr || info_->proto_ == nullptr) return;
372

S
sneaxiy 已提交
373
  for (auto& in : info_->Proto().inputs()) {
374 375 376 377
    if (!in.dispensable()) {
      PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
                     "Operator %s's input, %s, is not set", Type(), in.name());
    }
378 379
  }

S
sneaxiy 已提交
380
  for (auto& out : info_->Proto().outputs()) {
381 382 383 384 385
    if (!out.dispensable()) {
      PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
                     "Operator %s's output, %s, is not set", Type(),
                     out.name());
    }
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

B
baojun-nervana 已提交
402
static bool VarIsTensor(const Variable& var) {
C
chengduo 已提交
403
  return var.IsType<LoDTensor>() || var.IsType<SelectedRows>();
404 405
}

C
chengduo 已提交
406
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
407 408 409 410
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
  } else if (var.IsType<SelectedRows>()) {
    return &(var.Get<SelectedRows>().value());
Q
QI JUN 已提交
411
  } else {
Y
Yang Yang 已提交
412
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
413
                 ToTypeName(var.Type()));
Q
QI JUN 已提交
414 415 416
  }
}

C
chengduo 已提交
417
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
418
  if (var->IsType<LoDTensor>()) {
419
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
420
  } else if (var->IsType<SelectedRows>()) {
421
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
422
  } else {
Y
Yang Yang 已提交
423
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
424
                 ToTypeName(var->Type()));
Q
QI JUN 已提交
425 426 427
  }
}

428
bool ExecutionContext::HasInput(const std::string& name) const {
429
  auto* var = InputVar(name);
430 431 432 433
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
434
  auto* var = OutputVar(name);
435 436 437
  return var != nullptr;
}

X
Xin Pan 已提交
438
const Variable* ExecutionContext::InputVar(const std::string& name) const {
439 440
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
441 442 443
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

444 445 446 447 448
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
      platform::errors::AlreadyExists(
          "Operator %s's input %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
449 450 451
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
452
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
453 454 455 456 457 458 459 460 461
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

  PADDLE_ENFORCE_LE(it->second.size(), 1UL,
                    "Operator %s's output %s should contain only one variable.",
                    op_.Type(), name);
  return it->second.empty() ? nullptr : it->second[0];
}

462
template <>
463
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
C
chengduo 已提交
464
  return Input<LoDTensor>(name);
465 466 467
}

template <>
468
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
469
    const std::string& name) const {
470 471
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
472 473
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
474 475 476 477 478
    return {};
  }
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
479
                 [&](const Variable* var) -> const Tensor* {
X
Xin Pan 已提交
480 481 482 483
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "should be LoDTensor, but the received type is %s",
S
sneaxiy 已提交
484
                       ToTypeName(var->Type()));
X
Xin Pan 已提交
485 486 487 488 489
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

490
template <>
491
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
C
chengduo 已提交
492
  return Output<LoDTensor>(name);
493 494 495
}

template <>
496
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
497
    const std::string& name) const {
H
hong 已提交
498 499 500
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
501 502
    return {};
  }
503
  std::vector<Tensor*> res;
504 505 506 507 508
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
509
                 });
510 511 512
  return res;
}

Y
Yu Yang 已提交
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

528 529
class RuntimeInferShapeContext : public InferShapeContext {
 public:
530
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
531
      : op_(op), ctx_(ctx) {}
532 533

  bool HasInput(const std::string& name) const override {
534
    // has only one input
X
Xin Pan 已提交
535
    const auto& ins = ctx_.inputs;
536 537
    auto it = ins.find(name);
    if (it == ins.end()) {
538 539
      return false;
    }
540
    const auto& in = it->second;
X
Xin Pan 已提交
541
    if (in.size() == 0) return false;
T
tensor-tang 已提交
542
    PADDLE_ENFORCE_EQ(in.size(), 1UL,
F
fengjiayi 已提交
543
                      "Input %s should not have more than one inputs", name);
X
Xin Pan 已提交
544
    return in[0] != nullptr;
545 546 547
  }

  bool HasOutput(const std::string& name) const override {
548
    // has only one output
X
Xin Pan 已提交
549
    const auto& outs = ctx_.outputs;
550 551
    auto it = outs.find(name);
    if (it == outs.end()) {
552 553
      return false;
    }
554
    const auto& out = it->second;
X
Xin Pan 已提交
555
    if (out.size() == 0) {
556 557
      return false;
    }
T
tensor-tang 已提交
558 559
    PADDLE_ENFORCE_EQ(out.size(), 1UL,
                      "Output %s should not have more than one outputs", name);
X
Xin Pan 已提交
560
    return out[0] != nullptr;
561 562 563
  }

  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
564 565
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
566
    if (it == ins.end() || it->second.empty()) {
567 568
      return false;
    }
X
Xin Pan 已提交
569 570
    for (auto& input : it->second) {
      if (input == nullptr) {
571 572 573 574 575 576 577
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
578 579
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
580
    if (it == outs.end() || it->second.empty()) {
581 582
      return false;
    }
X
Xin Pan 已提交
583 584
    for (auto& output : it->second) {
      if (output == nullptr) {
585 586 587 588 589 590 591 592
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

H
hong 已提交
593
  std::vector<std::string> Inputs(const std::string& name) const override {
594 595 596
    return op_.Inputs(name);
  }

H
hong 已提交
597
  std::vector<std::string> Outputs(const std::string& name) const override {
598 599 600
    return op_.Outputs(name);
  }

601 602
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
603 604 605 606 607 608 609 610 611
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
612 613

    PADDLE_ENFORCE(in_var->Type() == out_var->Type(),
X
fix  
Xin Pan 已提交
614
                   "The type of %s and %s is not the same.", in, out);
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
      PADDLE_THROW(
          "Currently, the input type of ShareDim only can be LoDTensor "
          "or SelectedRows.");
    }
  }

H
hong 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE_NE(in_it, ctx_.inputs.end(),
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output [%s] found error in Op [%s]", out,
                                   op_.Type()));

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
        in_var_list.size(), out_var_list.size(),
        platform::errors::PreconditionNotMet(
            "Op [%s]: Input var size should be equal with ouput var size",
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(), true,
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
                            i, out_var_names[i]));
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

Q
Qiao Longfei 已提交
678 679
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
680 681 682 683 684 685 686 687
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
688
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
689
    Variable* out_var = out_it->second.at(j);
Q
Qiao Longfei 已提交
690 691
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
692
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
693 694
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
695

M
mozga-intel 已提交
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
715 716
  }

717
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
718
    PADDLE_THROW(
719
        "GetLoDLevel is only used in compile time. The calculation of "
720 721 722 723
        "output's actual lod is different among operators so that should be "
        "set in the runtime kernel.");
  }

724 725
  void SetLoDLevel(const std::string& out, int32_t lod_level,
                   size_t j = 0) const override {
726
    PADDLE_THROW(
727
        "SetLoDLevel is only used in compile time. The calculation of "
728 729
        "output's actual lod is different among operators so that should be "
        "set in the runtime kernel.");
C
chengduo 已提交
730 731
  }

732 733
  bool IsRuntime() const override { return true; }

734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
753 754 755 756 757 758 759 760 761 762 763 764 765
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Input(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
766 767 768 769 770 771 772 773 774 775
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788 789
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Output(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

790
 protected:
X
Xin Pan 已提交
791
  DDim GetDim(Variable* var) const {
F
fengjiayi 已提交
792
    PADDLE_ENFORCE_NOT_NULL(var);
793 794 795 796 797
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
F
fengjiayi 已提交
798
      PADDLE_THROW(
X
Xin Pan 已提交
799
          "Only LoDTensor/SelectedRows support 'GetDim', but Variables "
F
fengjiayi 已提交
800
          "type_id is %s.",
S
sneaxiy 已提交
801
          ToTypeName(var->Type()));
F
fengjiayi 已提交
802 803 804
    }
  }

X
Xin Pan 已提交
805 806 807 808 809 810 811 812
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
813
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
Y
Yu Yang 已提交
814
    PADDLE_THROW("Only compile time support this method");
815 816
  }

X
Xin Pan 已提交
817
  void SetDim(Variable* var, const DDim& dim) {
818 819 820 821 822
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
X
Xin Pan 已提交
823
      PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
824
                   ToTypeName(var->Type()));
X
Xin Pan 已提交
825 826 827 828 829 830 831 832 833 834 835 836
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
    PADDLE_ENFORCE_EQ(length, dims.size());
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
837 838 839
    }
  }

F
fengjiayi 已提交
840 841
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
Y
Yu Yang 已提交
842
    PADDLE_THROW("Only compile time support this method");
F
fengjiayi 已提交
843 844
  }

X
Xin Pan 已提交
845 846 847 848 849 850 851 852 853 854 855
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
856 857 858
    return ToVarType(var->Type());
  }

859 860 861 862 863 864 865 866 867 868 869 870 871 872
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
    PADDLE_ENFORCE(it != ctx_.inputs.end(),
                   "Operator %s does not have the input %s.", op_.Type(), name);
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
    PADDLE_ENFORCE(it != ctx_.outputs.end(),
                   "Operator %s does not have the outputs %s.", op_.Type(),
                   name);
    return it->second;
F
fengjiayi 已提交
873 874
  }

875
  const OperatorBase& op_;
X
Xin Pan 已提交
876
  const RuntimeContext& ctx_;
877 878
};

879 880
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
881 882 883 884
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
Y
Yu Yang 已提交
885 886
  if (tensor.type() != proto::VarType::FP32 &&
      tensor.type() != proto::VarType::FP64) {
C
chengduoZH 已提交
887 888 889
    return;
  }
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
890
                 "Operator %s output Tensor %s contains Inf", op_type, name);
C
chengduoZH 已提交
891
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
892
                 "Operator %s output Tensor %s contains NAN", op_type, name);
C
chengduoZH 已提交
893 894
}

B
baojun-nervana 已提交
895
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
896 897
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
898
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
B
baojun-nervana 已提交
899 900 901
  this->InferShape(&infer_shape_ctx);
}

X
polish  
Xin Pan 已提交
902 903 904 905 906 907 908 909 910 911
std::vector<KernelConfig>* OperatorWithKernel::GetKernelConfig(
    const OpKernelType& key) const {
  auto config_iter = kernel_configs_map_.find(key);
  std::vector<KernelConfig>* kernel_configs = nullptr;
  if (config_iter != kernel_configs_map_.end()) {
    kernel_configs = &(config_iter->second);
  }
  return kernel_configs;
}

L
luotao1 已提交
912 913
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
914 915
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
916 917 918
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
919
      HasAttr(kAllKernelsMustComputeRuntimeShape))
920 921
    all_kernels_must_compute_runtime_shape_ = true;
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
922 923 924 925
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
  } else {
    const Scope* cur_scope = &scope;
926 927 928 929 930 931
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
932 933 934 935 936 937 938 939
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
940
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
941
  auto* dev_ctx = pool.Get(place);
942

943
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
944
    ChooseKernel(*runtime_ctx, scope, place);
945 946
  }

L
Liu Yiqun 已提交
947
  std::vector<KernelConfig>* kernel_configs = GetKernelConfig(*kernel_type_);
948

Y
yuyang18 已提交
949 950
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
951 952
  Scope* transfer_scope = nullptr;
  {
953
    platform::RecordEvent record_event("prepare_data_inner_op");
954 955 956
    transfer_scope = PrepareData(scope, *kernel_type_, &transfered_inplace_vars,
                                 runtime_ctx);
  }
Y
yuyang18 已提交
957 958 959 960
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

961 962
  if (!(kernel_type_->place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(kernel_type_->place_);
963
  }
Q
QI JUN 已提交
964

965
  if (!all_kernels_must_compute_runtime_shape_) {
966
    platform::RecordEvent record_event("infer_shape_inner_op");
967
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
968 969
    this->InferShape(&infer_shape_ctx);
  }
970 971 972 973 974

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
975 976
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
977
  {
978
    platform::RecordEvent record_event("compute_inner_op");
979 980 981
    (*kernel_func_)(ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx,
                                     kernel_configs));
  }
D
dzhwinter 已提交
982

Y
yuyang18 已提交
983 984 985
  if (!transfered_inplace_vars.empty()) {
    // there is inplace variable has been transfered.
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
986
  }
987 988 989 990 991 992 993 994
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
995

D
dzhwinter 已提交
996
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
997
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
998
    dev_ctx->Wait();
D
dzhwinter 已提交
999
  }
C
chengduoZH 已提交
1000

P
pkpk 已提交
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
  if (FLAGS_fast_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
      // only check inserted vars,
      // please see executor.py for details of fast_check_nan_inf
      if (vname.rfind("debug_var") == 0) {
        VLOG(3) << "debugging nan/inf in var " << vname;

        auto* var = exec_scope.FindVar(vname);
        if (var == nullptr) continue;
        if (var->IsType<framework::LoDTensor>()) {
          CheckTensorNANOrInf(type_, vname, var->Get<framework::LoDTensor>());
        } else if (var->IsType<framework::SelectedRows>()) {
          CheckTensorNANOrInf(type_, vname,
                              var->Get<framework::SelectedRows>().value());
        }
      }
    }
  }

C
chengduoZH 已提交
1020
  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1021
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1022
  }
1023 1024 1025 1026 1027 1028 1029

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1030
}
X
Xin Pan 已提交
1031

L
Liu Yiqun 已提交
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
void OperatorWithKernel::ChooseKernel(const RuntimeContext& ctx,
                                      const Scope& scope,
                                      const platform::Place& place) const {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(place);

  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
  }

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = this->GetExpectedKernelType(
      ExecutionContext(*this, scope, *dev_ctx, ctx, nullptr));
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

  auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
  if (kernel_iter == kernels.end()) {
    PADDLE_THROW("op %s does not have kernel for %s", type_,
                 KernelTypeToString(expected_kernel_key));
  }

1068 1069 1070 1071 1072
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1073 1074
}

Y
yuyang18 已提交
1075 1076 1077 1078
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1079
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1080 1081 1082
    auto* origin_var = scope.FindVar(var_name);
    PADDLE_ENFORCE_NOT_NULL(origin_var, "The var[%s] should not be nullptr.",
                            var_name);
C
chengduo 已提交
1083
    auto* original_tensor =
C
chengduo 已提交
1084
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1085
    auto* var = transfer_scope.FindVar(var_name);
C
chengduo 已提交
1086 1087
    PADDLE_ENFORCE_NOT_NULL(var, "The var[%s] should not be nullptr.",
                            var_name);
C
chengduo 已提交
1088
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1089
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
1090
    original_tensor->ShareDataWith(*transformed_tensor);
1091
    original_tensor->Resize(original_dims);
Y
yuyang18 已提交
1092 1093 1094
  }
}

X
Xin Pan 已提交
1095
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1096
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1097 1098
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1099
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1100

1101
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
1102 1103 1104 1105
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
1106 1107
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
1108 1109 1110
    }
  }

Y
yuyang18 已提交
1111
  for (auto& var_name_item : Inputs()) {
1112 1113
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;
S
sneaxiy 已提交
1114

X
Xin Pan 已提交
1115 1116 1117 1118
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1119
      auto* var = input_vars[i];
X
Xin Pan 已提交
1120

Y
yuyang18 已提交
1121
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1122
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1123 1124 1125
        continue;
      }

C
chengduo 已提交
1126
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
            (var->IsType<LoDTensor>() == true) &&
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
            (paddle::platform::get_cur_paddle_data_layout() ==
             DataLayout::kNHWC)) {
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
          input_vars[i] = trans_var;
          auto out = trans_var->GetMutable<LoDTensor>();
          out->Resize(tensor_in->dims());
          platform::MatchShapeToLayout(out, tensor_in->layout(),
                                       DataLayout::kNHWC);
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                     "but kNHWC layout"
                  << var_name_item.first << " in Operator " << type_;
        } else {
          VLOG(7) << "Skip scanning input " << var_name_item.first
                  << " in Operator " << type_;
        }
#endif
        continue;
      }

Y
yuyang18 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

      auto out_var_names = OutputVars(true);
      if (std::find(out_var_names.begin(), out_var_names.end(), var_name) !=
          out_var_names.end()) {
        transfered_inplace_vars->emplace_back(var_name);
      }

M
minqiyang 已提交
1182 1183
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1184

1185 1186 1187
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
1188
      // We use a thread_local cache to fix that issue, the key in the cache is
1189 1190 1191 1192 1193
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
1194 1195
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
1196
      // variables, that behavior a lot different.
1197 1198 1199 1200 1201 1202 1203 1204 1205
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1206 1207
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1208
        enable_cache_transfer_scope_ = true;
1209
      }
1210
      if (!new_scope) {
Y
yuyang18 已提交
1211 1212
        new_scope = &scope.NewScope();
      }
1213 1214 1215 1216
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1217
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1218 1219
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
1220
      if (enable_cache_runtime_context_) {
1221 1222
        pre_scope_ = nullptr;
      }
Y
yuyang18 已提交
1223
      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1224
      input_vars[i] = trans_var;
Y
yuyang18 已提交
1225
      Tensor out;
Y
yuyang18 已提交
1226
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1227 1228 1229 1230 1231 1232
      SetTensorToVariable(*var, out, trans_var);
    }
  }

  return new_scope;
}
Q
Qiao Longfei 已提交
1233

1234 1235 1236
void OperatorWithKernel::ParseInputDataType(
    const ExecutionContext& ctx, const std::string& name,
    proto::VarType::Type* data_type) const {
1237
  proto::VarType::Type default_data_type =
1238
      static_cast<proto::VarType::Type>(-1);
H
hong 已提交
1239
  const std::vector<Variable*> vars = ctx.MultiInputVar(name);
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
      } else if (var->IsType<SelectedRows>()) {
        t = &(var->Get<SelectedRows>().value());
1250 1251 1252 1253 1254 1255 1256
      } else if (var->IsType<LoDTensorArray>()) {
        auto t_arr = var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr.size(); j++) {
          if (t_arr[j].IsInitialized()) {
            t = &(t_arr[j]);
          }
        }
1257 1258
      }
      if (t != nullptr) {
1259 1260 1261 1262 1263
        PADDLE_ENFORCE_EQ(
            t->IsInitialized(), true,
            platform::errors::InvalidArgument(
                "The Tensor in the %s Op's Input Variable %s(%s) is "
                "not initialized.",
H
hong 已提交
1264
                Type(), name, ctx.InputNames(name).at(i)));
1265
        proto::VarType::Type tmp = t->type();
1266
        PADDLE_ENFORCE(
1267
            tmp == *data_type || *data_type == default_data_type,
1268 1269 1270 1271 1272 1273
            platform::errors::InvalidArgument(
                "The DataType of %s Op's duplicable Variable %s must be "
                "consistent. The current variable type is (%s), but the "
                "previous variable type is (%s).",
                Type(), name, DataTypeToString(tmp),
                DataTypeToString(*data_type)));
1274 1275 1276 1277 1278 1279
        *data_type = tmp;
      }
    }
  }
}

1280
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1281
    const ExecutionContext& ctx) const {
1282 1283 1284
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
H
hong 已提交
1285 1286
  for (auto& input : ctx.InNameList()) {
    ParseInputDataType(ctx, input, &data_type);
Y
Yu Yang 已提交
1287
  }
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
  PADDLE_ENFORCE_NE(data_type, dafault_data_type,
                    "DataType should be indicated by input Variable.");
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
  ParseInputDataType(ctx, name, &data_type);
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      "The Input Variable(%s) of %s Op used to determine kernel data type "
      "is empty or not LoDTensor or SelectedRows.",
      name, Type());
1304
  return data_type;
Y
Yu Yang 已提交
1305
}
1306

1307 1308 1309 1310 1311 1312 1313 1314
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1315 1316
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1317 1318
}

Q
Qiao Longfei 已提交
1319
}  // namespace framework
L
liaogang 已提交
1320
}  // namespace paddle