yolov3_loss_op.cc 5.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/yolov3_loss_op.h"
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class Yolov3LossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of Yolov3LossOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("GTBox"),
                   "Input(GTBox) of Yolov3LossOp should not be null.");
D
dengkaipeng 已提交
30 31
    PADDLE_ENFORCE(ctx->HasOutput("Loss"),
                   "Output(Loss) of Yolov3LossOp should not be null.");
32 33 34 35 36 37

    auto dim_x = ctx->GetInputDim("X");
    auto dim_gt = ctx->GetInputDim("GTBox");
    auto img_height = ctx->Attrs().Get<int>("img_height");
    auto anchors = ctx->Attrs().Get<std::vector<int>>("anchors");
    auto class_num = ctx->Attrs().Get<int>("class_num");
D
dengkaipeng 已提交
38 39 40 41 42 43 44 45
    PADDLE_ENFORCE_EQ(dim_x.size(), 4, "Input(X) should be a 4-D tensor.");
    PADDLE_ENFORCE_EQ(dim_x[2], dim_x[3],
                      "Input(X) dim[3] and dim[4] should be euqal.");
    PADDLE_ENFORCE_EQ(dim_x[1], anchors.size() / 2 * (5 + class_num),
                      "Input(X) dim[1] should be equal to (anchor_number * (5 "
                      "+ class_num)).");
    PADDLE_ENFORCE_EQ(dim_gt.size(), 3, "Input(GTBox) should be a 3-D tensor");
    PADDLE_ENFORCE_EQ(dim_gt[2], 5, "Input(GTBox) dim[2] should be 5");
46 47 48 49 50 51 52 53 54
    PADDLE_ENFORCE_GT(img_height, 0,
                      "Attr(img_height) value should be greater then 0");
    PADDLE_ENFORCE_GT(anchors.size(), 0,
                      "Attr(anchors) length should be greater then 0.");
    PADDLE_ENFORCE_EQ(anchors.size() % 2, 0,
                      "Attr(anchors) length should be even integer.");
    PADDLE_ENFORCE_GT(class_num, 0,
                      "Attr(class_num) should be an integer greater then 0.");

D
dengkaipeng 已提交
55 56
    std::vector<int64_t> dim_out({1});
    ctx->SetOutputDim("Loss", framework::make_ddim(dim_out));
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace());
  }
};

class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "The input tensor of bilinear interpolation, "
             "This is a 4-D tensor with shape of [N, C, H, W]");
73 74 75 76 77 78 79 80 81
    AddInput("GTBox",
             "The input tensor of ground truth boxes, "
             "This is a 3-D tensor with shape of [N, max_box_num, 5], "
             "max_box_num is the max number of boxes in each image, "
             "In the third dimention, stores label, x, y, w, h, "
             "label is an integer to specify box class, x, y is the "
             "center cordinate of boxes and w, h is the width and height"
             "and x, y, w, h should be divided by input image height to "
             "scale to [0, 1].");
D
dengkaipeng 已提交
82 83 84
    AddOutput("Loss",
              "The output yolov3 loss tensor, "
              "This is a 1-D tensor with shape of [1]");
85 86

    AddAttr<int>("class_num", "The number of classes to predict.");
D
dengkaipeng 已提交
87 88 89 90 91 92 93
    AddAttr<std::vector<int>>("anchors",
                              "The anchor width and height, "
                              "it will be parsed pair by pair.");
    AddAttr<int>("img_height",
                 "The input image height after crop of yolov3 network.");
    AddAttr<float>("ignore_thresh",
                   "The ignore threshold to ignore confidence loss.");
94 95 96 97 98 99 100 101 102 103 104 105 106 107
    AddComment(R"DOC(
         This operator generate yolov3 loss by given predict result and ground
         truth boxes.
         )DOC");
  }
};

class Yolov3LossOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
D
dengkaipeng 已提交
108 109
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")),
                   "Input(Loss@GRAD) should not be null");
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    auto dim_x = ctx->GetInputDim("X");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(yolov3_loss, ops::Yolov3LossOp, ops::Yolov3LossOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(yolov3_loss_grad, ops::Yolov3LossOpGrad);
REGISTER_OP_CPU_KERNEL(
    yolov3_loss,
    ops::Yolov3LossKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    yolov3_loss_grad,
    ops::Yolov3LossGradKernel<paddle::platform::CPUDeviceContext, float>);