memory_sparse_table.cc 24.3 KB
Newer Older
Z
zhaocaibei123 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <omp.h>
Z
zhaocaibei123 已提交
16 17
#include <sstream>

18
#include "paddle/fluid/distributed/common/cost_timer.h"
19
#include "paddle/fluid/distributed/ps/table/memory_sparse_table.h"
Z
zhaocaibei123 已提交
20 21 22 23 24 25 26 27 28 29
#include "paddle/fluid/framework/io/fs.h"

#include "boost/lexical_cast.hpp"
#include "glog/logging.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace distributed {

// TODO(zhaocaibei123): configure
30
bool FLAGS_pserver_create_value_when_push = true;
31 32
int FLAGS_pserver_table_save_max_retry = 3;
bool FLAGS_pserver_enable_create_feasign_randomly = false;
Z
zhaocaibei123 已提交
33 34

int32_t MemorySparseTable::initialize() {
35 36 37
  _shards_task_pool.resize(_task_pool_size);
  for (int i = 0; i < _shards_task_pool.size(); ++i) {
    _shards_task_pool[i].reset(new ::ThreadPool(1));
Z
zhaocaibei123 已提交
38
  }
39 40 41
  auto& profiler = CostProfiler::instance();
  profiler.register_profiler("pserver_sparse_update_all");
  profiler.register_profiler("pserver_sparse_select_all");
Z
zhaocaibei123 已提交
42 43 44 45 46 47
  initialize_value();
  VLOG(0) << "initalize MemorySparseTable succ";
  return 0;
}

int32_t MemorySparseTable::initialize_value() {
48 49 50 51 52 53 54 55 56
  _sparse_table_shard_num = static_cast<int>(_config.shard_num());
  _avg_local_shard_num =
      SparseTable::sparse_local_shard_num(_sparse_table_shard_num, _shard_num);
  _real_local_shard_num = _avg_local_shard_num;
  if (_real_local_shard_num * (_shard_idx + 1) > _sparse_table_shard_num) {
    _real_local_shard_num =
        _sparse_table_shard_num - _real_local_shard_num * _shard_idx;
    _real_local_shard_num =
        _real_local_shard_num < 0 ? 0 : _real_local_shard_num;
Z
zhaocaibei123 已提交
57
  }
58 59 60
  VLOG(1) << "memory sparse table _avg_local_shard_num: "
          << _avg_local_shard_num
          << " _real_local_shard_num: " << _real_local_shard_num;
Z
zhaocaibei123 已提交
61

62
  _local_shards.reset(new shard_type[_real_local_shard_num]);
Z
zhaocaibei123 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

  return 0;
}

int32_t MemorySparseTable::load(const std::string& path,
                                const std::string& param) {
  std::string table_path = table_dir(path);
  auto file_list = _afs_client.list(table_path);

  std::sort(file_list.begin(), file_list.end());
  for (auto file : file_list) {
    VLOG(1) << "MemorySparseTable::load() file list: " << file;
  }

  int load_param = atoi(param.c_str());
78
  auto expect_shard_num = _sparse_table_shard_num;
Z
zhaocaibei123 已提交
79 80 81 82 83 84 85 86 87 88
  if (file_list.size() != expect_shard_num) {
    LOG(WARNING) << "MemorySparseTable file_size:" << file_list.size()
                 << " not equal to expect_shard_num:" << expect_shard_num;
    return -1;
  }
  if (file_list.size() == 0) {
    LOG(WARNING) << "MemorySparseTable load file is empty, path:" << path;
    return -1;
  }

89
  size_t file_start_idx = _shard_idx * _avg_local_shard_num;
Z
zhaocaibei123 已提交
90 91

  size_t feature_value_size = _value_accesor->size() / sizeof(float);
92 93 94 95 96

  int thread_num = _real_local_shard_num < 15 ? _real_local_shard_num : 15;
  omp_set_num_threads(thread_num);
#pragma omp parallel for schedule(dynamic)
  for (size_t i = 0; i < _real_local_shard_num; ++i) {
Z
zhaocaibei123 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    FsChannelConfig channel_config;
    channel_config.path = file_list[file_start_idx + i];
    VLOG(1) << "MemorySparseTable::load begin load " << channel_config.path
            << " into local shard " << i;
    channel_config.converter = _value_accesor->converter(load_param).converter;
    channel_config.deconverter =
        _value_accesor->converter(load_param).deconverter;

    bool is_read_failed = false;
    int retry_num = 0;
    int err_no = 0;
    do {
      is_read_failed = false;
      err_no = 0;
      std::string line_data;
      auto read_channel = _afs_client.open_r(channel_config, 0, &err_no);
      char* end = NULL;
114
      auto& shard = _local_shards[i];
Z
zhaocaibei123 已提交
115 116 117 118
      try {
        while (read_channel->read_line(line_data) == 0 &&
               line_data.size() > 1) {
          uint64_t key = std::strtoul(line_data.data(), &end, 10);
119 120
          auto& value = shard[key];
          value.resize(feature_value_size);
Z
zhaocaibei123 已提交
121
          int parse_size =
122 123
              _value_accesor->parse_from_string(++end, value.data());
          value.resize(parse_size);
Z
zhaocaibei123 已提交
124 125 126 127

          // for debug
          for (int ii = 0; ii < parse_size; ++ii) {
            VLOG(2) << "MemorySparseTable::load key: " << key << " value " << ii
128
                    << ": " << value.data()[ii] << " local_shard: " << i;
Z
zhaocaibei123 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
          }
        }
        read_channel->close();
        if (err_no == -1) {
          ++retry_num;
          is_read_failed = true;
          LOG(ERROR)
              << "MemorySparseTable load failed after read, retry it! path:"
              << channel_config.path << " , retry_num=" << retry_num;
        }
      } catch (...) {
        ++retry_num;
        is_read_failed = true;
        LOG(ERROR) << "MemorySparseTable load failed, retry it! path:"
                   << channel_config.path << " , retry_num=" << retry_num;
      }
145
      if (retry_num > paddle::distributed::FLAGS_pserver_table_save_max_retry) {
Z
zhaocaibei123 已提交
146 147 148 149 150 151 152
        LOG(ERROR) << "MemorySparseTable load failed reach max limit!";
        exit(-1);
      }
    } while (is_read_failed);
  }
  LOG(INFO) << "MemorySparseTable load success, path from "
            << file_list[file_start_idx] << " to "
153
            << file_list[file_start_idx + _real_local_shard_num - 1];
Z
zhaocaibei123 已提交
154 155 156 157 158 159 160 161 162
  return 0;
}

int32_t MemorySparseTable::load_local_fs(const std::string& path,
                                         const std::string& param) {
  std::string table_path = table_dir(path);
  auto file_list = paddle::framework::localfs_list(table_path);

  int load_param = atoi(param.c_str());
163
  auto expect_shard_num = _sparse_table_shard_num;
Z
zhaocaibei123 已提交
164 165 166 167 168 169 170 171 172 173
  if (file_list.size() != expect_shard_num) {
    LOG(WARNING) << "MemorySparseTable file_size:" << file_list.size()
                 << " not equal to expect_shard_num:" << expect_shard_num;
    return -1;
  }
  if (file_list.size() == 0) {
    LOG(WARNING) << "MemorySparseTable load file is empty, path:" << path;
    return -1;
  }

174
  size_t file_start_idx = _shard_idx * _avg_local_shard_num;
Z
zhaocaibei123 已提交
175 176 177

  size_t feature_value_size = _value_accesor->size() / sizeof(float);

178 179 180 181
  int thread_num = _real_local_shard_num < 15 ? _real_local_shard_num : 15;
  omp_set_num_threads(thread_num);
#pragma omp parallel for schedule(dynamic)
  for (size_t i = 0; i < _real_local_shard_num; ++i) {
Z
zhaocaibei123 已提交
182 183 184 185 186 187 188 189 190
    bool is_read_failed = false;
    int retry_num = 0;
    int err_no = 0;
    do {
      is_read_failed = false;
      err_no = 0;
      std::string line_data;
      std::ifstream file(file_list[file_start_idx + i]);
      char* end = NULL;
191
      auto& shard = _local_shards[i];
Z
zhaocaibei123 已提交
192 193 194
      try {
        while (std::getline(file, line_data) && line_data.size() > 1) {
          uint64_t key = std::strtoul(line_data.data(), &end, 10);
195 196
          auto& value = shard[key];
          value.resize(feature_value_size);
Z
zhaocaibei123 已提交
197
          int parse_size =
198 199
              _value_accesor->parse_from_string(++end, value.data());
          value.resize(parse_size);
Z
zhaocaibei123 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
        }
        file.close();
        if (err_no == -1) {
          ++retry_num;
          is_read_failed = true;
          LOG(ERROR)
              << "MemorySparseTable load failed after read, retry it! path:"
              << file_list[file_start_idx + i] << " , retry_num=" << retry_num;
        }
      } catch (...) {
        ++retry_num;
        is_read_failed = true;
        LOG(ERROR) << "MemorySparseTable load failed, retry it! path:"
                   << file_list[file_start_idx + i]
                   << " , retry_num=" << retry_num;
      }
216
      if (retry_num > paddle::distributed::FLAGS_pserver_table_save_max_retry) {
Z
zhaocaibei123 已提交
217 218 219 220 221 222 223
        LOG(ERROR) << "MemorySparseTable load failed reach max limit!";
        exit(-1);
      }
    } while (is_read_failed);
  }
  LOG(INFO) << "MemorySparseTable load success, path from "
            << file_list[file_start_idx] << " to "
224
            << file_list[file_start_idx + _real_local_shard_num - 1];
Z
zhaocaibei123 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237
  return 0;
}

int32_t MemorySparseTable::save(const std::string& dirname,
                                const std::string& param) {
  VLOG(0) << "MemorySparseTable::save dirname: " << dirname;
  int save_param =
      atoi(param.c_str());  // checkpoint:0  xbox delta:1  xbox base:2
  std::string table_path = table_dir(dirname);
  _afs_client.remove(paddle::string::format_string(
      "%s/part-%03d-*", table_path.c_str(), _shard_idx));
  std::atomic<uint32_t> feasign_size_all{0};

238
  size_t file_start_idx = _avg_local_shard_num * _shard_idx;
Z
zhaocaibei123 已提交
239

240 241 242 243
  int thread_num = _real_local_shard_num < 20 ? _real_local_shard_num : 20;
  omp_set_num_threads(thread_num);
#pragma omp parallel for schedule(dynamic)
  for (size_t i = 0; i < _real_local_shard_num; ++i) {
Z
zhaocaibei123 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    FsChannelConfig channel_config;
    if (_config.compress_in_save() && (save_param == 0 || save_param == 3)) {
      channel_config.path = paddle::string::format_string(
          "%s/part-%03d-%05d.gz", table_path.c_str(), _shard_idx,
          file_start_idx + i);
    } else {
      channel_config.path =
          paddle::string::format_string("%s/part-%03d-%05d", table_path.c_str(),
                                        _shard_idx, file_start_idx + i);
    }
    channel_config.converter = _value_accesor->converter(save_param).converter;
    channel_config.deconverter =
        _value_accesor->converter(save_param).deconverter;
    bool is_write_failed = false;
    int feasign_size = 0;
    int retry_num = 0;
    int err_no = 0;
261
    auto& shard = _local_shards[i];
Z
zhaocaibei123 已提交
262 263 264 265 266 267
    do {
      err_no = 0;
      feasign_size = 0;
      is_write_failed = false;
      auto write_channel =
          _afs_client.open_w(channel_config, 1024 * 1024 * 40, &err_no);
268 269 270 271 272 273 274 275 276 277 278 279 280
      for (auto it = shard.begin(); it != shard.end(); ++it) {
        if (_value_accesor->save(it.value().data(), save_param)) {
          std::string format_value = _value_accesor->parse_to_string(
              it.value().data(), it.value().size());
          if (0 !=
              write_channel->write_line(paddle::string::format_string(
                  "%lu %s", it.key(), format_value.c_str()))) {
            ++retry_num;
            is_write_failed = true;
            LOG(ERROR)
                << "MemorySparseTable save prefix failed, retry it! path:"
                << channel_config.path << " , retry_num=" << retry_num;
            break;
Z
zhaocaibei123 已提交
281
          }
282
          ++feasign_size;
Z
zhaocaibei123 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295
        }
      }
      write_channel->close();
      if (err_no == -1) {
        ++retry_num;
        is_write_failed = true;
        LOG(ERROR)
            << "MemorySparseTable save prefix failed after write, retry it! "
            << "path:" << channel_config.path << " , retry_num=" << retry_num;
      }
      if (is_write_failed) {
        _afs_client.remove(channel_config.path);
      }
296
      if (retry_num > paddle::distributed::FLAGS_pserver_table_save_max_retry) {
Z
zhaocaibei123 已提交
297 298 299 300 301
        LOG(ERROR) << "MemorySparseTable save prefix failed reach max limit!";
        exit(-1);
      }
    } while (is_write_failed);
    feasign_size_all += feasign_size;
302 303
    for (auto it = shard.begin(); it != shard.end(); ++it) {
      _value_accesor->update_stat_after_save(it.value().data(), save_param);
Z
zhaocaibei123 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
    }
    LOG(INFO) << "MemorySparseTable save prefix success, path: "
              << channel_config.path;
  }
  // int32 may overflow need to change return value
  return 0;
}

int32_t MemorySparseTable::save_local_fs(const std::string& dirname,
                                         const std::string& param,
                                         const std::string& prefix) {
  int save_param =
      atoi(param.c_str());  // checkpoint:0  xbox delta:1  xbox base:2
  std::string table_path = table_dir(dirname);
  int feasign_cnt = 0;
319 320 321 322 323 324 325 326
  size_t file_start_idx = _avg_local_shard_num * _shard_idx;

  int thread_num = _real_local_shard_num < 20 ? _real_local_shard_num : 20;
  std::atomic<uint32_t> feasign_size_all{0};

  omp_set_num_threads(thread_num);
#pragma omp parallel for schedule(dynamic)
  for (size_t i = 0; i < _real_local_shard_num; ++i) {
Z
zhaocaibei123 已提交
327
    feasign_cnt = 0;
328
    auto& shard = _local_shards[i];
Z
zhaocaibei123 已提交
329 330 331 332 333
    std::string file_name = paddle::string::format_string(
        "%s/part-%s-%03d-%05d", table_path.c_str(), prefix.c_str(), _shard_idx,
        file_start_idx + i);
    std::ofstream os;
    os.open(file_name);
334 335 336 337 338 339 340 341 342
    for (auto it = shard.begin(); it != shard.end(); ++it) {
      if (_value_accesor->save(it.value().data(), save_param)) {
        std::string format_value = _value_accesor->parse_to_string(
            it.value().data(), it.value().size());
        std::string out_line = paddle::string::format_string(
            "%lu %s\n", it.key(), format_value.c_str());
        // VLOG(2) << out_line.c_str();
        os.write(out_line.c_str(), sizeof(char) * out_line.size());
        ++feasign_cnt;
Z
zhaocaibei123 已提交
343 344 345 346 347 348 349 350 351
      }
    }
    os.close();
    LOG(INFO) << "MemorySparseTable save prefix success, path:" << file_name
              << "feasign_cnt: " << feasign_cnt;
  }
  return 0;
}

352 353 354 355 356 357 358
int64_t MemorySparseTable::local_size() {
  int64_t local_size = 0;
  for (size_t i = 0; i < _real_local_shard_num; ++i) {
    local_size += _local_shards[i].size();
  }
  return local_size;
}
Z
zhaocaibei123 已提交
359

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
int64_t MemorySparseTable::local_mf_size() {
  std::vector<int64_t> size_arr(_real_local_shard_num, 0);
  std::vector<std::future<int>> tasks(_real_local_shard_num);
  int64_t ret_size = 0;
  for (size_t shard_id = 0; shard_id < _real_local_shard_num; ++shard_id) {
    tasks[shard_id] =
        _shards_task_pool[shard_id % _shards_task_pool.size()]->enqueue(
            [this, shard_id, &size_arr]() -> int {
              auto& local_shard = _local_shards[shard_id];
              for (auto it = local_shard.begin(); it != local_shard.end();
                   ++it) {
                if (_value_accesor->has_mf(it.value().size())) {
                  size_arr[shard_id] += 1;
                }
              }
              return 0;
            });
  }
  for (size_t i = 0; i < _real_local_shard_num; ++i) {
    tasks[i].wait();
  }
  for (auto x : size_arr) {
    ret_size += x;
Z
zhaocaibei123 已提交
383
  }
384 385
  return ret_size;
}
Z
zhaocaibei123 已提交
386

387 388 389
std::pair<int64_t, int64_t> MemorySparseTable::print_table_stat() {
  int64_t feasign_size = local_size();
  int64_t mf_size = local_mf_size();
Z
zhaocaibei123 已提交
390 391 392 393 394
  return {feasign_size, mf_size};
}

int32_t MemorySparseTable::pull_sparse(float* pull_values,
                                       const PullSparseValue& pull_value) {
395 396
  CostTimer timer("pserver_sparse_select_all");
  std::vector<std::future<int>> tasks(_real_local_shard_num);
Z
zhaocaibei123 已提交
397 398 399 400 401 402 403

  const size_t value_size = _value_accesor->size() / sizeof(float);
  size_t mf_value_size = _value_accesor->mf_size() / sizeof(float);
  size_t select_value_size = _value_accesor->select_size() / sizeof(float);
  // std::atomic<uint32_t> missed_keys{0};

  std::vector<std::vector<std::pair<uint64_t, int>>> task_keys(
404
      _real_local_shard_num);
Z
zhaocaibei123 已提交
405 406
  size_t num = pull_value.numel_;
  for (size_t i = 0; i < num; ++i) {
407 408
    int shard_id = (pull_value.feasigns_[i] % _sparse_table_shard_num) %
                   _avg_local_shard_num;
Z
zhaocaibei123 已提交
409 410
    task_keys[shard_id].push_back({pull_value.feasigns_[i], i});
  }
411
  for (int shard_id = 0; shard_id < _real_local_shard_num; ++shard_id) {
Z
zhaocaibei123 已提交
412
    tasks[shard_id] =
413
        _shards_task_pool[shard_id % _shards_task_pool.size()]->enqueue(
Z
zhaocaibei123 已提交
414 415
            [this, shard_id, &task_keys, value_size, pull_values, mf_value_size,
             select_value_size]() -> int {
416
              auto& local_shard = _local_shards[shard_id];
Z
zhaocaibei123 已提交
417 418 419 420 421 422
              float data_buffer[value_size];  // NOLINT
              float* data_buffer_ptr = data_buffer;

              auto& keys = task_keys[shard_id];
              for (size_t i = 0; i < keys.size(); i++) {
                uint64_t key = keys[i].first;
423
                auto itr = local_shard.find(key);
Z
zhaocaibei123 已提交
424
                size_t data_size = value_size - mf_value_size;
425
                if (itr == local_shard.end()) {
Z
zhaocaibei123 已提交
426
                  // ++missed_keys;
427
                  if (FLAGS_pserver_create_value_when_push) {
Z
zhaocaibei123 已提交
428 429
                    memset(data_buffer, 0, sizeof(float) * data_size);
                  } else {
430 431 432
                    auto& feature_value = local_shard[key];
                    feature_value.resize(data_size);
                    float* data_ptr = feature_value.data();
Z
zhaocaibei123 已提交
433 434 435 436 437
                    _value_accesor->create(&data_buffer_ptr, 1);
                    memcpy(data_ptr, data_buffer_ptr,
                           data_size * sizeof(float));
                  }
                } else {
438 439
                  data_size = itr.value().size();
                  memcpy(data_buffer_ptr, itr.value().data(),
Z
zhaocaibei123 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
                         data_size * sizeof(float));
                }
                for (int mf_idx = data_size; mf_idx < value_size; ++mf_idx) {
                  data_buffer[mf_idx] = 0.0;
                }
                auto offset = keys[i].second;
                float* select_data = pull_values + select_value_size * offset;
                _value_accesor->select(&select_data,
                                       (const float**)&data_buffer_ptr, 1);
              }

              return 0;
            });
  }

  for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
    tasks[shard_id].wait();
  }

  return 0;
}

int32_t MemorySparseTable::pull_sparse_ptr(char** pull_values,
                                           const uint64_t* keys, size_t num) {
  return 0;
}

int32_t MemorySparseTable::push_sparse(const uint64_t* keys,
                                       const float* values, size_t num) {
469 470
  CostTimer timer("pserver_sparse_update_all");
  std::vector<std::future<int>> tasks(_real_local_shard_num);
Z
zhaocaibei123 已提交
471
  std::vector<std::vector<std::pair<uint64_t, int>>> task_keys(
472
      _real_local_shard_num);
Z
zhaocaibei123 已提交
473
  for (size_t i = 0; i < num; ++i) {
474
    int shard_id = (keys[i] % _sparse_table_shard_num) % _avg_local_shard_num;
Z
zhaocaibei123 已提交
475 476 477 478 479 480 481
    task_keys[shard_id].push_back({keys[i], i});
  }

  const size_t value_col = _value_accesor->size() / sizeof(float);
  size_t mf_value_col = _value_accesor->mf_size() / sizeof(float);
  size_t update_value_col = _value_accesor->update_size() / sizeof(float);

482 483
  for (size_t shard_id = 0; shard_id < _real_local_shard_num; ++shard_id) {
    tasks[shard_id] = _shards_task_pool[shard_id % _task_pool_size]->enqueue(
Z
zhaocaibei123 已提交
484 485 486
        [this, shard_id, value_col, mf_value_col, update_value_col, values,
         &task_keys]() -> int {
          auto& keys = task_keys[shard_id];
487
          auto& local_shard = _local_shards[shard_id];
Z
zhaocaibei123 已提交
488 489 490 491 492 493 494
          float data_buffer[value_col];  // NOLINT
          float* data_buffer_ptr = data_buffer;
          for (int i = 0; i < keys.size(); ++i) {
            uint64_t key = keys[i].first;
            uint64_t push_data_idx = keys[i].second;
            const float* update_data =
                values + push_data_idx * update_value_col;
495 496 497
            auto itr = local_shard.find(key);
            if (itr == local_shard.end()) {
              if (FLAGS_pserver_enable_create_feasign_randomly &&
Z
zhaocaibei123 已提交
498 499 500 501
                  !_value_accesor->create_value(1, update_data)) {
                continue;
              }
              auto value_size = value_col - mf_value_col;
502 503
              auto& feature_value = local_shard[key];
              feature_value.resize(value_size);
Z
zhaocaibei123 已提交
504
              _value_accesor->create(&data_buffer_ptr, 1);
505
              memcpy(feature_value.data(), data_buffer_ptr,
Z
zhaocaibei123 已提交
506
                     value_size * sizeof(float));
507
              itr = local_shard.find(key);
Z
zhaocaibei123 已提交
508 509
            }

510 511 512
            auto& feature_value = itr.value();
            float* value_data = feature_value.data();
            size_t value_size = feature_value.size();
Z
zhaocaibei123 已提交
513 514 515 516 517 518 519 520 521

            if (value_size == value_col) {  // 已拓展到最大size, 则就地update
              _value_accesor->update(&value_data, &update_data, 1);
            } else {
              // 拷入buffer区进行update,然后再回填,不需要的mf则回填时抛弃了
              memcpy(data_buffer_ptr, value_data, value_size * sizeof(float));
              _value_accesor->update(&data_buffer_ptr, &update_data, 1);

              if (_value_accesor->need_extend_mf(data_buffer)) {
522 523
                feature_value.resize(value_col);
                value_data = feature_value.data();
Z
zhaocaibei123 已提交
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
                _value_accesor->create(&value_data, 1);
              }
              memcpy(value_data, data_buffer_ptr, value_size * sizeof(float));
            }
          }
          return 0;
        });
  }

  for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
    tasks[shard_id].wait();
  }
  return 0;
}

int32_t MemorySparseTable::push_sparse(const uint64_t* keys,
                                       const float** values, size_t num) {
  _push_sparse(keys, values, num);
  return 0;
}

int32_t MemorySparseTable::_push_sparse(const uint64_t* keys,
                                        const float** values, size_t num) {
547
  std::vector<std::future<int>> tasks(_real_local_shard_num);
Z
zhaocaibei123 已提交
548
  std::vector<std::vector<std::pair<uint64_t, int>>> task_keys(
549
      _real_local_shard_num);
Z
zhaocaibei123 已提交
550
  for (size_t i = 0; i < num; ++i) {
551
    int shard_id = (keys[i] % _sparse_table_shard_num) % _avg_local_shard_num;
Z
zhaocaibei123 已提交
552 553 554 555 556 557 558
    task_keys[shard_id].push_back({keys[i], i});
  }

  size_t value_col = _value_accesor->size() / sizeof(float);
  size_t mf_value_col = _value_accesor->mf_size() / sizeof(float);
  size_t update_value_col = _value_accesor->update_size() / sizeof(float);

559 560
  for (int shard_id = 0; shard_id < _real_local_shard_num; ++shard_id) {
    tasks[shard_id] = _shards_task_pool[shard_id % _task_pool_size]->enqueue(
Z
zhaocaibei123 已提交
561 562 563
        [this, shard_id, value_col, mf_value_col, update_value_col, values,
         &task_keys]() -> int {
          auto& keys = task_keys[shard_id];
564
          auto& local_shard = _local_shards[shard_id];
Z
zhaocaibei123 已提交
565 566 567 568 569 570
          float data_buffer[value_col];  // NOLINT
          float* data_buffer_ptr = data_buffer;
          for (int i = 0; i < keys.size(); ++i) {
            uint64_t key = keys[i].first;
            uint64_t push_data_idx = keys[i].second;
            const float* update_data = values[push_data_idx];
571 572 573
            auto itr = local_shard.find(key);
            if (itr == local_shard.end()) {
              if (FLAGS_pserver_enable_create_feasign_randomly &&
Z
zhaocaibei123 已提交
574 575 576 577
                  !_value_accesor->create_value(1, update_data)) {
                continue;
              }
              auto value_size = value_col - mf_value_col;
578 579
              auto& feature_value = local_shard[key];
              feature_value.resize(value_size);
Z
zhaocaibei123 已提交
580
              _value_accesor->create(&data_buffer_ptr, 1);
581
              memcpy(feature_value.data(), data_buffer_ptr,
Z
zhaocaibei123 已提交
582
                     value_size * sizeof(float));
583
              itr = local_shard.find(key);
Z
zhaocaibei123 已提交
584
            }
585 586 587
            auto& feature_value = itr.value();
            float* value_data = feature_value.data();
            size_t value_size = feature_value.size();
Z
zhaocaibei123 已提交
588 589 590 591 592 593 594
            if (value_size == value_col) {  // 已拓展到最大size, 则就地update
              _value_accesor->update(&value_data, &update_data, 1);
            } else {
              // 拷入buffer区进行update,然后再回填,不需要的mf则回填时抛弃了
              memcpy(data_buffer_ptr, value_data, value_size * sizeof(float));
              _value_accesor->update(&data_buffer_ptr, &update_data, 1);
              if (_value_accesor->need_extend_mf(data_buffer)) {
595 596
                feature_value.resize(value_col);
                value_data = feature_value.data();
Z
zhaocaibei123 已提交
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
                _value_accesor->create(&value_data, 1);
              }
              memcpy(value_data, data_buffer_ptr, value_size * sizeof(float));
            }
          }
          return 0;
        });
  }

  for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
    tasks[shard_id].wait();
  }
  return 0;
}

int32_t MemorySparseTable::flush() { return 0; }

int32_t MemorySparseTable::shrink(const std::string& param) {
  VLOG(0) << "MemorySparseTable::shrink";
  // TODO(zhaocaibei123): implement with multi-thread
617
  for (int shard_id = 0; shard_id < _real_local_shard_num; ++shard_id) {
Z
zhaocaibei123 已提交
618
    // shrink
619 620 621 622 623 624
    auto& shard = _local_shards[shard_id];
    for (auto it = shard.begin(); it != shard.end();) {
      if (_value_accesor->shrink(it.value().data())) {
        it = shard.erase(it);
      } else {
        ++it;
Z
zhaocaibei123 已提交
625 626 627 628 629 630 631 632 633 634
      }
    }
  }
  return 0;
}

void MemorySparseTable::clear() { VLOG(0) << "clear coming soon"; }

}  // namespace distributed
}  // namespace paddle