mkldnn_reuse.h 45.8 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

16
#include <memory>
17
#include <sstream>
J
Jacek Czaja 已提交
18
#include <string>
19
#include <utility>
J
Jacek Czaja 已提交
20
#include <vector>
21
#include "boost/optional.hpp"
X
xiaoli.liu@intel.com 已提交
22
#include "paddle/fluid/framework/data_layout_transform.h"
J
Jacek Czaja 已提交
23 24 25 26 27 28 29 30
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace platform {

using user_function = std::function<std::shared_ptr<float>(const float*)>;
31
using memory = mkldnn::memory;
J
Jacek Czaja 已提交
32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
template <typename T, typename TForward, typename TBackward>
class MKLDNNHandlerT {
 public:
  MKLDNNHandlerT(const MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
                 platform::Place cpu_place, const std::string& base_key)
      : dev_ctx_(dev_ctx),
        engine_(engine),
        place_(cpu_place),
        key_common_(base_key),
        fwd_pd_(nullptr),
        bwd_pd_(nullptr) {
    if (platform::get_cur_mkldnn_session_id() !=
        platform::kMKLDNNSessionID_Default) {
      key_ = key_common_;
    } else {
      key_ = key_common_ + "-t:" + ThreadIDasStr();
    }
  }

A
Adam 已提交
52
  std::shared_ptr<TForward> AcquireForwardPrimitive() {
53 54 55 56
    const std::string key_p = key_ + "@forward_p";
    auto forward_p =
        std::static_pointer_cast<TForward>(dev_ctx_.GetBlob(key_p));
    if (forward_p == nullptr) {
A
Adam 已提交
57
      forward_p = std::make_shared<TForward>(*fwd_pd_);
58 59 60 61 62
      dev_ctx_.SetBlob(key_p, forward_p);
    }
    return forward_p;
  }

A
Adam 已提交
63
  std::shared_ptr<TBackward> AcquireBackwardPrimitive() {
64 65 66 67
    const std::string key_p = key_ + "@backward_p";
    auto backward_p =
        std::static_pointer_cast<TBackward>(dev_ctx_.GetBlob(key_p));
    if (backward_p == nullptr) {
A
Adam 已提交
68
      backward_p = std::make_shared<TBackward>(*bwd_pd_);
69 70 71 72 73
      dev_ctx_.SetBlob(key_p, backward_p);
    }
    return backward_p;
  }

74 75 76
  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
A
Adam 已提交
77 78
    return this->AcquireMemoryFromPrimitive(
        fwd_pd_->src_desc(), to_void_cast<T>(input_data), "@src_mem_p");
79 80 81
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output) {
A
Adam 已提交
82 83
    T* ptr = output->mutable_data<T>(place_, fwd_pd_->dst_desc().get_size());
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), ptr,
84 85 86 87 88 89
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      const framework::Tensor* output) {
    const T* output_data = output->data<T>();
A
Adam 已提交
90 91
    return this->AcquireMemoryFromPrimitive(
        bwd_pd_->dst_desc(), to_void_cast<T>(output_data), "@bwd-dst_mem_p");
92 93 94 95 96
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemory(
      const framework::Tensor* diffdst) {
    const T* ptr = diffdst->data<T>();
A
Adam 已提交
97 98
    return this->AcquireMemoryFromPrimitive(
        bwd_pd_->diff_dst_desc(), to_void_cast<T>(ptr), "@diff_dst_mem_p");
99 100 101 102
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemory(
      framework::Tensor* diffsrc) {
A
Adam 已提交
103 104 105 106
    T* ptr =
        diffsrc->mutable_data<T>(place_, bwd_pd_->diff_src_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_src_desc(), ptr,
                                            "@diff_src_mem_p");
107 108
  }

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
 protected:
  template <typename... Args>
  void AcquireForwardPrimitiveDescriptor(Args&&... args) {
    // Forward PD has to be passed to Grad op that
    // may be executed by diffrent thread, hence
    // for that one we use key that does not contain TID
    const std::string key_pd = key_common_ + "@forward_pd";
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (fwd_pd_ == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);
      fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
          dev_ctx_.GetBlob(key_pd));
      if (fwd_pd_ == nullptr) {
        auto fwd_desc = typename TForward::desc(std::forward<Args>(args)...);
        fwd_pd_ = std::make_shared<typename TForward::primitive_desc>(fwd_desc,
                                                                      engine_);
        dev_ctx_.SetBlob(key_pd, fwd_pd_);
      }
    }
  }

  template <typename... Args>
  void AcquireBackwardPrimitiveDescriptor(Args&&... args) {
135 136 137
    const std::string key_fwd_pd = key_common_ + "@forward_pd";
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_fwd_pd));
138 139 140 141 142 143 144 145 146 147 148 149
    PADDLE_ENFORCE_NOT_NULL(fwd_pd_);
    const std::string key_pd = key_ + "@backward_pd";
    bwd_pd_ = std::static_pointer_cast<typename TBackward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (bwd_pd_ == nullptr) {
      auto bwd_desc = typename TBackward::desc(std::forward<Args>(args)...);
      bwd_pd_ = std::make_shared<typename TBackward::primitive_desc>(
          bwd_desc, engine_, *fwd_pd_);
      dev_ctx_.SetBlob(key_pd, bwd_pd_);
    }
  }

150
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
A
Adam 已提交
151
      mkldnn::memory::desc md, void* ptr, const std::string& suffix) {
152 153 154 155
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
A
Adam 已提交
156
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

  const MKLDNNDeviceContext& dev_ctx_;
  mkldnn::engine engine_;
  platform::Place place_;
  std::string key_;
  std::string key_common_;
  std::shared_ptr<typename TForward::primitive_desc> fwd_pd_;
  std::shared_ptr<typename TBackward::primitive_desc> bwd_pd_;
};

// TODO(grygielski) this class will be deleted later.
J
Jacek Czaja 已提交
174 175 176 177
class MKLDNNHandler {
 public:
  MKLDNNHandler(const MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
                const std::string& base_key)
178
      : dev_ctx_(dev_ctx), engine_(engine), key_common_(base_key) {
179 180
    if (platform::get_cur_mkldnn_session_id() !=
        platform::kMKLDNNSessionID_Default) {
181
      key_ = key_common_;
182
    } else {
A
Adam 已提交
183
      key_ = key_common_ + "-t:" + ThreadIDasStr();
184
    }
185
  }
J
Jacek Czaja 已提交
186 187 188 189 190 191 192 193 194 195 196

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_src_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_dst_mem_p");
  }

A
Adam 已提交
197
  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemory(
J
Jacek Czaja 已提交
198
      const mkldnn::memory::desc& md, void* ptr) {
A
Adam 已提交
199
    return this->AcquireMemory(md, ptr, "@user_diff_src_mem_p");
J
Jacek Czaja 已提交
200 201
  }

A
Adam 已提交
202
  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemory(
J
Jacek Czaja 已提交
203
      const mkldnn::memory::desc& md, void* ptr) {
A
Adam 已提交
204
    return this->AcquireMemory(md, ptr, "@user_diff_dst_mem_p");
J
Jacek Czaja 已提交
205 206 207
  }

  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
A
Adam 已提交
208
      mkldnn::memory::desc md, void* ptr, const std::string& suffix) {
J
Jacek Czaja 已提交
209 210 211 212
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
A
Adam 已提交
213
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
J
Jacek Czaja 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

  // This incarnation of AcquireMemory can call user function eg. custom reorder
  // or preprocessing routine if needed
  std::shared_ptr<mkldnn::memory> AcquireMemory(
      const mkldnn::memory::desc& md, void* ptr, const std::string& suffix,
      user_function custom_func = {}) {
    /*Generate key*/
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      // Call custom reorder/preprocessing func if available
      if (custom_func) {
        auto reordered_data = custom_func(reinterpret_cast<const float*>(ptr));
        dev_ctx_.SetBlob(local_key + "-custom_reorder", reordered_data);
        ptr = reinterpret_cast<void*>(reordered_data.get());
      }

A
Adam 已提交
238
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
J
Jacek Czaja 已提交
239 240 241 242 243 244 245
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

246
  std::shared_ptr<mkldnn::memory> AcquireMemory(
A
Adam 已提交
247
      const std::vector<int64_t>& dims, const mkldnn::memory::data_type dtype,
248
      const MKLDNNMemoryFormat& fmt, void* ptr, const std::string& suffix) {
249 250 251 252 253 254 255
    /*Generate key*/
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      auto md = mkldnn::memory::desc(dims, dtype, fmt);

A
Adam 已提交
256
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
257 258 259 260 261 262 263
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

J
Jacek Czaja 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
  std::shared_ptr<mkldnn::memory> AcquireMemory(
      const std::shared_ptr<mkldnn::memory>& user_memory_p,
      const std::shared_ptr<mkldnn::memory>& target_memory_p,
      const std::string& suffix,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto local_key = key_ + suffix;
    auto key_reorder_p = key_ + suffix + "reorder_p";

    auto stored_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
        dev_ctx_.GetBlob(key_reorder_p));

    if (stored_reorder_p) {
      pipeline.push_back(*stored_reorder_p);
    } else {
      auto reorder_p =
          std::make_shared<mkldnn::reorder>(*user_memory_p, *target_memory_p);
      dev_ctx_.SetBlob(key_reorder_p, reorder_p);
A
Adam 已提交
281 282 283 284
      mkldnn::stream astream(engine_);
      reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                   {MKLDNN_ARG_TO, *target_memory_p}});
      astream.wait();
J
Jacek Czaja 已提交
285 286 287 288 289 290
    }

    return target_memory_p;
  }

  std::shared_ptr<mkldnn::memory> AcquireMemory(
A
Adam 已提交
291 292
      mkldnn::memory::desc& md,       // NOLINT
      mkldnn::memory::desc& user_md,  // NOLINT
J
Jacek Czaja 已提交
293 294 295
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      const std::string& suffix,
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
296 297
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f}, int mask = 0) {
J
Jacek Czaja 已提交
298 299 300 301 302 303
    // create reorder primitive if the input format is not the preferred one
    auto local_key = key_ + suffix;
    auto key_reorder_p = key_ + suffix + "reorder_p";

    auto target_memory_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
A
Adam 已提交
304 305 306

    mkldnn::stream astream(engine_);

J
Jacek Czaja 已提交
307 308
    if (target_memory_p == nullptr) {
      target_memory_p = user_memory_p;
A
Adam 已提交
309 310 311
      if (md != user_md) {
        target_memory_p = std::make_shared<mkldnn::memory>(md, engine_);
        std::shared_ptr<mkldnn::reorder::primitive_desc> reorder_pd;
312 313 314 315 316
        if (is_INT8) {
          mkldnn::primitive_attr
              attri;  // attribute for int8 weights and bias data reorder.
          attri.set_output_scales(mask, scale_data);

A
Adam 已提交
317 318 319
          reorder_pd = std::shared_ptr<mkldnn::reorder::primitive_desc>(
              new mkldnn::reorder::primitive_desc(*user_memory_p,
                                                  *target_memory_p, attri));
320
        } else {
A
Adam 已提交
321 322 323
          reorder_pd = std::shared_ptr<mkldnn::reorder::primitive_desc>(
              new mkldnn::reorder::primitive_desc(*user_memory_p,
                                                  *target_memory_p));
324
        }
A
Adam 已提交
325 326
        auto reorder_p =
            std::shared_ptr<mkldnn::reorder>(new mkldnn::reorder(*reorder_pd));
J
Jacek Czaja 已提交
327
        dev_ctx_.SetBlob(key_reorder_p, reorder_p);
A
Adam 已提交
328 329 330 331

        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
J
Jacek Czaja 已提交
332 333 334 335 336 337 338
      }
      dev_ctx_.SetBlob(local_key, target_memory_p);
    } else if (!is_persistent) {
      // Make reorder if needed
      auto reorder_p = std::static_pointer_cast<mkldnn::reorder>(
          dev_ctx_.GetBlob(key_reorder_p));
      if (reorder_p != nullptr) {
A
Adam 已提交
339 340 341
        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
J
Jacek Czaja 已提交
342 343 344 345 346 347 348 349 350
      }
    }
    return target_memory_p;
  }

 protected:
  const MKLDNNDeviceContext& dev_ctx_;
  mkldnn::engine engine_;
  std::string key_;
351
  std::string key_common_;
J
Jacek Czaja 已提交
352 353
};

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
class SumMKLDNNHandler : public MKLDNNHandler {
 public:
  SumMKLDNNHandler(const platform::MKLDNNDeviceContext& dev_ctx,
                   mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {}

  std::shared_ptr<mkldnn::sum::primitive_desc> AcquireSumPrimitiveDescriptor(
      const std::vector<std::shared_ptr<mkldnn::memory>>& src_mems,
      const std::vector<float>& scales, const mkldnn::memory::desc& dst_md) {
    const std::string key_sum_pd = key_ + "@sum_pd";

    sum_pd_ = std::static_pointer_cast<mkldnn::sum::primitive_desc>(
        dev_ctx_.GetBlob(key_sum_pd));
    if (sum_pd_ == nullptr) {
      // Get vector of inputs primitive descriptors
A
Adam 已提交
369
      std::vector<mkldnn::memory::desc> src_ds;
370
      for (auto& input_mem : src_mems) {
A
Adam 已提交
371
        src_ds.push_back(input_mem->get_desc());
372 373
      }

A
Adam 已提交
374 375
      sum_pd_.reset(
          new mkldnn::sum::primitive_desc(dst_md, scales, src_ds, engine_));
376 377 378 379 380 381 382
      dev_ctx_.SetBlob(key_sum_pd, sum_pd_);
    }

    return sum_pd_;
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
A
Adam 已提交
383
    return this->AcquireMemoryFromPrimitive(sum_pd_->dst_desc(), ptr,
384 385 386
                                            "@dst_mem_p");
  }

A
Adam 已提交
387 388 389 390 391
  std::shared_ptr<mkldnn::memory> AcquireSecondSrcMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_src2_mem_p");
  }

A
Adam 已提交
392
  std::shared_ptr<mkldnn::sum> AcquireSum() {
393 394 395 396
    auto prim_key = key_ + "@sum_p";
    auto sum_p =
        std::static_pointer_cast<mkldnn::sum>(dev_ctx_.GetBlob(prim_key));
    if (sum_p == nullptr) {
A
Adam 已提交
397
      sum_p = std::make_shared<mkldnn::sum>(*sum_pd_);
398 399 400 401 402 403 404 405 406
      dev_ctx_.SetBlob(prim_key, sum_p);
    }
    return sum_p;
  }

 private:
  std::shared_ptr<mkldnn::sum::primitive_desc> sum_pd_;
};

407
template <typename T>
408 409 410
class ActivationMKLDNNHandler
    : public MKLDNNHandlerT<T, mkldnn::eltwise_forward,
                            mkldnn::eltwise_backward> {
411
 public:
A
Adam 已提交
412
  ActivationMKLDNNHandler(const std::vector<int64_t>& dims,
413
                          mkldnn::algorithm algorithm, float alpha, float beta,
414
                          const MKLDNNMemoryFormat fmt,
415 416 417 418
                          const platform::MKLDNNDeviceContext& dev_ctx,
                          platform::Place cpu_place,
                          const std::string& unique_name)

419 420 421
      : platform::MKLDNNHandlerT<T, mkldnn::eltwise_forward,
                                 mkldnn::eltwise_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
422
            platform::CreateKey(dims, unique_name)) {
423 424
    auto md = mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), fmt);

425 426
    this->AcquireForwardPrimitiveDescriptor(mkldnn::prop_kind::forward_training,
                                            algorithm, md, alpha, beta);
427
  }
428

A
Adam 已提交
429
  ActivationMKLDNNHandler(const std::vector<int64_t>& dims,
430 431 432 433 434 435 436
                          mkldnn::algorithm algorithm, float alpha, float beta,
                          const MKLDNNMemoryFormat fmt,
                          const MKLDNNMemoryFormat diff_fmt,
                          const platform::MKLDNNDeviceContext& dev_ctx,
                          platform::Place cpu_place,
                          const std::string& unique_name)

437 438 439
      : platform::MKLDNNHandlerT<T, mkldnn::eltwise_forward,
                                 mkldnn::eltwise_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
440
            platform::CreateKey(dims, unique_name)) {
441 442 443 444 445 446 447
    auto diff_dst_md = platform::MKLDNNMemDesc(
        dims, platform::MKLDNNGetDataType<T>(), diff_fmt);
    auto src_md =
        platform::MKLDNNMemDesc(dims, platform::MKLDNNGetDataType<T>(), fmt);

    this->AcquireBackwardPrimitiveDescriptor(algorithm, diff_dst_md, src_md,
                                             alpha, beta);
448
  }
449

450 451 452
  std::shared_ptr<mkldnn::memory> AcquireBackwardSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
A
Adam 已提交
453
    return this->AcquireMemoryFromPrimitive(this->bwd_pd_->src_desc(),
454 455
                                            to_void_cast<T>(input_data),
                                            "@bwd-src_mem_p");
456 457 458
  }
};

J
Jacek Czaja 已提交
459 460 461
template <typename T>
class LRNMKLDNNHandler
    : public MKLDNNHandlerT<T, mkldnn::lrn_forward, mkldnn::lrn_backward> {
462
 public:
A
Adam 已提交
463 464
  LRNMKLDNNHandler(const std::vector<int64_t>& dims, const int n,
                   const float alpha, const float beta, const float k,
J
Jacek Czaja 已提交
465 466 467
                   const MKLDNNMemoryFormat fmt, bool is_test,
                   const platform::MKLDNNDeviceContext& dev_ctx,
                   platform::Place cpu_place, const std::string& unique_name)
468

J
Jacek Czaja 已提交
469 470
      : platform::MKLDNNHandlerT<T, mkldnn::lrn_forward, mkldnn::lrn_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
471
            platform::CreateKey(dims, unique_name)) {
J
Jacek Czaja 已提交
472 473 474 475 476
    auto src_md =
        mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), fmt);
    this->AcquireForwardPrimitiveDescriptor(
        is_test ? mkldnn::prop_kind::forward_inference
                : mkldnn::prop_kind::forward_training,
A
Adam 已提交
477
        mkldnn::algorithm::lrn_across_channels, src_md, n, alpha, beta, k);
478 479
  }

A
Adam 已提交
480 481
  LRNMKLDNNHandler(const std::vector<int64_t>& dims, const int n,
                   const float alpha, const float beta, const float k,
J
Jacek Czaja 已提交
482 483 484 485
                   const MKLDNNMemoryFormat fmt,
                   const MKLDNNMemoryFormat diff_fmt,
                   const platform::MKLDNNDeviceContext& dev_ctx,
                   platform::Place cpu_place, const std::string& unique_name)
486

J
Jacek Czaja 已提交
487 488
      : platform::MKLDNNHandlerT<T, mkldnn::lrn_forward, mkldnn::lrn_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
489
            platform::CreateKey(dims, unique_name)) {
J
Jacek Czaja 已提交
490 491 492 493
    auto src_md =
        mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), fmt);
    auto diff_md =
        mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), diff_fmt);
494

J
Jacek Czaja 已提交
495
    this->AcquireBackwardPrimitiveDescriptor(
A
Adam 已提交
496 497
        mkldnn::algorithm::lrn_across_channels, src_md, diff_md, n, alpha, beta,
        k);
498 499
  }

J
Jacek Czaja 已提交
500 501 502
  std::shared_ptr<mkldnn::memory> AcquireWorkspaceMemory(
      framework::Tensor* workspace) {
    T* ptr = workspace->mutable_data<T>(
A
Adam 已提交
503 504 505
        this->place_, this->fwd_pd_->workspace_desc().get_size());
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->workspace_desc(),
                                            ptr, "@wrk_mem_p");
J
Jacek Czaja 已提交
506 507 508 509 510
  }

  std::shared_ptr<mkldnn::memory> AcquireBackwardWorkspaceMemory(
      const framework::Tensor* workspace) {
    const T* workspace_data = workspace->data<T>();
A
Adam 已提交
511 512 513
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->workspace_desc(),
                                            to_void_cast<T>(workspace_data),
                                            "@bwd-wrk_mem_p");
J
Jacek Czaja 已提交
514
  }
515 516
};

517 518 519
template <typename T>
class PoolingMKLDNNHandler : public MKLDNNHandlerT<T, mkldnn::pooling_forward,
                                                   mkldnn::pooling_backward> {
520
 public:
521
  PoolingMKLDNNHandler(
A
Adam 已提交
522 523 524 525 526
      const std::vector<int64_t>& src_dims,
      const std::vector<int64_t>& dst_dims, const std::vector<int64_t>& ksize,
      const std::vector<int64_t>& strides, const std::vector<int64_t>& paddings,
      const std::string& pooling_type, bool ceil_mode,
      const MKLDNNMemoryFormat fmt, mkldnn::memory::data_type dt, bool is_test,
527
      const platform::MKLDNNDeviceContext& dev_ctx, platform::Place cpu_place,
528
      const std::string& unique_name, bool exclude_padding)
529 530 531
      : platform::MKLDNNHandlerT<T, mkldnn::pooling_forward,
                                 mkldnn::pooling_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
532
            platform::CreateKey(src_dims, dt, unique_name)) {
533 534 535 536 537 538 539 540
    auto src_md = mkldnn::memory::desc(src_dims, dt, fmt);
    /* create memory descriptor for pooling without specified format
     * ('any') which lets a primitive (pooling in this case) choose
     * the memory format preferred for best performance
     */
    auto dst_md =
        platform::MKLDNNMemDesc(dst_dims, dt, MKLDNNMemoryFormat::any);

541 542
    auto mkldnn_paddings = ToMkldnnPadding(paddings);

543 544
    if (ceil_mode) {
      CorrectOutputSize(src_dims, dst_dims, ksize, paddings, strides,
545
                        mkldnn_paddings[1]);
546
    }
547 548 549
    this->AcquireForwardPrimitiveDescriptor(
        is_test ? mkldnn::prop_kind::forward_inference
                : mkldnn::prop_kind::forward_training,
550 551 552 553 554
        pooling_type == "max"
            ? mkldnn::algorithm::pooling_max
            : (exclude_padding
                   ? mkldnn::algorithm::pooling_avg_exclude_padding
                   : mkldnn::algorithm::pooling_avg_include_padding),
A
Adam 已提交
555
        src_md, dst_md, strides, ksize, mkldnn_paddings[0], mkldnn_paddings[1]);
556 557 558
  }

  PoolingMKLDNNHandler(
A
Adam 已提交
559 560 561 562 563 564
      const std::vector<int64_t>& diff_dst_dims,
      const std::vector<int64_t>& diff_src_dims,
      const std::vector<int64_t>& ksize, const std::vector<int64_t>& strides,
      const std::vector<int64_t>& paddings, const std::string& pooling_type,
      bool ceil_mode, const MKLDNNMemoryFormat fmt,
      const MKLDNNMemoryFormat diff_dst_fmt, mkldnn::memory::data_type dt,
565
      const platform::MKLDNNDeviceContext& dev_ctx, platform::Place cpu_place,
566
      const std::string& unique_name, bool exclude_padding)
567 568 569
      : platform::MKLDNNHandlerT<T, mkldnn::pooling_forward,
                                 mkldnn::pooling_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
570
            platform::CreateKey(diff_src_dims, dt, unique_name)) {
571 572 573 574 575 576
    auto diff_dst_md = mkldnn::memory::desc(
        diff_dst_dims, platform::MKLDNNGetDataType<T>(), diff_dst_fmt);
    auto diff_src_md =
        mkldnn::memory::desc(diff_src_dims, platform::MKLDNNGetDataType<T>(),
                             MKLDNNMemoryFormat::any);

577 578
    auto mkldnn_paddings = ToMkldnnPadding(paddings);

579
    this->AcquireBackwardPrimitiveDescriptor(
580 581 582 583 584
        pooling_type == "max"
            ? mkldnn::algorithm::pooling_max
            : (exclude_padding
                   ? mkldnn::algorithm::pooling_avg_exclude_padding
                   : mkldnn::algorithm::pooling_avg_include_padding),
585
        diff_src_md, diff_dst_md, strides, ksize, mkldnn_paddings[0],
A
Adam 已提交
586
        mkldnn_paddings[1]);
587 588 589
  }

  std::shared_ptr<mkldnn::memory> AcquireWorkspaceMemory(void) {
A
Adam 已提交
590
    mkldnn::memory::desc workspace_md = this->fwd_pd_->workspace_desc();
591 592 593
    // Pooling PD has to be passed to Grad op that
    // may be executed by diffrent thread, hence
    // for that one we use key that does not contain TID
594 595 596
    auto local_key = this->key_common_ + "@workspace";
    auto mem_p = std::static_pointer_cast<mkldnn::memory>(
        this->dev_ctx_.GetBlob(local_key));
597 598 599 600
    if (mem_p == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);
601 602
      mem_p = std::static_pointer_cast<mkldnn::memory>(
          this->dev_ctx_.GetBlob(local_key));
603
      if (mem_p == nullptr) {
A
Adam 已提交
604
        mem_p = std::make_shared<mkldnn::memory>(workspace_md, this->engine_);
605
        this->dev_ctx_.SetBlob(local_key, mem_p);
606 607 608 609 610 611 612 613 614 615 616 617
      }
    }
    return mem_p;
  }

 private:
  static inline int ComputeCeiledOutput(int input_size, int kernel_size,
                                        int padding, int stride) {
    return (input_size - kernel_size + 2 * padding) / stride + 1;
  }

  static inline void CorrectOutputSize(
A
Adam 已提交
618 619 620 621
      const std::vector<int64_t>& src_tz, const std::vector<int64_t>& dst_tz,
      const std::vector<int64_t>& kernel_size,
      const std::vector<int64_t>& paddings, const std::vector<int64_t>& strides,
      std::vector<int64_t>& right_bot_padding) {  // NOLINT
622 623 624 625
    for (size_t i = 0; i < right_bot_padding.size(); i++) {
      int desired_size = ComputeCeiledOutput(src_tz[i + 2], kernel_size[i],
                                             paddings[i], strides[i]);
      if (desired_size != dst_tz[i + 2]) {
J
Jacek Czaja 已提交
626
        right_bot_padding[i] += strides[i] - 1;
627 628 629 630 631
      }
    }
  }
};

632
template <typename T>
633 634
class TransposeMKLDNNHandler : public MKLDNNHandler {
 public:
A
Adam 已提交
635 636
  TransposeMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
                         std::vector<int>& axis,      // NOLINT
637 638 639 640
                         const platform::MKLDNNDeviceContext& dev_ctx,
                         mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        dims_(dims),
641 642 643 644
        axis_(axis),
        logical_axis_(dims.size(), 0) {}

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
645
      const MKLDNNMemoryFormat& fmt, void* ptr) {
646 647 648 649 650 651 652 653 654
    auto local_key = key_ + "@user_src_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      // Make memory descriptor using input format, unless it
      // cannot be trusted (nchw) then make up memory fmt manually
      for (size_t i = 0; i < logical_axis_.size(); ++i) {
        logical_axis_[i] = i;
      }
655

A
Adam 已提交
656
      auto src_md = fmt != MKLDNNMemoryFormat::nchw
657
                        ? platform::MKLDNNMemDesc(
658
                              dims_, platform::MKLDNNGetDataType<T>(), fmt)
659
                        : Axis2MemoryDesc(dims_, logical_axis_);
A
Adam 已提交
660
      mem_p = std::make_shared<mkldnn::memory>(src_md, engine_, ptr);
661 662 663 664 665 666
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }
667 668 669 670 671 672 673

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output,
                                                   platform::Place place) {
    auto local_key = key_ + "@user_dst_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
A
Adam 已提交
674
      auto dst_md = Axis2MemoryDesc(dims_, axis_);
675

A
Adam 已提交
676
      auto dst_data = output->mutable_data<T>(place, dst_md.get_size());
677

A
Adam 已提交
678
      mem_p = std::make_shared<mkldnn::memory>(dst_md, engine_, dst_data);
679 680
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
681
      auto dst_data = output->mutable_data<T>(place);
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
      mem_p->set_data_handle(dst_data);
    }
    return mem_p;
  }

  std::shared_ptr<mkldnn::reorder> AcquireTranspose(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p) {
    auto prim_key = key_ + "@transpose_p";
    auto transpose_p =
        std::static_pointer_cast<mkldnn::reorder>(dev_ctx_.GetBlob(prim_key));
    if (transpose_p == nullptr) {
      transpose_p =
          std::make_shared<mkldnn::reorder>(*(src_memory_p), *(dst_memory_p));
      dev_ctx_.SetBlob(prim_key, transpose_p);
    }
    return transpose_p;
  }

 protected:
A
Adam 已提交
702 703 704 705
  mkldnn::memory::desc Axis2MemoryDesc(std::vector<int64_t>& nchw_tz,  // NOLINT
                                       std::vector<int>& axis          // NOLINT
                                       ) {
    size_t ndims = axis.size();
706

A
Adam 已提交
707
    std::vector<int64_t> strides(ndims);
708
    unsigned int total_stride = 1;
A
Adam 已提交
709 710
    for (int i = ndims - 1; i >= 0; --i) {
      strides[axis[i]] = total_stride;
711 712
      total_stride *= nchw_tz[axis[i]];
    }
A
Adam 已提交
713 714 715 716
    mkldnn::memory::desc mem_d(nchw_tz, platform::MKLDNNGetDataType<T>(),
                               strides);

    return mem_d;
717 718 719
  }

 private:
A
Adam 已提交
720
  std::vector<int64_t> dims_;
721
  std::vector<int> axis_;
722
  std::vector<int> logical_axis_;
723 724
};

725 726
class ReorderMKLDNNHandler : public MKLDNNHandler {
 public:
A
Adam 已提交
727
  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
728 729 730 731 732 733 734 735 736 737
                       framework::proto::VarType::Type vtype,
                       mkldnn::memory::data_type dtype,
                       const platform::MKLDNNDeviceContext& dev_ctx,
                       mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        dims_(dims),
        vtype_(vtype),
        dtype_(dtype) {}

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
738
      const MKLDNNMemoryFormat& fmt, void* ptr) {
739
    return this->AcquireMemory(dims_, dtype_, fmt, ptr, "@user_src_mem_p");
740 741 742
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
743
      framework::Tensor* output, const MKLDNNMemoryFormat& fmt,
744 745 746 747 748 749 750 751 752
      platform::Place place) {
    auto local_key = key_ + "@user_dst_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      auto dst_md = platform::MKLDNNMemDesc(dims_, dtype_, fmt);

      auto dst_data = output->mutable_data(place, vtype_);

A
Adam 已提交
753
      mem_p = std::make_shared<mkldnn::memory>(dst_md, engine_, dst_data);
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      auto dst_data = output->mutable_data(place, vtype_);
      mem_p->set_data_handle(dst_data);
    }
    return mem_p;
  }

  std::shared_ptr<mkldnn::reorder> AcquireReorder(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p) {
    auto prim_key = key_ + "@reorder_p";
    auto reorder_p =
        std::static_pointer_cast<mkldnn::reorder>(dev_ctx_.GetBlob(prim_key));
    if (reorder_p == nullptr) {
      reorder_p =
          std::make_shared<mkldnn::reorder>(*(src_memory_p), *(dst_memory_p));
      dev_ctx_.SetBlob(prim_key, reorder_p);
    }
    return reorder_p;
  }

 private:
A
Adam 已提交
777
  std::vector<int64_t> dims_;
778 779 780 781
  framework::proto::VarType::Type vtype_;
  mkldnn::memory::data_type dtype_;
};

782 783 784 785 786 787 788 789 790 791 792 793 794 795
template <typename T>
struct convolutional_algorithm;

template <>
struct convolutional_algorithm<mkldnn::convolution_forward> {
  static constexpr mkldnn::algorithm T = mkldnn::algorithm::convolution_direct;
};

template <>
struct convolutional_algorithm<mkldnn::deconvolution_forward> {
  static constexpr mkldnn::algorithm T =
      mkldnn::algorithm::deconvolution_direct;
};

J
Jacek Czaja 已提交
796 797 798
template <class forward_t, class backward_data_t, class backward_weights_t>
class ConvMKLDNNTemplateHandler : public MKLDNNHandler {
 public:
799 800 801 802
  ConvMKLDNNTemplateHandler(const platform::MKLDNNDeviceContext& dev_ctx,
                            mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {}

803 804 805 806 807 808 809 810 811
  // TODO(jczaja): remove after conv int8 is adapted
  ConvMKLDNNTemplateHandler(
      std::shared_ptr<typename forward_t::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

J
Jacek Czaja 已提交
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
  ConvMKLDNNTemplateHandler(
      std::shared_ptr<typename forward_t::primitive_desc> conv_pd,
      std::shared_ptr<typename backward_data_t::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<typename backward_weights_t::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

A
Adam 已提交
829
  size_t GetDstMemorySize() const { return conv_pd_->dst_desc().get_size(); }
J
Jacek Czaja 已提交
830

831
  MKLDNNMemoryFormat GetDstFormat() const {
A
Adam 已提交
832
    return paddle::platform::GetMKLDNNFormat(conv_pd_->dst_desc());
J
Jacek Czaja 已提交
833 834 835
  }

  size_t GetDiffWeightsMemorySize() const {
A
Adam 已提交
836
    return conv_bwd_weights_pd_->diff_weights_desc().get_size();
J
Jacek Czaja 已提交
837 838 839
  }

  size_t GetDiffSourceMemorySize() const {
A
Adam 已提交
840
    return conv_bwd_data_pd_->diff_src_desc().get_size();
J
Jacek Czaja 已提交
841 842 843 844 845
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
846 847
    auto src_pd = conv_bwd_weights_pd_->src_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
848 849 850 851 852 853 854
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
855 856
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
857 858 859 860 861 862 863
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
A
Adam 已提交
864
        conv_bwd_weights_pd_->diff_weights_desc(), ptr, "@diff_weights_mem_p");
J
Jacek Czaja 已提交
865 866 867 868 869
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
870 871
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
872 873 874 875 876 877 878
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
879 880
    auto weights_pd = conv_bwd_data_pd_->weights_desc();
    auto user_pd = user_weights_memory_p->get_desc();
J
Jacek Czaja 已提交
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireResidualDataMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_residual_data_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromResidualDataMemory(
      const std::shared_ptr<mkldnn::memory>& user_residual_memory_p,
      void* dst_ptr,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    return this->AcquireMemory(user_residual_memory_p,
                               this->AcquireDstMemoryFromPrimitive(dst_ptr),
                               "@residual_data_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
A
Adam 已提交
901 902
    return this->AcquireMemoryFromPrimitive(conv_bwd_data_pd_->diff_src_desc(),
                                            ptr, "@diff_src_mem_p");
J
Jacek Czaja 已提交
903 904 905
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
A
Adam 已提交
906
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_desc(), ptr,
J
Jacek Czaja 已提交
907 908 909 910 911 912
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
913 914
    auto src_pd = conv_pd_->src_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
915 916 917 918
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

A
Adam 已提交
919 920 921 922 923 924 925 926 927 928 929
  std::shared_ptr<mkldnn::memory> AcquireWeightsMemory(
      const mkldnn::memory::desc& md, void* ptr,
      user_function custom_func = {}) {
    return this->AcquireMemory(md, ptr, "@user_weights_mem_p", custom_func);
  }

  std::shared_ptr<mkldnn::memory> AcquireBiasMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_bias_mem_p");
  }

J
Jacek Czaja 已提交
930 931 932
  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
933 934
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f}, int mask = 0) {
A
Adam 已提交
935 936
    auto user_weights_pd = user_weights_memory_p->get_desc();
    auto weights_pd = conv_pd_->weights_desc();
937 938 939
    return this->AcquireMemory(
        weights_pd, user_weights_pd, user_weights_memory_p, "@weights_mem_p",
        pipeline, is_persistent, is_INT8, scale_data, mask);
J
Jacek Czaja 已提交
940 941 942 943
  }

  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
944 945 946 947
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {  // NOLINT
A
Adam 已提交
948 949
    auto user_bias_pd = user_bias_memory_p->get_desc();
    auto bias_pd = conv_pd_->bias_desc();
J
Jacek Czaja 已提交
950
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
951 952
                               "@bias_mem_p", pipeline, is_persistent, is_INT8,
                               scale_data, mask);
J
Jacek Czaja 已提交
953 954
  }

955
  mkldnn::primitive_attr CreatePostOps(
956 957
      std::string fuse_activation, float fuse_alpha, float fuse_beta,
      bool fuse_residual_conn, const std::vector<float> output_shift_scale = {},
958
      float sum_scale = 1.0f) const {
959 960
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
961 962 963 964
    if (output_shift_scale.size() > 0) {
      int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
      conv_attr.set_output_scales(mask, output_shift_scale);
    }
965 966 967 968 969 970
    // Fusion with Elementwise layer relies on adding a sum post-operation with
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
971
      post_operations.append_sum(sum_scale);
972 973 974
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
975
    if (fuse_activation == "relu" || fuse_activation == "leaky_relu") {
976 977
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
978
                                     fuse_alpha, fuse_beta);
979
    } else if (fuse_activation == "relu6") {
980 981 982
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale,
                                     mkldnn::algorithm::eltwise_bounded_relu,
983
                                     fuse_alpha, fuse_beta);
984 985 986 987
    } else if (fuse_activation == "swish") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_swish,
                                     fuse_alpha, fuse_beta);
988
    }
989 990 991 992 993 994 995 996
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }

  std::shared_ptr<typename forward_t::primitive_desc>
  AcquireConvolutionPrimitiveDescriptor(
      const mkldnn::memory::desc& src, const mkldnn::memory::desc& weights,
      boost::optional<const mkldnn::memory::desc&> bias,
A
Adam 已提交
997 998
      const mkldnn::memory::desc& dst, const std::vector<int64_t>& strides,
      const std::vector<int64_t>& paddings, const mkldnn::engine& engine,
999 1000
      const std::string& fuse_activation, float fuse_alpha, float fuse_beta,
      const bool fuse_residual_conn, mkldnn::prop_kind fwd_prop_kind,
1001 1002
      const std::vector<float> output_shift_scale = {},
      const float sum_scale = 1.0f) {
1003 1004 1005 1006
    // Conv PD has to be passed to Grad op that
    // may be exxecuted by diffrent thread, hence
    // for that one we use key that does not contain TID
    const std::string key_conv_pd = key_common_ + "@conv_pd";
1007

1008
    conv_pd_ = std::static_pointer_cast<typename forward_t::primitive_desc>(
1009 1010
        dev_ctx_.GetBlob(key_conv_pd));

1011 1012 1013 1014 1015 1016 1017 1018 1019
    if (conv_pd_ == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);

      conv_pd_ = std::static_pointer_cast<typename forward_t::primitive_desc>(
          dev_ctx_.GetBlob(key_conv_pd));
      if (conv_pd_ == nullptr) {
        mkldnn::memory::dims stride_dims = strides;
1020 1021

        auto mkldnn_paddings = ToMkldnnPadding(paddings);
1022 1023

        auto conv_desc =
A
Adam 已提交
1024 1025 1026 1027 1028 1029 1030 1031
            bias ? typename forward_t::desc(
                       fwd_prop_kind, convolutional_algorithm<forward_t>::T,
                       src, weights, *bias, dst, stride_dims,
                       mkldnn_paddings[0], mkldnn_paddings[1])
                 : typename forward_t::desc(
                       fwd_prop_kind, convolutional_algorithm<forward_t>::T,
                       src, weights, dst, stride_dims, mkldnn_paddings[0],
                       mkldnn_paddings[1]);
1032

1033
        mkldnn::primitive_attr conv_attr =
1034 1035
            CreatePostOps(fuse_activation, fuse_alpha, fuse_beta,
                          fuse_residual_conn, output_shift_scale, sum_scale);
1036 1037 1038 1039 1040 1041

        conv_pd_.reset(new typename forward_t::primitive_desc(
            conv_desc, conv_attr, engine));
        // Save conv_pd/src_memory/weights_memory for backward pass
        dev_ctx_.SetBlob(key_conv_pd, conv_pd_);
      }
1042 1043 1044 1045 1046
    }

    return conv_pd_;
  }

A
Adam 已提交
1047
  std::shared_ptr<forward_t> AcquireConvolution() {
J
Jacek Czaja 已提交
1048 1049 1050 1051
    auto prim_key = key_ + "@conv_p";
    auto conv_p =
        std::static_pointer_cast<forward_t>(dev_ctx_.GetBlob(prim_key));
    if (conv_p == nullptr) {
A
Adam 已提交
1052
      conv_p = std::make_shared<forward_t>(*conv_pd_);
J
Jacek Czaja 已提交
1053 1054 1055 1056 1057 1058

      dev_ctx_.SetBlob(prim_key, conv_p);
    }
    return conv_p;
  }

A
Adam 已提交
1059
  std::shared_ptr<backward_weights_t> AcquireConvolutionBackwardWeights() {
J
Jacek Czaja 已提交
1060 1061 1062 1063 1064
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p = std::static_pointer_cast<backward_weights_t>(
        dev_ctx_.GetBlob(prim_key));
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
A
Adam 已提交
1065 1066
      conv_bwd_weights_p =
          std::make_shared<backward_weights_t>(*conv_bwd_weights_pd_);
J
Jacek Czaja 已提交
1067 1068 1069 1070 1071
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    }
    return conv_bwd_weights_p;
  }

A
Adam 已提交
1072
  std::shared_ptr<backward_data_t> AcquireConvolutionBackwardData() {
J
Jacek Czaja 已提交
1073 1074 1075 1076
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<backward_data_t>(dev_ctx_.GetBlob(prim_key));
    if (conv_bwd_data_p == nullptr) {
A
Adam 已提交
1077
      conv_bwd_data_p = std::make_shared<backward_data_t>(*conv_bwd_data_pd_);
J
Jacek Czaja 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    }
    return conv_bwd_data_p;
  }

 private:
  std::shared_ptr<typename forward_t::primitive_desc> conv_pd_;
  std::shared_ptr<typename backward_weights_t::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<typename backward_data_t::primitive_desc> conv_bwd_data_pd_;
};

using ConvMKLDNNHandler =
    ConvMKLDNNTemplateHandler<mkldnn::convolution_forward,
                              mkldnn::convolution_backward_data,
                              mkldnn::convolution_backward_weights>;

using ConvTransposeMKLDNNHandler =
    ConvMKLDNNTemplateHandler<mkldnn::deconvolution_forward,
                              mkldnn::deconvolution_backward_data,
                              mkldnn::deconvolution_backward_weights>;
1099

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
template <typename T>
static std::shared_ptr<mkldnn::memory> SetDstMemory(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const std::shared_ptr<ConvMKLDNNHandler>& handler) {
  T* output_data =
      output->mutable_data<T>(ctx.GetPlace(), handler->GetDstMemorySize());
  std::shared_ptr<mkldnn::memory> dst_memory_p =
      handler->AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
  return dst_memory_p;
}

template <typename T>
static std::shared_ptr<mkldnn::memory> SetDstMemory(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const framework::Tensor* residual_param,
    const mkldnn::memory::desc& user_residual_md,
    const std::shared_ptr<ConvMKLDNNHandler>& handler,
    std::vector<mkldnn::primitive>* pipeline) {
  const T* residual_param_data = residual_param->data<T>();
  PADDLE_ENFORCE(residual_param_data != nullptr,
                 "Provide data if you want MKLDNN conv+elementwise_add fusion");
  std::shared_ptr<mkldnn::memory> user_residual_memory_p =
      handler->AcquireResidualDataMemory(user_residual_md,
                                         to_void_cast<T>(residual_param_data));
  T* output_data = output->mutable_data<T>(ctx.GetPlace());
  std::shared_ptr<mkldnn::memory> dst_memory_p =
      handler->AcquireDstMemoryFromResidualDataMemory(
          user_residual_memory_p, to_void_cast<T>(output_data), *pipeline);
  return dst_memory_p;
}

template <typename T>
static void SetDstMemoryHandler(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const std::shared_ptr<ConvMKLDNNHandler>& handler,
    std::shared_ptr<mkldnn::memory> dst_memory_p) {
  T* output_data =
      output->mutable_data<T>(ctx.GetPlace(), handler->GetDstMemorySize());
  dst_memory_p->set_data_handle(to_void_cast<T>(output_data));
}

1141 1142 1143
template <typename T>
static void SetDstMemoryQuantized(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
A
Adam 已提交
1144 1145
    std::vector<int64_t> dst_tz, const mkldnn::engine& engine,
    std::shared_ptr<mkldnn::memory::desc>& dst_md,  // NOLINT
1146 1147
    std::shared_ptr<mkldnn::memory>& dst_memory,    // NOLINT
    MKLDNNMemoryFormat output_format) {
1148 1149
  T* output_data = output->mutable_data<T>(ctx.GetPlace());
  const size_t dst_dims = dst_tz.size();
1150 1151 1152
  MKLDNNMemoryFormat dst_fmt;
  PADDLE_ENFORCE_LE(dst_dims, 5,
                    "Dst memory for quantization can not have dims > 5");
1153
  dst_fmt = platform::MKLDNNFormatForSize(dst_dims, output_format);
1154

A
Adam 已提交
1155
  auto tmp_dst_md = platform::MKLDNNMemDesc(
1156
      {dst_tz}, paddle::framework::ToMKLDNNDataType(
1157
                    framework::DataTypeTrait<T>::DataType()),
1158
      dst_fmt);
A
Adam 已提交
1159 1160 1161
  dst_md.reset(new mkldnn::memory::desc(tmp_dst_md));
  dst_memory.reset(
      new mkldnn::memory(*dst_md, engine, to_void_cast<T>(output_data)));
1162 1163
}

J
Jacek Czaja 已提交
1164 1165
}  // namespace platform
}  // namespace paddle