ir_pass_manager.cc 15.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/analysis/ir_pass_manager.h"
16

17
#include <map>
18
#include <memory>
19
#include <string>
20
#include <unordered_map>
21 22
#include <unordered_set>
#include <utility>
L
luotao1 已提交
23
#include <vector>
24

Y
Yan Chunwei 已提交
25
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
26 27
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/scope.h"
28
#include "paddle/fluid/inference/analysis/argument.h"
Y
Yan Chunwei 已提交
29
#include "paddle/fluid/string/pretty_log.h"
30 31 32 33

namespace paddle {
namespace inference {
namespace analysis {
Y
Yan Chunwei 已提交
34
using string::PrettyLog;
35
using string::PrettyLogEndl;
Y
Yan Chunwei 已提交
36
using string::Style;
37

38
IRPassManager::IRPassManager(Argument *argument) {
39
  disable_logs_ = argument->disable_logs();
40 41 42

  ARGUMENT_CHECK_FIELD(argument, ir_analysis_passes);
  CreatePasses(argument, argument->ir_analysis_passes());
43 44
}

45 46
void IRPassManager::CreatePasses(Argument *argument,
                                 const std::vector<std::string> &passes) {
47
  std::string pre_pass;
L
luotao1 已提交
48
  int pass_num = 0;
49
  for (const std::string &pass_name : passes) {
50
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_name);
51
    pass->Set("use_varseqlen", new bool(argument->tensorrt_use_varseqlen()));
52 53
    pass->Set("with_interleaved",
              new bool(argument->tensorrt_with_interleaved()));
54 55 56 57
    pass->Set("tensorrt_transformer_posid",
              new std::string(argument->tensorrt_transformer_posid()));
    pass->Set("tensorrt_transformer_maskid",
              new std::string(argument->tensorrt_transformer_maskid()));
58 59 60 61
    pass->Set("disable_logs", new bool(argument->disable_logs()));
    auto precision_mode = argument->tensorrt_precision_mode();
    bool enable_int8 = precision_mode == AnalysisConfig::Precision::kInt8;
    pass->Set("enable_int8", new bool(enable_int8));
W
Wilber 已提交
62 63 64 65 66 67 68 69 70
    pass->Set("max_input_shape",
              new std::map<std::string, std::vector<int>>(
                  argument->max_input_shape()));
    pass->Set("min_input_shape",
              new std::map<std::string, std::vector<int>>(
                  argument->min_input_shape()));
    pass->Set("optim_input_shape",
              new std::map<std::string, std::vector<int>>(
                  argument->optim_input_shape()));
71 72 73 74 75 76 77 78 79
    // Now, shape tensor value is not explicit set by user,
    // it is collected through API CollectShapeRangeInfo.
    pass->Set("max_shape_tensor",
              new std::map<std::string, std::vector<int>>());
    pass->Set("min_shape_tensor",
              new std::map<std::string, std::vector<int>>());
    pass->Set("optim_shape_tensor",
              new std::map<std::string, std::vector<int>>());

80 81 82 83 84 85 86 87
    // tuned trt dynamic_shape
    pass->Set("trt_tuned_dynamic_shape",
              new bool(argument->tensorrt_tuned_dynamic_shape()));
    bool with_dynamic_shape = (argument->max_input_shape().size() > 0 &&
                               argument->min_input_shape().size() > 0 &&
                               argument->optim_input_shape().size() > 0) ||
                              argument->tensorrt_tuned_dynamic_shape();
    pass->Set("with_dynamic_shape", new bool(with_dynamic_shape));
88

89
    // mixed precision related
90
    pass->Set("model_precision", new int(argument->model_precision()));
91 92 93
    pass->Set(
        "mixed_black_list",
        new std::unordered_set<std::string>(argument->mixed_black_list()));
94 95 96
    pass->Set("enable_gpu_half", new bool(argument->enable_gpu_half()));
    pass->Set("mixed_precision_mode",
              new int(argument->mixed_precision_mode()));
97

98
    if (pass_name == "graph_viz_pass") {
99 100 101 102 103 104 105 106 107 108
      std::string optim_cache_dir = argument->optim_cache_dir();
      std::string dot_file_path;
      if (optim_cache_dir.empty()) {
        dot_file_path = std::to_string(pass_num) + "_ir_" +
                        (pre_pass.empty() ? "origin" : pre_pass) + ".dot";
      } else {
        dot_file_path = optim_cache_dir + "/" + std::to_string(pass_num) +
                        "_ir_" + (pre_pass.empty() ? "origin" : pre_pass) +
                        ".dot";
      }
109
      pass->Set("graph_viz_path", new std::string(std::move(dot_file_path)));
110
      pass->Set("optim_cache_dir", new std::string(std::move(optim_cache_dir)));
L
luotao1 已提交
111
      pass_num++;
112
    } else if (pass_name == "mkldnn_placement_pass") {
113 114 115
      pass->Set("mkldnn_enabled_op_types",
                new std::unordered_set<std::string>(
                    argument->mkldnn_enabled_op_types()));
116 117 118
    } else if (pass_name == "cudnn_placement_pass") {
      pass->Set("cudnn_enabled_op_types",
                new std::unordered_set<std::string>());
119
#ifdef PADDLE_WITH_MKLDNN
120 121 122 123 124 125 126
    } else if (pass_name == "cpu_quantize_placement_pass") {
      pass->Set("quantize_enabled_op_types",
                new std::unordered_set<std::string>(
                    argument->quantize_enabled_op_types()));
      pass->Set(
          "quantize_excluded_op_ids",
          new std::unordered_set<int>(argument->quantize_excluded_op_ids()));
127
    } else if (pass_name == "cpu_quantize_pass") {
B
baoachun 已提交
128 129 130 131
      if (argument->quantize_enabled_op_types().count("conv2d") ||
          argument->quantize_enabled_op_types().count("depthwise_conv2d")) {
        pass->Set("data_layout", new std::string("NHWC"));
      }
132 133
      pass->Set("quant_var_scales",
                new VarQuantScale(argument->quant_var_scales()));
134 135 136 137
    } else if (pass_name == "cpu_bfloat16_placement_pass") {
      pass->Set("bfloat16_enabled_op_types",
                new std::unordered_set<std::string>(
                    argument->bfloat16_enabled_op_types()));
138
#endif
139
    } else if (pass_name == "tensorrt_subgraph_pass") {
140 141
      pass->Set("workspace_size",
                new int64_t(argument->tensorrt_workspace_size()));
142
      pass->Set("max_batch_size", new int(argument->tensorrt_max_batch_size()));
143 144
      pass->Set("min_subgraph_size",
                new int(argument->tensorrt_min_subgraph_size()));
N
nhzlx 已提交
145 146
      pass->Set("program",
                new framework::ProgramDesc *(&argument->main_program()));
147
      pass->Set("predictor_id", new int(argument->predictor_id()));
148 149
      bool use_calib_mode = argument->tensorrt_use_calib_mode();
      pass->Set("use_calib_mode", new bool(use_calib_mode));
Z
Zhaolong Xing 已提交
150 151
      pass->Set("precision_mode",
                new AnalysisConfig::Precision(precision_mode));
152 153
      pass->Set("context_memory_sharing",
                new bool(argument->trt_engine_memory_sharing()));
154 155
      bool use_static_engine = argument->tensorrt_use_static_engine();
      bool model_from_memory = argument->model_from_memory();
156
      std::string optim_cache_dir = argument->optim_cache_dir();
157 158
      bool int8_valid = !(model_from_memory && optim_cache_dir.empty() &&
                          enable_int8 && use_calib_mode);
159
      PADDLE_ENFORCE_EQ(
W
Wilber 已提交
160 161
          int8_valid,
          true,
162 163 164 165
          platform::errors::PreconditionNotMet(
              "When you are in TRT INT8 mode, and load model from "
              "memory, you should set optim_cache_dir using "
              "config.SetOptimCacheDir()"));
166 167
      if (model_from_memory && use_static_engine) {
        PADDLE_ENFORCE_EQ(
W
Wilber 已提交
168 169
            optim_cache_dir.empty(),
            false,
170 171 172 173 174 175
            platform::errors::PreconditionNotMet(
                "When you are using Paddle-TRT, and using load model "
                "from memory, and also set the use_static to true. "
                "you must set optim_cache_dir using "
                "config.SetOptimCacheDir()."));
      }
N
nhzlx 已提交
176

177
      if (!optim_cache_dir.empty()) {
178 179
        if (!PathExists(optim_cache_dir)) {
          PADDLE_ENFORCE_NE(
W
Wilber 已提交
180 181
              MKDIR(optim_cache_dir.c_str()),
              -1,
182 183 184 185 186
              platform::errors::PreconditionNotMet(
                  "Can not create optimize cache directory: %s, Make sure you "
                  "have permission to write",
                  optim_cache_dir));
        }
187 188
        pass->Set("model_opt_cache_dir", new std::string(optim_cache_dir));
      } else if (use_static_engine || enable_int8) {
189 190 191 192 193 194 195 196
        std::string model_opt_cache_dir =
            argument->Has("model_dir")
                ? argument->model_dir()
                : GetDirRoot(argument->model_program_path());
        pass->Set(
            "model_opt_cache_dir",
            new std::string(GetOrCreateModelOptCacheDir(model_opt_cache_dir)));
      }
N
nhzlx 已提交
197
      pass->Set("gpu_device_id", new int(argument->gpu_device_id()));
198
      pass->Set("use_static_engine", new bool(use_static_engine));
199
      pass->Set("model_from_memory", new bool(argument->model_from_memory()));
200
      pass->Set("use_inspector", new bool(argument->tensorrt_use_inspector()));
201 202 203 204 205 206

      // tuned trt dynamic_shape
      pass->Set("trt_shape_range_info_path",
                new std::string(argument->tensorrt_shape_range_info_path()));
      pass->Set("trt_allow_build_at_runtime",
                new bool(argument->tensorrt_allow_build_at_runtime()));
W
Wilber 已提交
207 208 209
      pass->Set(
          "trt_disabled_ops",
          new std::vector<std::string>(argument->tensorrt_disabled_ops()));
210 211
      pass->Set("trt_use_dla", new bool(argument->tensorrt_use_dla()));
      pass->Set("trt_dla_core", new int(argument->tensorrt_dla_core()));
212
      // Setting the disable_trt_plugin_fp16 to true means that TRT plugin will
213
      // not run fp16.
214 215
      pass->Set("disable_trt_plugin_fp16",
                new bool(argument->disable_trt_plugin_fp16()));
D
denglin-github 已提交
216
    } else if (pass_name == "dlnne_subgraph_pass") {
D
denglin-github 已提交
217
      auto precision_mode = argument->dlnne_precision_mode();
D
denglin-github 已提交
218 219
      pass->Set("min_subgraph_size",
                new int(argument->dlnne_min_subgraph_size()));
D
denglin-github 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233
      pass->Set("max_batch_size", new int(argument->dlnne_max_batch_size()));
      pass->Set("use_static_batch",
                new bool(argument->dlnne_use_static_batch()));
      pass->Set("weight_share_mode",
                new std::string(argument->dlnne_weight_share_mode()));
      pass->Set("disable_nodes_by_outputs",
                new std::unordered_set<std::string>(
                    argument->dlnne_disable_nodes_by_outputs()));
      pass->Set("use_calib_mode", new bool(argument->dlnne_use_calib_mode()));
      pass->Set("precision_mode",
                new AnalysisConfig::Precision(precision_mode));
      pass->Set("input_shape_dict",
                new std::map<std::string, std::vector<int64_t>>(
                    argument->dlnne_input_shape_dict()));
D
denglin-github 已提交
234 235
      pass->Set("program",
                new framework::ProgramDesc *(&argument->main_program()));
236 237
    } else if (pass_name == "memory_optimize_pass") {
      pass->Set("root_predictor_id", new int(argument->root_predictor_id()));
238 239
    } else if (pass_name == "build_cinn_pass") {
      pass->Set("is_inference_stage", new bool(argument->use_cinn_compiler()));
240
    }
石晓伟 已提交
241
    if (pass_name == "lite_subgraph_pass") {
242
      bool lite_enable_int8 =
石晓伟 已提交
243 244 245 246 247 248
          argument->lite_precision_mode() == AnalysisConfig::Precision::kInt8;
      pass->Set("program",
                new framework::ProgramDesc *(&argument->main_program()));
      pass->Set("lite_ops_filter",
                new std::vector<std::string>(argument->lite_ops_filter()));
      pass->Set("predictor_id", new int(argument->predictor_id()));
249 250
      pass->Erase("enable_int8");
      pass->Set("enable_int8", new bool(lite_enable_int8));
石晓伟 已提交
251
      pass->Set("use_gpu", new bool(argument->use_gpu()));
252 253 254 255
      pass->Set("zero_copy", new bool(argument->lite_zero_copy()));
      pass->Set("use_xpu", new bool(argument->use_xpu()));
      pass->Set("xpu_l3_workspace_size",
                new int(argument->xpu_l3_workspace_size()));
256
      pass->Set("use_opencl", new bool(argument->use_opencl()));
W
Wilber 已提交
257 258
      pass->Set("cpu_math_library_num_threads",
                new int(argument->cpu_math_library_num_threads()));
W
Wilber 已提交
259 260 261 262 263 264
      pass->Set("locked", new bool(argument->xpu_locked()));
      pass->Set("autotune", new bool(argument->xpu_autotune()));
      pass->Set("autotune_file",
                new std::string(argument->xpu_autotune_file()));
      pass->Set("precision", new std::string(argument->xpu_precision()));
      pass->Set("adaptive_seqlen", new bool(argument->xpu_adaptive_seqlen()));
265
      pass->Set("xpu_device_id", new int(argument->xpu_device_id()));
266 267
      pass->Set("enable_multi_stream",
                new bool(argument->xpu_enable_multi_stream()));
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
      // NNAdapter Related
      pass->Set("use_nnadapter", new bool(argument->use_nnadapter()));
      pass->Set("nnadapter_model_cache_dir",
                new std::string(argument->nnadapter_model_cache_dir()));
      pass->Set(
          "nnadapter_device_names",
          new std::vector<std::string>(argument->nnadapter_device_names()));
      pass->Set("nnadapter_context_properties",
                new std::string(argument->nnadapter_context_properties()));
      pass->Set("nnadapter_subgraph_partition_config_buffer",
                new std::string(
                    argument->nnadapter_subgraph_partition_config_buffer()));
      pass->Set("nnadapter_subgraph_partition_config_path",
                new std::string(
                    argument->nnadapter_subgraph_partition_config_path()));
      pass->Set("nnadapter_model_cache_buffer",
                new std::vector<std::vector<char>>(
                    argument->nnadapter_model_cache_buffer()));
      pass->Set("nnadapter_model_cache_token",
                new std::vector<std::string>(
                    argument->nnadapter_model_cache_token()));
石晓伟 已提交
289
    }
290 291
    if (pass_name == "fc_fuse_pass") {
      pass->Set("use_gpu", new bool(argument->use_gpu()));
292 293 294 295 296 297 298 299
      bool fc_mkldnn_pass = 0;
      for (const std::string &pass_n : passes) {
        if (pass_n == "fc_mkldnn_pass") {
          fc_mkldnn_pass = 1;
        }
      }
      bool use_fc_padding = !fc_mkldnn_pass && argument->use_fc_padding();
      pass->Set("use_fc_padding", new bool(use_fc_padding));
300
    }
301
    pre_pass = pass_name;
302 303

    passes_.emplace_back(std::move(pass));
304 305 306
  }
}

307 308 309 310
std::unique_ptr<Graph> IRPassManager::Apply(std::unique_ptr<Graph> graph) {
  if (passes_.empty()) {
    return graph;
  }
W
Wilber 已提交
311 312 313
  PADDLE_ENFORCE_NOT_NULL(
      graph.get(),
      platform::errors::PreconditionNotMet("Graph cannot be NULL."));
314 315
  // Apply all the passes
  for (const auto &pass : passes_) {
316
    if (pass->Type() != "graph_viz_pass" && !disable_logs_) {
Y
Yan Chunwei 已提交
317 318
      PrettyLogEndl(Style::H2(), "--- Running IR pass [%s]", pass->Type());
    }
319 320 321 322 323
    // delete_fill_constant_op_pass is not apply under trt dynamic shape
    if (pass->Type() == "delete_fill_constant_op_pass") {
      bool use_dynamic = pass->Get<bool>("with_dynamic_shape");
      if (use_dynamic) continue;
    }
324
    graph.reset(pass->Apply(graph.release()));
325
  }
G
Gabor Buella 已提交
326
  return graph;
327 328 329
}

framework::proto::ProgramDesc IRPassManager::AcquireProgram(
N
nhzlx 已提交
330
    std::unique_ptr<Graph> *graph, ProgramDesc *program) const {
331 332 333
  auto pass =
      framework::ir::PassRegistry::Instance().Get("graph_to_program_pass");

N
nhzlx 已提交
334 335
  // Direct using ProgramDesc desc(argument->main_program()) may cause
  // incomplete copies of information.
N
nhzlx 已提交
336
  ProgramDesc desc;
N
nhzlx 已提交
337
  desc.CopyFrom(*program->Proto());
338 339
  pass->SetNotOwned("program", &desc);
  auto *the_graph = graph->release();
340
  graph->reset(pass->Apply(the_graph));
341 342 343
  return *desc.Proto();
}

344 345 346
}  // namespace analysis
}  // namespace inference
}  // namespace paddle